1
|
Nakashima S, Fukuda M. Identification of Rab GTPase-Activating Proteins Required for Tubular Endosome Formation. Traffic 2025; 26:e70007. [PMID: 40241313 DOI: 10.1111/tra.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
In certain kinds of cells, clathrin-independently endocytosed cargo proteins are recycled back to the plasma membrane via specialized tubular-shaped endosomes, so-called tubular endosomes. Several regulators, including Rab small GTPases, have previously been reported to control tubular endosome structures, and one of the regulators, Rab22A, controls cargo sorting and tubule elongation. Since Rab activity is generally controlled by a guanine nucleotide exchange factor (GEF) and a GTPase-activating protein (GAP), these upstream regulators would also be involved in tubular endosome formation. However, although we have previously reported that Vps9d1 is a Rab22A-GEF that controls tubular endosome formation, there have been no reports of Rab-GAPs that are required for tubular endosome formation. Here, we demonstrated by comprehensive screening of TBC/Rab-GAPs that four Rab-GAPs, TBC1D10B, TBC1D18, TBC1D22B and EVI5, are involved in tubular endosome formation in HeLa cells in a GAP-activity-dependent manner. Knockdown or overexpression of each of these Rab-GAPs resulted in the same phenotype, that is, reduced tubular endosome structures. Since one of these four Rab-GAPs, TBC1D10B, was able to reduce the amount of active Rab22A and the size of Rab22A-positive early endosomes, it is the most probable candidate for a Rab22A-GAP. Our findings suggest that a proper GTPase cycle is important for the control of tubular endosome formation.
Collapse
Affiliation(s)
- Shumpei Nakashima
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Tan H, Cao K, Zhao Y, Zhong J, Deng D, Pan B, Zhang J, Zhang R, Wang Z, Chen T, Shi Y. Brain-Targeted Black Phosphorus-Based Nanotherapeutic Platform for Enhanced Hypericin Delivery in Depression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310608. [PMID: 38461532 DOI: 10.1002/smll.202310608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.
Collapse
Affiliation(s)
- Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kerun Cao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuying Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jialong Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
3
|
Wang Y, Xie Y, Qian L, Ding R, Pang R, Chen P, Zhang Q, Zhang S. RAB42 overexpression correlates with poor prognosis, immune cell infiltration and chemoresistance. Front Pharmacol 2024; 15:1445170. [PMID: 39101146 PMCID: PMC11294155 DOI: 10.3389/fphar.2024.1445170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND RAB42 (Ras-related protein 42) is a new small GTPase that controls the vesicular trafficking from endosomes to trans-Golgi network in mammalian cells. However, the role of RAB42 in multiple cancers, especially in liver hepatocellular carcinoma (LIHC), has not been well investigated. METHODS A variety of cancer-related databases and online tools, including TCGA, GTEx, TARGET, QUANTISEQ, EPIC, RNAactDrug, CTR-DB, TIMER algorithms and Sangerbox, were applied to explore the correlation of RAB42 expression with prognosis, immune microenvironment, immune regulatory network, RNA modification, pathway activation and drug sensitivity in pan-cancer. The prognostic, immunomodulatory and tumor-promoting effects of RAB42 were verified in various malignancies and determined by a series of in vitro cellular experiments. RESULTS RAB42 is significantly overexpressed in most cancers with advanced pathological stages. Its overexpression is correlated with poor survival in pan-cancer. RAB42 overexpression has a high diagnostic accuracy of various cancers (AUC > 0.80). RAB42 overexpression not only correlates with distinct stromal immune infiltration and level of immune checkpoint molecules, but also associates with weak immune cell infiltration, immunomodulatory genes expression, and immunotherapeutic response to immune checkpoint inhibitors (ICIs). Additionally, RAB42 overexpression correlates with enhanced expression of m6A RNA methylation-related genes (MRGs) and its interactors. Moreover, overexpression of RAB42 serves as a drug-resistant marker to certain chemotherapies and acts as a potential biomarker for LIHC. Notably, RAB42 overexpression or activation promotes the cellular proliferation, migration and invasion of LIHC. CONCLUSION Overexpressed RAB42 serves as a potential prognostic biomarker and therapeutic target in pan-cancer, especially in LIHC.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Youbang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Rongqing Pang
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Ping Chen
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing Zhang
