1
|
Ghena N, Anderson SR, Roberts JM, Irvin E, Schwakopf J, Bosco A, Vetter ML. CD11c-Expressing Microglia Are Transient, Driven by Interactions With Apoptotic Cells. Glia 2025; 73:1077-1089. [PMID: 39828972 PMCID: PMC11920677 DOI: 10.1002/glia.24674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Microglia, the parenchymal macrophage of the central nervous system, serve crucial remodeling functions throughout development. Microglia are transcriptionally heterogenous, suggesting that distinct microglial states confer discrete roles. Currently, little is known about how dynamic these states are, the cues that promote them, or how they impact microglial function. In the developing retina, we previously found a significant proportion of microglia express CD11c (Integrin αX, Itgax, subunit of complement receptor 4) which has also been reported in other developmental and disease contexts. Here, we sought to understand the regulation and function of CD11c+ microglia. We found that CD11c+ microglia track with prominent waves of neuronal apoptosis in postnatal retina. Using genetic fate mapping, we provide evidence that microglia transition out of the CD11c state to return to homeostasis. We show that CD11c+ microglia have elevated lysosomal content and contribute to the clearance of apoptotic neurons, and found that acquisition of CD11c expression is partially dependent upon the TAM receptor AXL. Using selective ablation, we found CD11c+ microglia are not uniquely critical for phagocytic clearance of apoptotic cells. Together, our data suggest that CD11c+ microglia are a transient state induced by developmental apoptosis rather than a specialized subset mediating phagocytic elimination.
Collapse
Affiliation(s)
- Nathaniel Ghena
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Interdepartmental Program in NeuroscienceUniversity of UtahSalt Lake CityUtahUSA
| | - Sarah R. Anderson
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Jacqueline M. Roberts
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Emmalyn Irvin
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Joon Schwakopf
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Alejandra Bosco
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Monica L. Vetter
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Interdepartmental Program in NeuroscienceUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
McKinsey GL, Santander N, Zhang X, Kleemann KL, Tran L, Katewa A, Conant K, Barraza M, Waddell K, Lizama CO, La Russa M, Koo JH, Lee H, Mukherjee D, Paidassi H, Anton ES, Atabai K, Sheppard D, Butovsky O, Arnold TD. Radial glia integrin avb8 regulates cell autonomous microglial TGFβ1 signaling that is necessary for microglial identity. Nat Commun 2025; 16:2840. [PMID: 40121230 PMCID: PMC11929771 DOI: 10.1038/s41467-025-57684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Microglial diversity arises from the interplay between inherent genetic programs and external environmental signals. However, the mechanisms by which these processes develop and interact within the growing brain are not yet fully understood. Here, we show that radial glia-expressed integrin beta 8 (ITGB8) activates microglia-expressed TGFβ1 to drive microglial development. Domain-restricted deletion of Itgb8 in these progenitors results in regionally restricted and developmentally arrested microglia that persist into adulthood. In the absence of autocrine TGFβ1 signaling, microglia adopt a similar phenotype, leading to neuromotor symptoms almost identical to Itgb8 mutant mice. In contrast, microglia lacking the canonical TGFβ signal transducers Smad2 and Smad3 have a less polarized dysmature phenotype and correspondingly less severe neuromotor dysfunction. Our study describes the spatio-temporal regulation of TGFβ activation and signaling in the brain necessary to promote microglial development, and provides evidence for the adoption of microglial developmental signaling pathways in brain injury or disease.
Collapse
Affiliation(s)
- Gabriel L McKinsey
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA.
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Xiaoming Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Kilian L Kleemann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Tran
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Aditya Katewa
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Kaylynn Conant
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Matthew Barraza
- Northwestern University, Department of Neuroscience, Chicago, IL, USA
| | - Kian Waddell
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Carlos O Lizama
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Marie La Russa
- Stanford University, Department of Bioengineering, Stanford, CA, USA
| | - Ji Hyun Koo
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Hyunji Lee
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Dibyanti Mukherjee
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Helena Paidassi
- CIRI Centre International de Recherche en Infectiologie, Univ Lyon Inserm U1111 Université Claude Bernard Lyon 1 CNRS UMR5308 ENS de Lyon, F-69007, Lyon, France
| | - E S Anton
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kamran Atabai
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Dean Sheppard
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas D Arnold
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA.
| |
Collapse
|
3
|
Ayoub R, Yang S, Ji H, Fan L, De Michino S, Mabbott DJ, Nieman BJ. Brain volume and microglial density changes are correlated in a juvenile mouse model of cranial radiation and CSF1R inhibitor treatment. NMR IN BIOMEDICINE 2024; 37:e5222. [PMID: 39164196 DOI: 10.1002/nbm.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024]
Abstract
Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.
Collapse
Affiliation(s)
- Ramy Ayoub
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sabrina Yang
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Helen Ji
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lloyd Fan
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven De Michino
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Ma W, Zhao L, Xu B, Fariss RN, Redmond TM, Zou J, Wong WT, Li W. Human-induced pluripotent stem cell-derived microglia integrate into mouse retina and recapitulate features of endogenous microglia. eLife 2024; 12:RP90695. [PMID: 39514271 PMCID: PMC11587526 DOI: 10.7554/elife.90695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Wenxin Ma
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| | - Lian Zhao
- Genetic Engineering Core, National Eye InstituteBethesdaUnited States
| | - Biying Xu
- Immunoregulation Section, National Eye InstituteBethesdaUnited States
| | - Robert N Fariss
- Biological Imaging Core, National Eye InstituteBethesdaUnited States
| | - T Michael Redmond
- Molecular Mechanisms Section, National Eye InstituteBethesdaUnited States
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood InstituteBethesdaUnited States
| | | | - Wei Li
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| |
Collapse
|
5
|
Sypek EI, Tassou A, Collins HY, Huang K, McCallum WM, Bourdillon AT, Barres BA, Bohlen CJ, Scherrer G. Diversity of microglial transcriptional responses during opioid exposure and neuropathic pain. Pain 2024; 165:2615-2628. [PMID: 39073407 PMCID: PMC11474913 DOI: 10.1097/j.pain.0000000000003275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 07/30/2024]
Abstract
ABSTRACT Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Microglia display similar morphological responses in the spinal cord after peripheral nerve injury (PNI). Consistent with this observation, functional studies have suggested that microglia activated by opioids or PNI engage common molecular mechanisms to induce hypersensitivity. In this article, we conducted deep RNA sequencing (RNA-seq) and morphological analysis of spinal cord microglia in male mice to comprehensively interrogate transcriptional states and mechanistic commonality between multiple models of OIH and PNI. After PNI, we identify an early proliferative transcriptional event across models that precedes the upregulation of histological markers of microglial activation. However, we found no proliferative transcriptional response associated with opioid-induced microglial activation, consistent with histological data, indicating that the number of microglia remains stable during morphine treatment, whereas their morphological response differs from PNI models. Collectively, these results establish the diversity of pain-associated microglial transcriptomic responses and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other central nervous system pathologies.
Collapse
Affiliation(s)
- Elizabeth I. Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Stanford Neurosciences Institute, Stanford, CA, United States
- Stanford University Neurosciences Graduate Program, Stanford, CA, United States
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hannah Y. Collins
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Karen Huang
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William M. McCallum
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Ben A. Barres
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Christopher J. Bohlen
- Department of Neurobiology, Stanford University, Stanford, CA, United States. Bohlen is now with the Department of Neuroscience, Genentech, South San Francisco, CA, United States
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- New York Stem Cell Foundation—Robertson Investigator Chapel Hill, NC, United States
| |
Collapse
|
6
|
Rosmus DD, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T, Kierdorf K, Hansen SM, Kuhrt H, Fröba J, Wolf J, Boneva S, Gericke M, Ajami B, Prinz M, Lange C, Wieghofer P. Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. J Neuroinflammation 2024; 21:168. [PMID: 38961498 PMCID: PMC11223341 DOI: 10.1186/s12974-024-03110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.