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Xu X, Wu G. Protocol to visualize and quantify the COPII concentration and anterograde transport of nascent G protein-coupled receptors. STAR Protoc 2024; 5:102955. [PMID: 38489271 PMCID: PMC10951583 DOI: 10.1016/j.xpro.2024.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Here, we present a protocol for visualization and quantification of the recruitment of newly synthesized G protein-coupled receptors (GPCRs) to coat protein complex II vesicles and GPCR transport from the endoplasmic reticulum through the Golgi to the cell surface in the retention using the selective hooks assay. We describe steps for plasmid construction, cell transfection, transport synchronization, confocal microscope imaging, and quantification. This protocol is also applicable for studying the transport of non-GPCR cargoes. For complete details on the use and execution of this protocol, please refer to Xu et al.1,2.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
5
|
Xu X, Huang W, Bryant CN, Dong Z, Li H, Wu G. The ufmylation cascade controls COPII recruitment, anterograde transport, and sorting of nascent GPCRs at ER. SCIENCE ADVANCES 2024; 10:eadm9216. [PMID: 38905340 PMCID: PMC11192079 DOI: 10.1126/sciadv.adm9216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Ufmylation is implicated in multiple cellular processes, but little is known about its functions and regulation in protein trafficking. Here, we demonstrate that the genetic depletion of core components of the ufmylation cascade, including ubiquitin-fold modifier 1 (UFM1), UFM1 activation enzyme 5, UFM1-specific ligase 1 (UFL1), UFM1-specific protease 2, and UFM1-binding protein 1 (UFBP1) each markedly inhibits the endoplasmic reticulum (ER)-Golgi transport, surface delivery, and recruitment to COPII vesicles of a subset of G protein-coupled receptors (GPCRs) and UFBP1's function partially relies on UFM1 conjugation. We also show that UFBP1 and UFL1 interact with GPCRs and UFBP1 localizes at COPII vesicles coated with specific Sec24 isoforms. Furthermore, the UFBP1/UFL1-binding domain identified in the receptors effectively converts non-GPCR protein transport into the ufmylation-dependent pathway. Collectively, these data reveal important functions for the ufmylation system in GPCR recruitment to COPII vesicles, biosynthetic transport, and sorting at ER via UFBP1 ufmylation and interaction directly.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christian N. Bryant
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Xu X, Qiu L, Zhang M, Wu G. Segregation of nascent GPCRs in the ER-to-Golgi transport by CCHCR1 via direct interaction. J Cell Sci 2024; 137:jcs261685. [PMID: 38230433 PMCID: PMC10912811 DOI: 10.1242/jcs.261685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of cell surface signaling proteins that share a common structural topology. When compared with agonist-induced internalization, how GPCRs are sorted and delivered to functional destinations after synthesis in the endoplasmic reticulum (ER) is much less well understood. Here, we demonstrate that depletion of coiled-coil α-helical rod protein 1 (CCHCR1) by siRNA and CRISPR-Cas9 significantly inhibits surface expression and signaling of α2A-adrenergic receptor (α2A-AR; also known as ADRA2A), without affecting α2B-AR. Further studies show that CCHCR1 depletion specifically impedes α2A-AR export from the ER to the Golgi, but not from the Golgi to the surface. We also demonstrate that CCHCR1 selectively interacts with α2A-AR. The interaction is mediated through multiple domains of both proteins and is ionic in nature. Moreover, mutating CCHCR1-binding motifs significantly attenuates ER-to-Golgi export, surface expression and signaling of α2A-AR. Collectively, these data reveal a novel function for CCHCR1 in intracellular protein trafficking, indicate that closely related GPCRs can be sorted into distinct ER-to-Golgi transport routes by CCHCR1 via direct interaction, and provide important insights into segregation and anterograde delivery of nascent GPCR members.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lifen Qiu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Kou X, Cao P, Zhao Z, Zhang X, Dai Y, Wang K, Wu J, Zhang S. Comparative genomic analysis of the RabGAP gene family in seven Rosaceae species, and functional identification of PbrRabGAP10 in controlling pollen tube growth by mediating cellulose deposition in pear. Int J Biol Macromol 2024; 256:128498. [PMID: 38042315 DOI: 10.1016/j.ijbiomac.2023.128498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Rab GTPase-activating proteins (RabGAPs), serving as crucial signaling switches, play essential roles in several physiological processes related to plant growth and development. However, despite their importance, information regarding the RabGAP gene family and their biological functions remains unknown in the Rosaceae. In this study, we identified a total of 127 RabGAP genes in seven Rosaceae species, which were divided into five subfamilies. Our findings indicate that whole genome duplication (WGD) events or dispersed duplication events largely contributed to the expansion of RabGAP family members within Rosaceae species. Through tissue-specific expression analyses, we revealed that the PbrRabGAP genes exhibited distinct expression patterns in different pear tissues. Furthermore, by examining the expression pattern during pollen development and employing an antisense oligonucleotide approach, we demonstrated that PbrRabGAP10, located in the cytoplasm, mediates the imbalance of cellulose distribution, thus regulating pollen tube elongation. In conclusion, the present study offers an overview of the RabGAP family in Rosaceae genomes and serves as the basis for further functional studies.