Collapse
Affiliation(s)
- Dennis-Dominik Rosmus
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Jana Koch
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Annika Hausmann
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Aude Chiot
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Franz Arnhold
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Katrin Kierdorf
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Stefanie Marie Hansen
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA, 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Bahareh Ajami
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Ophtha Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145, Münster, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany.
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany.
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
7
|
Ghena N, Anderson SR, Roberts JM, Irvin E, Schwakopf J, Bosco A, Vetter ML. CD11c-expressing microglia are transient, driven by interactions with apoptotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600082. [PMID: 38979153 PMCID: PMC11230207 DOI: 10.1101/2024.06.24.600082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Microglia, the parenchymal macrophage of the central nervous system serve crucial remodeling functions throughout development. Microglia are transcriptionally heterogenous, suggesting that distinct microglial states confer discrete roles. Currently, little is known about how dynamic these states are, the cues that promote them, or how they impact microglial function. In the developing retina, we previously found a significant proportion of microglia express CD11c (Integrin αX, complement receptor 4, Itgax) which has also been reported in other developmental and disease contexts. Here, we sought to understand the regulation and function of CD11c+ microglia. We found that CD11c+ microglia track with prominent waves of neuronal apoptosis in postnatal retina. Using genetic fate mapping, we provide evidence that microglia transition out of the CD11c state to return to homeostasis. We show that CD11c+ microglia have elevated lysosomal content and contribute to the clearance of apoptotic neurons, and found that acquisition of CD11c expression is, in part, dependent upon the TAM receptor Axl. Using selective ablation, we found CD11c+ microglia are not uniquely critical for phagocytic clearance of apoptotic cells. Together, our data suggest CD11c+ microglia are a transient state induced by developmental apoptosis rather than a specialized subset mediating phagocytic elimination.
Collapse
Affiliation(s)
- Nathaniel Ghena
- Department of Neurobiology, University of Utah School of Medicine
- Interdepartmental Program in Neuroscience, University of Utah
| | - Sarah R Anderson
- Department of Neurobiology, University of Utah School of Medicine
| | | | - Emmalyn Irvin
- Department of Neurobiology, University of Utah School of Medicine
| | - Joon Schwakopf
- Department of Neurobiology, University of Utah School of Medicine
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah School of Medicine
| | - Monica L Vetter
- Department of Neurobiology, University of Utah School of Medicine
- Interdepartmental Program in Neuroscience, University of Utah
| |
Collapse
|
8
|
Gupte AS, de Soysa TY, Stevens B. Embryonic microglia maintain the brain's cortical fault lines. Trends Immunol 2024; 45:327-328. [PMID: 38664101 DOI: 10.1016/j.it.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Lawrence et al. report that fetal cortical boundaries are susceptible to morphogenetic stress that regulates a microglia state resembling postnatal, axon-tract associated microglia (ATM). This state performs a newfound function at these boundaries by preventing the formation of cavitary lesions, mediated in part by Spp1-regulated phagocytosis of fibronectin 1.
Collapse
Affiliation(s)
- Anushree S Gupte
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T Yvanka de Soysa
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Stoll AC, Kemp CJ, Patterson JR, Kubik M, Kuhn N, Benskey M, Duffy MF, Luk KC, Sortwell CE. Alpha-synuclein inclusion responsive microglia are resistant to CSF1R inhibition. J Neuroinflammation 2024; 21:108. [PMID: 38664840 PMCID: PMC11045433 DOI: 10.1186/s12974-024-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.
Collapse
Affiliation(s)
- Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Michael Kubik
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Nathan Kuhn
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Matthew Benskey
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Megan F Duffy
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
10
|
Yu C, Lad EM, Mathew R, Shiraki N, Littleton S, Chen Y, Hou J, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Bowes Rickman C, Proia AD, Colonna M, Haass C, Saban DR. Microglia at sites of atrophy restrict the progression of retinal degeneration via galectin-3 and Trem2. J Exp Med 2024; 221:e20231011. [PMID: 38289348 PMCID: PMC10826045 DOI: 10.1084/jem.20231011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nobuhiko Shiraki
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Alan D. Proia
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Stoll AC, Kemp CJ, Patterson JR, Howe JW, Steece-Collier K, Luk KC, Sortwell CE, Benskey MJ. Neuroinflammatory gene expression profiles of reactive glia in the substantia nigra suggest a multidimensional immune response to alpha synuclein inclusions. Neurobiol Dis 2024; 191:106411. [PMID: 38228253 PMCID: PMC10869642 DOI: 10.1016/j.nbd.2024.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets. Here we characterized the neuroinflammatory gene expression profile of reactive microglia and astrocytes in the SNpc during early synucleinopathy in the rat α-syn pre-formed fibril (PFF) model. Rats received intrastriatal injection of α-syn PFFs and expression of immune genes was quantified with droplet digital PCR (ddPCR), after which fluorescent in situ hybridization (FISH) was used to localize gene expression to microglia or astrocytes in the SNpc. Genes previously associated with reactive microglia (Cd74, C1qa, Stat1, Axl, Casp1, Il18, Lyz2) and reactive astrocytes (C3, Gbp2, Serping1) were significantly upregulated in the SN of PFF injected rats. Localization of gene expression to SNpc microglia near α-syn aggregates identified a unique α-syn aggregate microglial gene expression profile characterized by upregulation of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 and Fcer1g. Importantly, significant microglial upregulation of Cd74 and C3 were only observed following injection of α-syn PFFs, not α-syn monomer, confirming specificity to α-syn aggregation. Serping1 expression also localized to astrocytes in the SNpc. Interestingly, C3 expression in the SNpc localized to microglia at 2- and 4-months post-PFF, but to astrocytes at 6-months post-PFF. We also observed expression of Rt1-a2 and Cxcl10 in SNpc dopamine neurons. Cumulatively our results identify a dynamic, yet reproducible gene expression profile of reactive microglia and astrocytes associated with early synucleinopathy in the rat SNpc.
Collapse
Affiliation(s)
- Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Jacob W Howe
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Matthew J Benskey
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
12
|
Vecchiarelli HA, Tremblay MÈ. Microglial Transcriptional Signatures in the Central Nervous System: Toward A Future of Unraveling Their Function in Health and Disease. Annu Rev Genet 2023; 57:65-86. [PMID: 37384734 DOI: 10.1146/annurev-genet-022223-093643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are primarily derived from the embryonic yolk sac and make their way to the CNS during early development. They play key physiological and immunological roles across the life span, throughout health, injury, and disease. Recent transcriptomic studies have identified gene transcript signatures expressed by microglia that may provide the foundation for unprecedented insights into their functions. Microglial gene expression signatures can help distinguish them from macrophage cell types to a reasonable degree of certainty, depending on the context. Microglial expression patterns further suggest a heterogeneous population comprised of many states that vary according to the spatiotemporal context. Microglial diversity is most pronounced during development, when extensive CNS remodeling takes place, and following disease or injury. A next step of importance for the field will be to identify the functional roles performed by these various microglial states, with the perspective of targeting them therapeutically.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, British Columbia, Canada; ,
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, British Columbia, Canada; ,
- Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
- Département de Médecine Moléculaire and Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Quebec, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
13
|
McKinsey GL, Santander N, Zhang X, Kleemann K, Tran L, Katewa A, Conant K, Barraza M, Waddell K, Lizama C, La Russa M, Koo HJ, Lee H, Mukherjee D, Paidassi H, Anton ES, Atabai K, Sheppard D, Butovsky O, Arnold TD. Radial glia promote microglial development through integrin α Vβ 8 -TGFβ1 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548459. [PMID: 37790363 PMCID: PMC10542141 DOI: 10.1101/2023.07.13.548459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Microglia diversity emerges from interactions between intrinsic genetic programs and environment-derived signals, but how these processes unfold and interact in the developing brain remains unclear. Here, we show that radial glia-expressed integrin beta 8 (ITGB8) expressed in radial glia progenitors activates microglia-expressed TGFβ1, permitting microglial development. Domain-restricted deletion of Itgb8 in these progenitors establishes complementary regions with developmentally arrested "dysmature" microglia that persist into adulthood. In the absence of autocrine TGFβ1 signaling, we find that microglia adopt a similar dysmature phenotype, leading to neuromotor symptoms almost identical to Itgb8 mutant mice. In contrast, microglia lacking the TGFβ signal transducers Smad2 and Smad3 have a less polarized dysmature phenotype and correspondingly less severe neuromotor dysfunction. Finally, we show that non-canonical (Smad-independent) signaling partially suppresses disease and development associated gene expression, providing compelling evidence for the adoption of microglial developmental signaling pathways in the context of injury or disease.
Collapse
Affiliation(s)
- Gabriel L. McKinsey
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de ÓHiggins, Rancagua, Chile
| | - Xiaoming Zhang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Tran
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Aditya Katewa
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Kaylynn Conant
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Matthew Barraza
- Northwestern University, Department of Neuroscience, Chicago, IL, USA
| | - Kian Waddell
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Carlos Lizama
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Marie La Russa
- Stanford University, Department of Bioengineering, Stanford, CA, USA
| | - Hyun Ji Koo
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Hyunji Lee
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Dibyanti Mukherjee
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Helena Paidassi
- CIRI Centre International de Recherche en Infectiologie, Univ Lyon Inserm U1111 Université Claude Bernard Lyon 1 CNRS UMR5308 ENS de Lyon F-69007 Lyon France
| | - E. S. Anton
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kamran Atabai
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Dean Sheppard
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas D. Arnold
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| |
Collapse
|
14
|
Zhang Y, Park YS, Kim IB. A Distinct Microglial Cell Population Expressing Both CD86 and CD206 Constitutes a Dominant Type and Executes Phagocytosis in Two Mouse Models of Retinal Degeneration. Int J Mol Sci 2023; 24:14236. [PMID: 37762541 PMCID: PMC10532260 DOI: 10.3390/ijms241814236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Microglial cells are the key regulators of inflammation during retinal degeneration (RD) and are conventionally classified as M1 or M2. However, whether the M1/M2 classification exactly reflects the functional classification of microglial cells in the retina remains debatable. We examined the spatiotemporal changes of microglial cells in the blue-LED and NaIO3-induced RD mice models using M1/M2 markers and functional genes. TUNEL assay was performed to detect photoreceptor cell death, and microglial cells were labeled with anti-IBA1, P2RY12, CD86, and CD206 antibodies. FACS was used to isolate microglial cells with anti-CD206 and CD86 antibodies, and qRT-PCR was performed to evaluate Il-10, Il-6, Trem-2, Apoe, and Lyz2 expression. TUNEL-positive cells were detected in the outer nuclear layer (ONL) from 24 h to 72 h post-RD induction. At 24 h, P2RY12 was decreased and CD86 was increased, and CD86/CD206 double-labeled cells occupied the dominant population at 72 h. And CD86/CD206 double-labeled cells showed a significant increase in Apoe, Trem2, and Lyz2 levels but not in those of Il-6 and Il-10. Our results demonstrate that microglial cells in active RD cannot be classified as M1 or M2, and the majority of microglia express both CD86 and CD206, which are involved in phagocytosis rather than inflammation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
15
|
Abstract
Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.
Collapse
Affiliation(s)
- Jeffrey D Zhu
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Sharma Pooja Tarachand
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Qudrat Abdulwahab
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
16
|
Gao W, Jin X, Zhou P, Zhu H, Xie K, Jin B, Du L. Relationship between Uveitis and the Differential Reactivity of Retinal Microglia. Ophthalmic Res 2023; 66:1206-1212. [PMID: 37666222 PMCID: PMC10614524 DOI: 10.1159/000531156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Uveitis, a complicated group of ocular inflammatory diseases, can be affected by massive pathogenic contributors such as infection, autoimmunity, and genetics. Although it is well known that many pathological changes, including disorders of the immune system and disruption of the blood-retinal barrier, count much in the onset and progression of uveitis, there is a paucity of safe and effective treatments, which has exceedingly hindered the appropriate treatment of uveitis. As innate immune cells in the retina, microglia occupy a salient position in retinal homeostasis. Many studies have reported the activation of microglia in uveitis and the mitigation of uveitis by interfering with microglial reactivity, which strongly implicates microglia as a therapeutic target. However, it has been increasingly recognized that microglia are a nonhomogeneous population under different physiological and pathological conditions, which makes it essential to thoroughly have knowledge of their specific characteristics. The paper outlines the various properties of activated microglia in uveitis, summarizes the connections between their polarization patterns and the manifestations of uveitis, and ultimately is intended to enhance the understanding of microglial versatility and expedite the exploration of promising strategies for visual protection.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Zhu
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunpeng Xie
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Yu C, Lad EM, Mathew R, Littleton S, Chen Y, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Rickman CB, Proia AD, Colonna M, Haass C, Saban DR. Microglia at Sites of Atrophy Restrict the Progression of Retinal Degeneration via Galectin-3 and Trem2 Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549403. [PMID: 37502831 PMCID: PMC10370087 DOI: 10.1101/2023.07.19.549403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Degenerative diseases of the outer retina, including age-related macular degeneration (AMD), are characterized by atrophy of photoreceptors and retinal pigment epithelium (RPE). In these blinding diseases, macrophages are known to accumulate ectopically at sites of atrophy, but their ontogeny and functional specialization within this atrophic niche remain poorly understood, especially in the human context. Here, we uncovered a transcriptionally unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and in human AMD. Using disease models, we found that conditional deletion of galectin-3 in microglia led to defects in phagocytosis and consequent augmented photoreceptor death, RPE damage and vision loss, suggestive of a protective role. Mechanistically, Trem2 signaling orchestrated the migration of microglial cells to sites of atrophy, and there, induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection, but only in a galectin-3-dependent manner, further signifying the functional interdependence of these two molecules. Likewise in elderly human subjects, we identified a highly conserved population of microglia at the transcriptomic, protein and spatial levels, and this population was enriched in the macular region of postmortem AMD subjects. Collectively, our findings reveal an atrophy-associated specialization of microglia that restricts the progression of retinal degeneration in mice and further suggest that these protective microglia are conserved in AMD.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Immunology, Duke University; Durham, NC 27710, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich; 81377 Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Cell Biology, Duke University; Durham, NC 27710, USA
| | - Alan D Proia
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich; 81377 Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München; 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy); 81377 Munich, Germany
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Immunology, Duke University; Durham, NC 27710, USA
| |
Collapse
|
18
|
Li H, Ye T, Liu X, Guo R, Yang X, Li Y, Qi D, Wei Y, Zhu Y, Wen L, Cheng X. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease. J Pharm Anal 2023; 13:788-805. [PMID: 37577391 PMCID: PMC10422165 DOI: 10.1016/j.jpha.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 08/15/2023] Open
Abstract
Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed to this increase. Immune regulation by microglia plays a major role in the progression of aging and AD, according to the functions of 41 intersecting differentially expressed genes in microglia. Signaling crosstalk between C-C motif chemokine ligand (CCL) and major histocompatibility complex-1 bridges intercellular communication in the hippocampus during aging and AD. The amyloid precursor protein (APP) and colony stimulating factor (CSF) signals drive 5× FAD to deviate from aging track to AD occurrence among intercellular communication in hippocampus. Microglia are involved in the progression of aging and AD can be divided into 10 functional types. The strength of the interaction among microglial subtypes weakened with aging, and the CCL and CSF signaling pathways were the fundamental bridge of communication among microglial subtypes.