Collapse
Affiliation(s)
- Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Peng Cao
- College of Faculty of Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhen Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Mulhair PO, Crowley L, Boyes DH, Lewis OT, Holland PWH. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression. Mol Biol Evol 2023; 40:msad241. [PMID: 37935057 PMCID: PMC10642689 DOI: 10.1093/molbev/msad241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
9
|
Xu X, Lambert NA, Wu G. Sequence-directed concentration of G protein-coupled receptors in COPII vesicles. iScience 2023; 26:107969. [PMID: 37810244 PMCID: PMC10551652 DOI: 10.1016/j.isci.2023.107969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of plasma membrane signaling proteins. However, virtually nothing is known about their recruitment to COPII vesicles for forward delivery after synthesis in the endoplasmic reticulum (ER). Here, we demonstrate that some GPCRs are highly concentrated at ER exit sites (ERES) before COPII budding. Angiotensin II type 2 receptor (AT2R) and CXCR4 concentration are directed by a di-acidic motif and a 9-residue domain, respectively, and these motifs also control receptor ER-Golgi traffic. We further show that AT2R interacts with Sar1 GTPase and that distinct GPCRs have different ER-Golgi transport rates via COPII which is independent of their concentration at ERES. Collectively, these data demonstrate that GPCRs can be actively captured by COPII via specific motifs and direct interaction with COPII components that in turn affects their export dynamics, and provide important insights into COPII targeting and forward trafficking of nascent GPCRs.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Xu R, Wan M, Shi X, Ma S, Zhang L, Yi P, Zhang R. A Rab10-ACAP1-Arf6 GTPases cascade modulates M4 muscarinic acetylcholine receptor trafficking and signaling. Cell Mol Life Sci 2023; 80:87. [PMID: 36917255 PMCID: PMC11072986 DOI: 10.1007/s00018-023-04722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
Membrane trafficking processes regulate the G protein-coupled receptor activity. The muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, but the cellular machineries that control the trafficking of these receptors remain largely elusive. Here, we revealed the role of the small GTPase Rab10 as a negative regulator for the post-activation trafficking of M4 mAChR and the underlying mechanism. We show that constitutively active Rab10 arrests the receptor within Rab5-positive early endosomes and significantly hinders the resensitization of M4-mediated Ca2+ signaling. Mechanistically, M4 binds to Rab10-GTP, which requires the motif 386RKKRQMAA393 (R386-A393) within the third intracellular loop. Moreover, Rab10-GTP inactivates Arf6 by recruiting the Arf6 GTPase-activating protein, ACAP1. Strikingly, deletion of the motif R386-A393 causes M4 to bypass the control by Rab10 and switch to the Rab4-facilitated fast recycling pathway, thus reusing the receptor. Therefore, Rab10 couples the cargo sorting and membrane trafficking regulation through cycle between GTP-bound and GDP-bound state. Our findings suggest a model that Rab10 binds to the M4 like a molecular brake and controls the receptor's transport through endosomes, thus modulating the signaling, and this regulation is specific among the mAChR subtypes.