Collapse
Affiliation(s)
- He Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xingyang Liu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Guo
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiuzhao Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yangyi Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yihua Wei
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yifan Zhu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Wen
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
19
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Andries L, Kancheva D, Masin L, Scheyltjens I, Van Hove H, De Vlaminck K, Bergmans S, Claes M, De Groef L, Moons L, Movahedi K. Immune stimulation recruits a subset of pro-regenerative macrophages to the retina that promotes axonal regrowth of injured neurons. Acta Neuropathol Commun 2023; 11:85. [PMID: 37226256 DOI: 10.1186/s40478-023-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive. Here, we investigated the functional significance of macrophages during RGC de- and regeneration, by characterizing the inflammatory cascade evoked by optic nerve crush (ONC) injury, with or without local inflammatory stimulation in the vitreous. By combining single-cell RNA sequencing and fate mapping approaches, we elucidated the response of retinal microglia and recruited monocyte-derived macrophages (MDMs) to RGC injury. Importantly, inflammatory stimulation recruited large numbers of MDMs to the retina, which exhibited long-term engraftment and promoted axonal regrowth. Ligand-receptor analysis highlighted a subset of recruited macrophages that exhibited expression of pro-regenerative secreted factors, which were able to promote axon regrowth via paracrine signalling. Our work reveals how inflammation may promote CNS regeneration by modulating innate immune responses, providing a rationale for macrophage-centred strategies for driving neuronal repair following injury and disease.
Collapse
Affiliation(s)
- Lien Andries
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Daliya Kancheva
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Luca Masin
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Isabelle Scheyltjens
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Hannah Van Hove
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Karen De Vlaminck
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Marie Claes
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, 3000, Louvain, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Naamsestraat 61, Box 2464, 3000, Louvain, Belgium.
| | - Kiavash Movahedi
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.
| |
Collapse
|
21
|
Benhar I, Ding J, Yan W, Whitney IE, Jacobi A, Sud M, Burgin G, Shekhar K, Tran NM, Wang C, He Z, Sanes JR, Regev A. Temporal single-cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nat Immunol 2023; 24:700-713. [PMID: 36807640 DOI: 10.1038/s41590-023-01437-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/13/2023] [Indexed: 02/22/2023]
Abstract
Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.
Collapse
Affiliation(s)
- Inbal Benhar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jiarui Ding
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenjun Yan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Irene E Whitney
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne Jacobi
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Malika Sud
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace Burgin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karthik Shekhar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas M Tran
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
22
|
Zhou W, Zhou Y, He J, Rao Y, Fei P, Li J. TREM2 deficiency in microglia accelerates photoreceptor cell death and immune cell infiltration following retinal detachment. Cell Death Dis 2023; 14:219. [PMID: 36977680 PMCID: PMC10050330 DOI: 10.1038/s41419-023-05735-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Retinal detachment (RD) occurs in several major retinal conditions and often causes irreversible vision loss due to photoreceptor cell death. Retinal residential microglial cells are activated following RD and participate in photoreceptor cell death via direct phagocytosis and the regulation of inflammatory responses. Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor exclusively expressed on microglial cells in the retina, and has been reported to affect microglial cell homeostasis, phagocytosis and inflammatory responses in the brain. In this study, increased expression of multiple cytokines and chemokines in the neural retina was observed starting at 3 h following RD. Trem2 knockout (Trem2-/-) mice exhibited significantly more photoreceptor cell death than wild-type controls at 3 days after RD, and the number of TUNEL positive photoreceptor cells progressively decreased from day 3 to day 7 post-RD. A significant thinning of the outer nuclear layer (ONL), with multiple folds was observed in the Trem2-/- mice at 3 days post-RD. Trem2 deficiency reduced microglial cell infiltration and phagocytosis of stressed photoreceptors. There were more neutrophils in Trem2-/- retina following RD than in controls. Using purified microglial cells, we found Trem2 knockout is associated with increased CXCL12 expression. The aggravated photoreceptor cell death was largely reversed by blocking the CXCL12-CXCR4 mediated chemotaxis in Trem2-/- mice after RD. Our findings suggested that retinal microglia are protective in preventing further photoreceptor cell death following RD by phagocytosing presumably stressed photoreceptor cells and by regulating inflammatory responses. TREM2 is largely responsible for such protective effect and CXCL12 plays an important role in regulating neutrophil infiltration after RD. Collectively, our study pinpointed TREM2 as a potential target of microglial cells to ameliorate RD-induced photoreceptor cell death.
Collapse
Affiliation(s)
- Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
23
|
Pitts KM, Margeta MA. Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease. Front Cell Neurosci 2023; 17:1106547. [PMID: 36779012 PMCID: PMC9909491 DOI: 10.3389/fncel.2023.1106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia are dynamic guardians of neural tissue and the resident immune cells of the central nervous system (CNS). The disease-associated microglial signature (DAM), also known as the microglial neurodegenerative phenotype (MGnD), has gained significant attention in recent years as a fundamental microglial response common to various neurodegenerative disease pathologies. Interestingly, this signature shares many features in common with developmental microglia, suggesting the existence of recycled gene programs which play a role both in early neural circuit formation as well as in response to aging and disease. In addition, recent advances in single cell RNA sequencing have revealed significant heterogeneity within the original DAM signature, with contributions from both yolk sac-derived microglia as well as bone marrow-derived macrophages. In this review, we examine the role of the DAM signature in retinal development and disease, highlighting crosstalk between resident microglia and infiltrating monocytes which may critically contribute to the underlying mechanisms of age-related neurodegeneration.
Collapse
Affiliation(s)
- Kristen M. Pitts
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, United States
| | - Milica A. Margeta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, United States
| |
Collapse
|
24
|
Jiang D, Burger CA, Akhanov V, Liang JH, Mackin RD, Albrecht NE, Andrade P, Schafer DP, Samuel MA. Neuronal signal-regulatory protein alpha drives microglial phagocytosis by limiting microglial interaction with CD47 in the retina. Immunity 2022; 55:2318-2335.e7. [PMID: 36379210 PMCID: PMC9772037 DOI: 10.1016/j.immuni.2022.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Abstract
Microglia utilize their phagocytic activity to prune redundant synapses and refine neural circuits during precise developmental periods. However, the neuronal signals that control this phagocytic clockwork remain largely undefined. Here, we show that neuronal signal-regulatory protein alpha (SIRPα) is a permissive cue for microglial phagocytosis in the developing murine retina. Removal of neuronal, but not microglial, SIRPα reduced microglial phagocytosis, increased synpase numbers, and impaired circuit function. Conversely, prolonging neuronal SIRPα expression extended developmental microglial phagocytosis. These outcomes depended on the interaction of presynaptic SIRPα with postsynaptic CD47. Global CD47 deficiency modestly increased microglial phagocytosis, while CD47 overexpression reduced it. This effect was rescued by coexpression of neuronal SIRPα or codeletion of neuronal SIRPα and CD47. These data indicate that neuronal SIRPα regulates microglial phagocytosis by limiting microglial SIRPα access to neuronal CD47. This discovery may aid our understanding of synapse loss in neurological diseases.
Collapse
Affiliation(s)
- Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert D Mackin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pilar Andrade
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
26
|
De Vlaminck K, Van Hove H, Kancheva D, Scheyltjens I, Pombo Antunes AR, Bastos J, Vara-Perez M, Ali L, Mampay M, Deneyer L, Miranda JF, Cai R, Bouwens L, De Bundel D, Caljon G, Stijlemans B, Massie A, Van Ginderachter JA, Vandenbroucke RE, Movahedi K. Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 2022; 55:2085-2102.e9. [PMID: 36228615 DOI: 10.1016/j.immuni.2022.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.
Collapse
Affiliation(s)
- Karen De Vlaminck
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannah Van Hove
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daliya Kancheva
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Monica Vara-Perez
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leen Ali
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Myrthe Mampay
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Juliana Fabiani Miranda
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ruiyao Cai
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Benoît Stijlemans
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Laboratory, VIB Center for Inflammation Research, Ghent, Belgium; Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
27
|
Zhou Z, Jing Y, Niu Y, Chang T, Sun J, Guo C, Wang Y, Dou G. Distinguished Functions of Microglia in the Two Stages of Oxygen-Induced Retinopathy: A Novel Target in the Treatment of Ischemic Retinopathy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101676. [PMID: 36295111 PMCID: PMC9604577 DOI: 10.3390/life12101676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
Microglia is the resident immune cell in the retina, playing the role of immune surveillance in a traditional concept. With the heated focus on the mechanisms of microglia in pathological conditions, more and more functions of microglia have been discovered. Although the regulating role of microglia has been explored in ischemic retinopathy, little is known about its mechanisms in the different stages of the pathological process. Here, we removed microglia in the oxygen-induced retinopathy model by PLX5622 and revealed that the removal of activated microglia reduced pathological angiogenesis in the early stage after ischemic insult and alleviated the over-apoptosis of photoreceptors in the vessel remodeling phase. Our results indicated that microglia might play distinguished functions in the angiogenic and remodeling stages, and that the inhibition of microglia might be a promising target in the future treatment of ischemic retinopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yusheng Wang
- Correspondence: (Y.W.); (G.D.); Tel.: +86-029-84775371 (Y.W.); +86-029-84771273 (G.D.)
| | - Guorui Dou
- Correspondence: (Y.W.); (G.D.); Tel.: +86-029-84775371 (Y.W.); +86-029-84771273 (G.D.)
| |
Collapse
|
28
|
Zhao F, He J, Tang J, Cui N, Shi Y, Li Z, Liu S, Wang Y, Ma M, Zhao C, Luo L, Li L. Brain milieu induces early microglial maturation through the BAX-Notch axis. Nat Commun 2022; 13:6117. [PMID: 36253375 PMCID: PMC9576735 DOI: 10.1038/s41467-022-33836-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microglia are derived from primitive myeloid cells and gain their early identity in the embryonic brains. However, the mechanism by which the brain milieu confers microglial maturation signature remains elusive. Here, we demonstrate that the baxcq55 zebrafish and Baxtm1Sjk mouse embryos exhibit similarly defective early microglial maturation. BAX, a typical pro-apoptotic factor, is highly enriched in neuronal cells and regulates microglial maturation through both pro-apoptotic and non-apoptotic mechanisms. BAX regulates dlb via the CaMKII-CREB axis calcium-dependently in living neurons while ensuring the efficient Notch activation in the immigrated pre-microglia by apoptotic neurons. Notch signaling is conserved in supporting embryonic microglia maturation. Compromised microglial development occurred in the Cx3cr1Cre/+Rbpjfl/fl embryonic mice; however, microglia acquire their appropriate signature when incubated with DLL3 in vitro. Thus, our findings elucidate a BAX-CaMKII-CREB-Notch network triggered by the neuronal milieu in microglial development, which may provide innovative insights for targeting microglia in neuronal disorder treatment.
Collapse
Affiliation(s)
- Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, P.R. China
| | - Jun Tang
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Nianfei Cui
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Yanyan Shi
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Zhifan Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Shengnan Liu
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, 710032, Xi'an, Shaanxi, P.R. China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, P.R. China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China.
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, 400715, Chongqing, P.R. China.
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, P.R. China.
| |
Collapse
|
29
|
Chen M, Zhang H, Chu YH, Tang Y, Pang XW, Qin C, Tian DS. Microglial autophagy in cerebrovascular diseases. Front Aging Neurosci 2022; 14:1023679. [PMID: 36275005 PMCID: PMC9582432 DOI: 10.3389/fnagi.2022.1023679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are considered core regulators for monitoring homeostasis in the brain and primary responders to central nervous system (CNS) injuries. Autophagy affects the innate immune functions of microglia. Recently some evidence suggests that microglial autophagy is closely associated with brain function in both ischemic stroke and hemorrhagic stroke. Herein, we will discuss the interaction between autophagy and other biological processes in microglia under physiological and pathological conditions and highlight the interaction between microglial metabolism and autophagy. In the end, we focus on the effect of microglial autophagy in cerebrovascular diseases.
Collapse
|
30
|
Li S, Wernersbach I, Harms GS, Schäfer MKE. Microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. Front Immunol 2022. [PMID: 36105813 DOI: 10.3389/fimmu.2022b.945485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Microglia are phagocytosis-competent CNS cells comprising a spectrum of subtypes with beneficial and/or detrimental functions in acute and chronic neurodegenerative disorders. The heterogeneity of microglia suggests differences in phagocytic activity and phenotype plasticity between microglia subtypes. To study these issues, primary murine glial cultures were cultivated in the presence of serum, different growth factors and cytokines to obtain M0-like, M1-like, and M2-like microglia as confirmed by morphology, M1/M2 gene marker expression, and nitric oxide assay. Single-cell analysis after 3 hours of phagocytosis of E.coli particles or IgG-opsonized beads showed equal internalization by M0-like microglia, whereas M1-like microglia preferably internalized E.coli particles and M2-like microglia preferably internalized IgG beads, suggesting subtype-specific preferences for different phagocytosis substrates. Time-lapse live-cells imaging over 16 hours revealed further differences between microglia subtypes in phagocytosis preference and internalization dynamics. M0- and, more efficiently, M1-like microglia continuously internalized E.coli particles for 16 hours, whereas M2-like microglia discontinued internalization after approximately 8 hours. IgG beads were continuously internalized by M0- and M1-like microglia but strikingly less by M2-like microglia. M2-like microglia initially showed continuous internalization similar to M0-like microglia but again discontinuation of internalization after 8 hours suggesting that the time of substrate exposure differently affect microglia subtypes. After prolonged exposure to E.coli particles or IgG beads for 5 days all microglia subtypes showed increased internalization of E.coli particles compared to IgG beads, increased nitric oxide release and up-regulation of M1 gene markers, irrespectively of the phagocytosis substrate, suggesting phenotype plasticity. In summary, microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. The results suggest that prolonged phagocytosis substrate exposure enhances M1-like profiles and M2-M1 repolarization of microglia. Similar processes may also take place in conditions of acute and chronic brain insults when microglia encounter different types of phagocytic substrates.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gregory S Harms
- Cell Biology Unit, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Departments of Biology and Physics, Wilkes University, Wilkes Barre, PA, United States
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
31
|
Li S, Wernersbach I, Harms GS, Schäfer MKE. Microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. Front Immunol 2022; 13:945485. [PMID: 36105813 PMCID: PMC9465456 DOI: 10.3389/fimmu.2022.945485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Microglia are phagocytosis-competent CNS cells comprising a spectrum of subtypes with beneficial and/or detrimental functions in acute and chronic neurodegenerative disorders. The heterogeneity of microglia suggests differences in phagocytic activity and phenotype plasticity between microglia subtypes. To study these issues, primary murine glial cultures were cultivated in the presence of serum, different growth factors and cytokines to obtain M0-like, M1-like, and M2-like microglia as confirmed by morphology, M1/M2 gene marker expression, and nitric oxide assay. Single-cell analysis after 3 hours of phagocytosis of E.coli particles or IgG-opsonized beads showed equal internalization by M0-like microglia, whereas M1-like microglia preferably internalized E.coli particles and M2-like microglia preferably internalized IgG beads, suggesting subtype-specific preferences for different phagocytosis substrates. Time-lapse live-cells imaging over 16 hours revealed further differences between microglia subtypes in phagocytosis preference and internalization dynamics. M0- and, more efficiently, M1-like microglia continuously internalized E.coli particles for 16 hours, whereas M2-like microglia discontinued internalization after approximately 8 hours. IgG beads were continuously internalized by M0- and M1-like microglia but strikingly less by M2-like microglia. M2-like microglia initially showed continuous internalization similar to M0-like microglia but again discontinuation of internalization after 8 hours suggesting that the time of substrate exposure differently affect microglia subtypes. After prolonged exposure to E.coli particles or IgG beads for 5 days all microglia subtypes showed increased internalization of E.coli particles compared to IgG beads, increased nitric oxide release and up-regulation of M1 gene markers, irrespectively of the phagocytosis substrate, suggesting phenotype plasticity. In summary, microglia subtypes show substrate- and time-dependent phagocytosis preferences and phenotype plasticity. The results suggest that prolonged phagocytosis substrate exposure enhances M1-like profiles and M2-M1 repolarization of microglia. Similar processes may also take place in conditions of acute and chronic brain insults when microglia encounter different types of phagocytic substrates.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gregory S. Harms
- Cell Biology Unit, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Departments of Biology and Physics, Wilkes University, Wilkes Barre, PA, United States
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- *Correspondence: Michael K. E. Schäfer,
| |
Collapse
|
32
|
Xu Z, Qu A, Zhang H, Wang W, Hao C, Lu M, Shi B, Xu L, Sun M, Xu C, Kuang H. Photoinduced elimination of senescent microglia cells in vivo by chiral gold nanoparticles. Chem Sci 2022; 13:6642-6654. [PMID: 35756519 PMCID: PMC9172567 DOI: 10.1039/d2sc01662a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P- NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL-1 to 8.66 ± 1.79 ng mL-1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.