Collapse
Affiliation(s)
- Rongmei Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shumin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Liu C, Xu S, Liu Q, Chai H, Luo Y, Li S. Identification of immune cells infiltrating in hippocampus and key genes associated with Alzheimer's disease. BMC Med Genomics 2023; 16:53. [PMID: 36915078 PMCID: PMC10009990 DOI: 10.1186/s12920-023-01458-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and is primarily associated with memory impairment and cognitive decline, but the etiology of AD has not been elucidated. In recent years, evidence has shown that immune cells play critical roles in AD pathology. In the current study, we collected the transcriptomic data of the hippocampus from gene expression omnibus database, and investigated the effect of immune cell infiltration in the hippocampus on AD, and analyzed the key genes that influence the pathogenesis of AD patients. The results revealed that the relative abundance of immune cells in the hippocampus of AD patients was altered. Of all given 28 kinds of immune cells, monocytes were the important immune cell associated with AD. We identified 4 key genes associated with both AD and monocytes, including KDELR1, SPTAN1, CDC16 and RBBP6, and they differentially expressed in 5XFAD mice and WT mice. The logistic regression and random forest models based on the 4 key genes could effectively distinguish AD from healthy samples. Our research provided a new perspective on immunotherapy for AD patients.
Collapse
Affiliation(s)
- Chenming Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Sutong Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qiulu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Huazhen Chai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
12
|
Xu X, Wu G. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets. Trends Pharmacol Sci 2023; 44:98-111. [PMID: 36494204 PMCID: PMC9901158 DOI: 10.1016/j.tips.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
G protein Gβγ subunits are key mediators of G protein-coupled receptor (GPCR) signaling under physiological and pathological conditions; their inhibitors have been tested for the treatment of human disease. Conventional wisdom is that the Gβγ complex is activated and subsequently exerts its functions at the plasma membrane (PM). Recent studies have revealed non-canonical activation of Gβγ at intracellular organelles, where the Golgi apparatus is a major locale, via translocation or local activation. Golgi-localized Gβγ activates specific signaling cascades and regulates fundamental cell processes such as membrane trafficking, proliferation, and migration. More recent studies have shown that inhibiting Golgi-compartmentalized Gβγ signaling attenuates cardiomyocyte hypertrophy and prostate tumorigenesis, indicating new therapeutic targets. We review novel activation mechanisms and non-canonical functions of Gβγ at the Golgi, and discuss potential therapeutic interventions by targeting Golgi-biased Gβγ-directed signaling.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Xu X, Khater M, Wu G. The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells. Front Pharmacol 2022; 13:1009380. [PMID: 36313302 PMCID: PMC9606680 DOI: 10.3389/fphar.2022.1009380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The olfactory receptor OR51E2 is ectopically expressed in prostate tissues and regulates prostate cancer progression, but its function and regulation in oncogenic mitogen-activate protein kinase (MAPK) activation are poorly defined. Here we demonstrate that β-ionone, an OR51E2 agonist, dose-dependently activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) in prostate cancer cells, with an EC50 value of approximate 20 μM and an efficiency comparable to other receptor agonists. We also find that CRISPR-Cas9-mediated knockout of Golgi-translocating Gγ9 subunit, phosphoinositide 3-kinase γ (PI3Kγ) and the small GTPase ADP-ribosylation factor 1 (ARF1), as well as pharmacological inhibition of Gβγ, PI3Kγ and Golgi-localized ARF1, each abolishes ERK1/2 activation by β-ionone. We further show that β-ionone significantly promotes ARF1 translocation to the Golgi and activates ARF1 that can be inhibited by Gγ9 and PI3Kγ depletion. Collectively, our data demonstrate that OR51E2 activates ERK1/2 through the Gβγ-PI3Kγ-ARF1 pathway that occurs spatially at the Golgi, and also provide important insights into MAPK hyper-activation in prostate cancer.