Collapse
Affiliation(s)
- Zhuojia Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Weiwei Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Meiru Lu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Baimei Shi
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
33
|
Mechanical actuators in microglia dynamics and function. Eur J Cell Biol 2022; 101:151247. [DOI: 10.1016/j.ejcb.2022.151247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
|
34
|
Anderson SR, Roberts JM, Ghena N, Irvin EA, Schwakopf J, Cooperstein IB, Bosco A, Vetter ML. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence. eLife 2022; 11:e76564. [PMID: 35481836 PMCID: PMC9071266 DOI: 10.7554/elife.76564] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Microglia serve critical remodeling roles that shape the developing nervous system, responding to the changing neural environment with phagocytosis or soluble factor secretion. Recent single-cell sequencing (scRNAseq) studies have revealed the context-dependent diversity in microglial properties and gene expression, but the cues promoting this diversity are not well defined. Here, we ask how interactions with apoptotic neurons shape microglial state, including lysosomal and lipid metabolism gene expression and dependence on Colony-stimulating factor 1 receptor (CSF1R) for survival. Using early postnatal mouse retina, a CNS region undergoing significant developmental remodeling, we performed scRNAseq on microglia from mice that are wild-type, lack neuronal apoptosis (Bax KO), or are treated with CSF1R inhibitor (PLX3397). We find that interactions with apoptotic neurons drive multiple microglial remodeling states, subsets of which are resistant to CSF1R inhibition. We find that TAM receptor Mer and complement receptor 3 are required for clearance of apoptotic neurons, but that Mer does not drive expression of remodeling genes. We show TAM receptor Axl is negligible for phagocytosis or remodeling gene expression but is consequential for microglial survival in the absence of CSF1R signaling. Thus, interactions with apoptotic neurons shift microglia toward distinct remodeling states and through Axl, alter microglial dependence on survival pathway, CSF1R.
Collapse
Affiliation(s)
| | | | - Nathaniel Ghena
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
- Interdepartmental Program in Neuroscience, University of UtahSalt Lake CityUnited States
| | - Emmalyn A Irvin
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | - Joon Schwakopf
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | | | - Alejandra Bosco
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| | - Monica L Vetter
- Department of Neurobiology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
35
|
Guo L, Choi S, Bikkannavar P, Cordeiro MF. Microglia: Key Players in Retinal Ageing and Neurodegeneration. Front Cell Neurosci 2022; 16:804782. [PMID: 35370560 PMCID: PMC8968040 DOI: 10.3389/fncel.2022.804782] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in maintaining the normal function of the retina and brain. During early development, microglia migrate into the retina, transform into a highly ramified phenotype, and scan their environment constantly. Microglia can be activated by any homeostatic disturbance that may endanger neurons and threaten tissue integrity. Once activated, the young microglia exhibit a high diversity in their phenotypes as well as their functions, which relate to either beneficial or harmful consequences. Microglial activation is associated with the release of cytokines, chemokines, and growth factors that can determine pathological outcomes. As the professional phagocytes in the retina, microglia are responsible for the clearance of pathogens, dead cells, and protein aggregates. However, their phenotypic diversity and phagocytic capacity is compromised with ageing. This may result in the accumulation of protein aggregates and myelin debris leading to retinal neuroinflammation and neurodegeneration. In this review, we describe microglial phenotypes and functions in the context of the young and ageing retina, and the mechanisms underlying changes in ageing. Additionally, we review microglia-mediated retinal neuroinflammation and discuss the mechanisms of microglial involvement in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Guo
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: Li Guo,
| | - Soyoung Choi
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - M. Francesca Cordeiro
- Institute of Ophthalmology, University College London, London, United Kingdom
- Imperial College Ophthalmology Research Group, Imperial College London, London, United Kingdom
- M. Francesca Cordeiro,
| |
Collapse
|
36
|
Liu R, Jia W, Wang Y, Hu C, Yu W, Huang Y, Wang L, Gao H. Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. RESEARCH 2022; 2022:9847612. [PMID: 35360646 PMCID: PMC8943630 DOI: 10.34133/2022/9847612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022]
Abstract
Although drug delivery systems (DDS) are efficient in brain delivery, they face failure in clinical settings due to their potential toxicity to the central nervous system. Little is known about where the DDS will go after brain delivery, and no specific elimination route that shares a passage with DDS has been verified. Hence, identifying harmless DDS for brain delivery and determining their fate there would strongly contribute to their clinical translation. In this study, we investigated nonreactive gold nanoclusters, which can deliver into the brain, to determine the elimination route of DDS. Subsequently, nanoclusters in the brain were systemically tracked and were found to be critically drained by the glymphatic system from the blood vessel basement membrane to periphery circulations (77.8 ± 23.2% and 43.7 ± 23.4% contribution). Furthermore, the nanoclusters could be actively transported across the blood-brain barrier (BBB) by exosomes (30.5 ± 27.3% and 29.2 ± 7.1% contribution). In addition, microglia promoted glymphatic drainage and passage across the BBB. The simultaneous work of the glymphatic system, BBB, and microglia revealed the fate of gold nanoclusters for brain delivery and provided a basis for further brain-delivery DDS.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenfeng Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 2022; 60:101651. [PMID: 36155944 DOI: 10.1016/j.smim.2022.101651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.
Collapse
|
38
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
39
|
Definition of a mouse microglial subset that regulates neuronal development and proinflammatory responses in the brain. Proc Natl Acad Sci U S A 2022; 119:2116241119. [PMID: 35177477 PMCID: PMC8872761 DOI: 10.1073/pnas.2116241119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
Expression of Itgax (encoding the CD11c surface protein) and Spp1 (encoding osteopontin; OPN) has been associated with activated microglia that can develop in healthy brains and some neuroinflammatory disorders. However, whether CD11c and OPN expression is a consequence of microglial activation or represents a portion of the genetic program expressed by a stable microglial subset is unknown. Here, we show that OPN production in the brain is confined to a small CD11c+ microglial subset that differentiates from CD11c- precursors in perinatal life after uptake of apoptotic neurons. Our analysis suggests that coexpression of OPN and CD11c marks a microglial subset that is expressed at birth and persists into late adult life, independent of environmental activation stimuli. Analysis of the contribution of OPN to the intrinsic functions of this CD11c+ microglial subset indicates that OPN is required for subset stability and the execution of phagocytic and proinflammatory responses, in part through OPN-dependent engagement of the αVβ3-integrin receptor. Definition of OPN-producing CD11c+ microglia as a functional microglial subset provides insight into microglial differentiation in health and disease.
Collapse
|
40
|
van Wageningen TA, Gerrits E, Palacin I Bonson S, Huitinga I, Eggen BJL, van Dam AM. Exploring reported genes of microglia RNA-sequencing data: Uses and considerations. Glia 2021; 69:2933-2946. [PMID: 34409652 PMCID: PMC9291850 DOI: 10.1002/glia.24078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023]
Abstract
The advent of RNA‐sequencing techniques has made it possible to generate large, unbiased gene expression datasets of tissues and cell types. Several studies describing gene expression data of microglia from Alzheimer's disease or multiple sclerosis have been published, aiming to generate more insight into the role of microglia in these neurological diseases. Though the raw sequencing data are often deposited in open access databases, the most accessible source of data for scientists is what is reported in published manuscripts. We observed a relatively limited overlap in reported differentially expressed genes between various microglia RNA‐sequencing studies from multiple sclerosis or Alzheimer's diseases. It was clear that differences in experimental set up influenced the number of overlapping reported genes. However, even when the experimental set up was very similar, we observed that overlap in reported genes could be low. We identified that papers reporting large numbers of differentially expressed microglial genes generally showed higher overlap with other papers. In addition, though the pathology present within the tissue used for sequencing can greatly influence microglia gene expression, often the pathology present in samples used for sequencing was underreported, leaving it difficult to assess the data. Whereas reanalyzing every raw dataset could reduce the variation that contributes to the observed limited overlap in reported genes, this is not feasible for labs without (access to) bioinformatic expertise. In this study, we thus provide an overview of data present in manuscripts and their supplementary files and how these data can be interpreted.
Collapse
Affiliation(s)
- Thecla A van Wageningen
- Department Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sara Palacin I Bonson
- Department Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anne-Marie van Dam
- Department Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Rehman R, Tar L, Olamide AJ, Li Z, Kassubek J, Böckers T, Weishaupt J, Ludolph A, Wiesner D, Roselli F. Acute TBK1/IKK-ε Inhibition Enhances the Generation of Disease-Associated Microglia-Like Phenotype Upon Cortical Stab-Wound Injury. Front Aging Neurosci 2021; 13:684171. [PMID: 34326766 PMCID: PMC8313992 DOI: 10.3389/fnagi.2021.684171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury has a poorer prognosis in elderly patients, possibly because of the enhanced inflammatory response characteristic of advanced age, known as “inflammaging.” Recently, reduced activation of the TANK-Binding-Kinase 1 (Tbk1) pathway has been linked to age-associated neurodegeneration and neuroinflammation. Here we investigated how the blockade of Tbk1 and of the closely related IKK-ε by the small molecule Amlexanox could modify the microglial and immune response to cortical stab-wound injury in mice. We demonstrated that Tbk1/IKK-ε inhibition resulted in a massive expansion of microglial cells characterized by the TMEM119+/CD11c+ phenotype, expressing high levels of CD68 and CD317, and with the upregulation of Cst7a, Prgn and Ccl4 and the decrease in the expression levels of Tmem119 itself and P2yr12, thus a profile close to Disease-Associated Microglia (DAM, a subset of reactive microglia abundant in Alzheimer’s Disease and other neurodegenerative conditions). Furthermore, Tbk1/IKK-ε inhibition increased the infiltration of CD3+ lymphocytes, CD169+ macrophages and CD11c+/CD169+ cells. The enhanced immune response was associated with increased expression of Il-33, Ifn-g, Il-17, and Il-19. This upsurge in the response to the stab wound was associated with the expanded astroglial scars and increased deposition of chondroitin-sulfate proteoglycans at 7 days post injury. Thus, Tbk1/IKK-ε blockade results in a massive expansion of microglial cells with a phenotype resembling DAM and with the substantial enhancement of neuroinflammatory responses. In this context, the induction of DAM is associated with a detrimental outcome such as larger injury-related glial scars. Thus, the Tbk1/IKK-ε pathway is critical to repress neuroinflammation upon stab-wound injury and Tbk1/IKK-ε inhibitors may provide an innovative approach to investigate the consequences of DAM induction.
Collapse
Affiliation(s)
- Rida Rehman
- Department of Neurology, Ulm University, Ulm, Germany
| | - Lilla Tar
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Adeyemi Jubril Olamide
- Department of Neurology, Ulm University, Ulm, Germany.,Master in Translational and Molecular Neuroscience, Ulm University, Ulm, Germany
| | - Zhenghui Li
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias Böckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Jochen Weishaupt
- Department of Neurology, Ulm University, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| |
Collapse
|
42
|
Dixon MA, Greferath U, Fletcher EL, Jobling AI. The Contribution of Microglia to the Development and Maturation of the Visual System. Front Cell Neurosci 2021; 15:659843. [PMID: 33967697 PMCID: PMC8102829 DOI: 10.3389/fncel.2021.659843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.
Collapse
Affiliation(s)
- Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Zhang K, Wu L, Lin K, Zhang M, Li W, Tong X, Zheng J. Integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis during postnatal rat retinal development. Exp Neurol 2021; 340:113659. [PMID: 33640375 DOI: 10.1016/j.expneurol.2021.113659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Remodeling of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a pivotal role for microglia in developing retina. We tested whether integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis in the developing rat retina. METHODS We performed immunofluorescence assays to investigate the role of integrin receptors expressed in the microglia in ketamine-induced neuronal apoptosis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to investigate the protein and mRNA levels of cytokines (TNF-α, IL-1β) and/or chemokines (CCL2, CXCL6, CXCL10, and CXCL12). Experiments were performed using whole-mount retinas dissected from P7 Sprague-Dawley rats. RESULTS Integrin receptors expressed in microglia were upregulated in ketamine-induced neuronal apoptosis in the early developing rat retina. Downregulating integrin receptors with RGD peptide ameliorated ketamine-induced microgliosis through: 1) ameliorating the change in microglia morphology from immature ramified microglia to an amoeboid state; 2) decreasing the number of microglia and intensity of activated microglia in the retinal ganglion cell layer (GCL); and 3) decreasing cytokine (TNF-α and IL-1β) and chemokine (CCL2, CXCL10) levels in the retinal tissue. Inhibition of activated microglia with minocycline or the blockade of cytokines (TNF-α and IL-1β) with a receptor antagonist (RA) attenuated neuronal apoptosis after exposure to ketamine. CONCLUSIONS The upregulation of integrin β1 receptors in the microglia acts as a signaling molecule, triggering microgliosis to aggravate ketamine-induced neuronal apoptosis via the release of TNF-α and IL-1β in the early developing rat retina.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Wu
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiguang Li
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
44
|
Raiders S, Han T, Scott-Hewitt N, Kucenas S, Lew D, Logan MA, Singhvi A. Engulfed by Glia: Glial Pruning in Development, Function, and Injury across Species. J Neurosci 2021; 41:823-833. [PMID: 33468571 PMCID: PMC7880271 DOI: 10.1523/jneurosci.1660-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Phagocytic activity of glial cells is essential for proper nervous system sculpting, maintenance of circuitry, and long-term brain health. Glial engulfment of apoptotic cells and superfluous connections ensures that neuronal connections are appropriately refined, while clearance of damaged projections and neurotoxic proteins in the mature brain protects against inflammatory insults. Comparative work across species and cell types in recent years highlights the striking conservation of pathways that govern glial engulfment. Many signaling cascades used during developmental pruning are re-employed in the mature brain to "fine tune" synaptic architecture and even clear neuronal debris following traumatic events. Moreover, the neuron-glia signaling events required to trigger and perform phagocytic responses are impressively conserved between invertebrates and vertebrates. This review offers a compare-and-contrast portrayal of recent findings that underscore the value of investigating glial engulfment mechanisms in a wide range of species and contexts.
Collapse
Affiliation(s)
- Stephan Raiders
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195
| | - Taeho Han
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158
| | - Nicole Scott-Hewitt
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Deborah Lew
- Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Mary A Logan
- Jungers Center, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
45
|
Konishi H, Kiyama H. Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochem Int 2020; 141:104878. [DOI: 10.1016/j.neuint.2020.104878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/01/2023]
|
46
|
Wlodarczyk A, Khorooshi R, Marczynska J, Holtman IR, Burton M, Jensen KN, Blaabjerg M, Meyer M, Thomassen M, Eggen BJL, Asgari N, Owens T. Type I interferon-activated microglia are critical for neuromyelitis optica pathology. Glia 2020; 69:943-953. [PMID: 33241604 DOI: 10.1002/glia.23938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 11/11/2020] [Indexed: 01/26/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory disease of the central nervous system (CNS) most frequently mediated by serum autoantibodies against the water channel aquaporin 4, expressed on CNS astrocytes, resulting in primary astrocytopathy. There is no cure for NMO, and treatment with Type I interferon (IFNI)-IFNβ is ineffective or even detrimental. We have previously shown that both NMO lesions and associated microglial activation were reduced in mice lacking the receptor for IFNβ. However, the role of microglia in NMO is not well understood. In this study, we clarify the pathomechanism for IFNI dependence of and the role of microglia in experimental NMO. Transcriptome analysis showed a strong IFNI footprint in affected CNS tissue as well as in microglial subpopulations. Treatment with IFNβ led to exacerbated pathology and further microglial activation as evidenced by expansion of a CD11c+ subset of microglia. Importantly, depletion of microglia led to suppression of pathology and decrease of IFNI signature genes. Our data show a pro-pathologic role for IFNI-activated microglia in NMO and open new perspectives for microglia-targeted therapies.
Collapse
Affiliation(s)
- Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| | - Joanna Marczynska
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| | - Inge R Holtman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark Burton
- Department of Genetics, Odense University Hospital, Odense, Denmark
| | - Kirstine Nolling Jensen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| | - Morten Blaabjerg
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark.,Department of Neurology, Odense University Hospital and Neurology Research Unit, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| | - Mads Thomassen
- Department of Genetics, Odense University Hospital, Odense, Denmark
| | - Bart J L Eggen
- Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| | - Nasrin Asgari
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark.,Department of Neurology, Slagelse Hospital, Slagelse, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark
| |
Collapse
|
47
|
Kinuthia UM, Wolf A, Langmann T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 2020; 11:564077. [PMID: 33240260 PMCID: PMC7681237 DOI: 10.3389/fimmu.2020.564077] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening disease affecting neurons and microvasculature of the retina. The development of this disease is associated with the action of inflammatory factors that are connected to the activation of microglial cells, the resident tissue macrophages of the CNS. In the quiescent state, microglial cells help maintain tissue homeostasis in the retina through phagocytosis and control of low-grade inflammation. However, prolonged tissue stress due to hyperglycemia primes microglia to become overly reactive with the concomitant production of pro-inflammatory cytokines and chemokines causing chronic inflammation. In this review, we provide evidence of microglial cell activation and pro-inflammatory molecules associated with the development and progression of diabetic retinopathy. We further highlight innovative animal models that can mimic the disease in humans and discuss strategies in modulating microglial-mediated inflammation as potential therapeutic approaches in managing the disease.
Collapse
Affiliation(s)
- Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Thion MS, Garel S. Microglial ontogeny, diversity and neurodevelopmental functions. Curr Opin Genet Dev 2020; 65:186-194. [PMID: 32823206 DOI: 10.1016/j.gde.2020.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
Microglia are instrumental to the development, function, homeostasis and pathologies of the central nervous system. These brain-resident macrophages arise early in embryogenesis and seed the developing brain, where they differentiate in response to cues provided by their neural niche. Throughout life, microglia regulate the neural tissue through a variety of cellular functions influenced by intrinsic and extrinsic factors. Despite their importance, we are only starting to uncover how microglia colonize the brain, adopt distinct functional states during development and the long-term impact of early alteration of their functions. This review highlights the latest knowledge on the ontogeny of microglia, their developmental trajectory and emerging roles. Characterizing these processes will be critical for our understanding of both brain physiology and pathologies.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
49
|
Sheng L, Shields EJ, Gospocic J, Glastad KM, Ratchasanmuang P, Berger SL, Raj A, Little S, Bonasio R. Social reprogramming in ants induces longevity-associated glia remodeling. SCIENCE ADVANCES 2020; 6:eaba9869. [PMID: 32875108 PMCID: PMC7438095 DOI: 10.1126/sciadv.aba9869] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/09/2020] [Indexed: 05/16/2023]
Abstract
In social insects, workers and queens arise from the same genome but display profound differences in behavior and longevity. In Harpegnathos saltator ants, adult workers can transition to a queen-like state called gamergate, which results in reprogramming of social behavior and life-span extension. Using single-cell RNA sequencing, we compared the distribution of neuronal and glial populations before and after the social transition. We found that the conversion of workers into gamergates resulted in the expansion of neuroprotective ensheathing glia. Brain injury assays revealed that activation of the damage response gene Mmp1 was weaker in old workers, where the relative frequency of ensheathing glia also declined. On the other hand, long-lived gamergates retained a larger fraction of ensheathing glia and the ability to mount a strong Mmp1 response to brain injury into old age. We also observed molecular and cellular changes suggestive of age-associated decline in ensheathing glia in Drosophila.
Collapse
Affiliation(s)
- Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily J. Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl M. Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Puttachai Ratchasanmuang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelley L. Berger
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arjun Raj
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Shawn Little
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
50
|
Eymann J, Di-Poï N. Glia-Mediated Regenerative Response Following Acute Excitotoxic Damage in the Postnatal Squamate Retina. Front Cell Dev Biol 2020; 8:406. [PMID: 32548121 PMCID: PMC7270358 DOI: 10.3389/fcell.2020.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023] Open
Abstract
The retina is a complex tissue responsible for both detection and primary processing of visual stimuli. Although all vertebrate retinas share a similar, multi-layered organization, the ability to regenerate individual retinal cells varies tremendously, being extremely limited in mammals and birds when compared to anamniotes such as fish and amphibians. However, little is yet known about damage response and regeneration of retinal tissues in "non-classical" squamate reptiles (lizards, snakes), which occupy a key phylogenetic position within amniotes and exhibit unique regenerative features in many tissues. Here, we address this gap by establishing and characterizing a model of excitotoxic retinal damage in bearded dragon lizard (Pogona vitticeps). We particularly focus on identifying, at the cellular and molecular level, a putative endogenous cellular source for retinal regeneration, as diverse self-repair strategies have been characterized in vertebrates using a variety of retinal injury and transgenic models. Our findings reveal for the first time that squamates hold the potential for postnatal retinal regeneration following acute injury. Although no changes occur in the activity of physiologically active progenitors recently identified at the peripheral retinal margin of bearded dragon, two distinct successive populations of proliferating cells at central retina respond to neurotoxin treatment. Following an initial microglia response, a second source of proliferating cells exhibit common hallmarks of vertebrate Müller glia (MG) activation, including cell cycle re-entry, dedifferentiation into a progenitor-like phenotype, and re-expression of proneural markers. The observed lizard glial responses, although not as substantial as in anamniotes, appear more robust than the absent or neonatal-limited regeneration reported without exogenous stimulation in other amniotes. Altogether, these results help to complete our evolutionary understanding of regenerative potential of the vertebrate retina, and further highlight the major importance of glial cells in retinal regeneration. Furthermore, our work offers a new powerful vertebrate model to elucidate the developmental and evolutionary bases of retinal regeneration within amniotes. Such new understanding of self-repair mechanisms in non-classical species endowed with regenerative properties may help designing therapeutic strategies for vertebrate retinal diseases.
Collapse
Affiliation(s)
- Julia Eymann
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|