Collapse
|
15
|
Georgescu SR, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M, Tampa M. Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating. J Pers Med 2022; 12:jpm12091506. [PMID: 36143291 PMCID: PMC9505119 DOI: 10.3390/jpm12091506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of melanoma, a very aggressive skin cancer, has increased over the past few decades. Although there are well-established clinical, dermoscopic and histopathological criteria, the diagnosis is often performed late, which has important implications on the patient’s clinical outcome. Unfortunately, melanoma is one of the most challenging tumors to diagnose because it is a heterogeneous neoplasm at the clinical, histopathological, and molecular level. The use of reliable biomarkers for the diagnosis and monitoring of disease progression is becoming a standard of care in modern medicine. In this review, we discuss the latest studies, which highlight findings from the genomics, epitranscriptomics, proteomics and metabolomics areas, pointing out different genes, molecules and cells as potential diagnostic and prognostic biomarkers in cutaneous melanoma.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Madalina Irina Mitran
- “Cantacuzino” National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
16
|
Chen Y, Chen X, Zhang H, Sha Y, Meng R, Shao T, Yang X, Jin P, Zhuang Y, Min W, Xu D, Jiang Z, Li Y, Li L, Yue W, Yin C. TBC1D21 is an essential factor for sperm mitochondrial sheath assembly and male fertility‡. Biol Reprod 2022; 107:619-634. [PMID: 35403672 DOI: 10.1093/biolre/ioac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/03/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
During spermiogenesis, the formation of the mitochondrial sheath is critical for male fertility. The molecular processes that govern the development of the mitochondrial sheath remain unknown. Whether TBC1D21 serves as a GTPase-activating protein (GAP) for GTP hydrolysis in the testis is unclear, despite recent findings indicating that it collaborates with numerous proteins to regulate the formation of the mitochondrial sheath. To thoroughly examine the property of TBC1D21 in spermiogenesis, we applied the CRISPR/Cas9 technology to generate the Tbc1d21-/- mice, Tbc1d21D125A R128K mice with mutation in the GAP catalytic residues (IxxDxxR), and Tbc1d21-3xFlag mice. Male Tbc1d21-/- mice were infertile due to the curved spermatozoa flagella. In vitro fertilization is ineffective for Tbc1d21-/- sperm, although healthy offspring were obtained by intracytoplasmic sperm injection. Electron microscopy revealed aberrant ultrastructural changes in the mitochondrial sheath. Thirty-four Rab vectors were constructed followed by co-immunoprecipitation, which identified RAB13 as a novel TBC1D21 binding protein. Interestingly, infertility was not observed in Tbc1d21D125A R128K mice harboring the catalytic residue, suggesting that TBC1D21 is not a typical GAP for Rab-GTP hydrolysis. Moreover, TBC1D21 was expressed in the sperm mitochondrial sheath in Tbc1d21-3xFlag mice. Immunoprecipitation-mass spectrometry demonstrated the interactions of TBC1D21 with ACTB, TPM3, SPATA19, and VDAC3 to regulate the architecture of the sperm midpiece. The collective findings suggest that TBC1D21 is a scaffold protein required for the organization and stabilization of the mitochondrial sheath morphology.
Collapse
Affiliation(s)
- Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiu Chen
- Department of Pharmacy, Heze University, Heze, Shandong, China
| | - Haihang Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Ranran Meng
- National Institute of Biological Sciences, Beijing, China
| | - Tianyu Shao
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyan Yang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Wanping Min
- National Institute of Biological Sciences, Beijing, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Yuhua Li
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
17
|
Genetic disorders of cellular trafficking. Trends Genet 2022; 38:724-751. [DOI: 10.1016/j.tig.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
18
|
Wang F, Huang L, Liang Q, Liao M, Liu C, Dong W, Zhuang X, Yin X, Liu Y, Wang W. TBC domain family 7-like enhances the tolerance of Penaeus vannamei to ammonia nitrogen by the up-regulation of autophagy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:48-56. [PMID: 35077870 DOI: 10.1016/j.fsi.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
TBC domain family 7 (TBC1D7) is one of the subunits of tuberous sclerosis complex (TSC) and an important regulator of autophagosome biogenesis. However, the function of TBC1D7 is not fully understood in crustaceans. In the present study, TBC1D7 was identified from Penaeus vannamei. The complete coding sequence of PvTBC1D7 was of 960 bp encoding a predicted polypeptide of 319 amino acids with one conserved TBC domain, which shared high similarity with TBC1D7 of that other species. The mRNA of PvTBC1D7 was highly expressed in hemocyte and hepatopancreas, and the PvTBC1D7 protein was localized specifically in the cytoplasm of hemocyte of shrimp. Besides, PvTBC1D7 was co-localized with PvTSC1 in the cytoplasm of shrimp, indicating that there might existed a binding relationship between PvTBC1D7 and PvTSC1. During the ammonia nitrogen stress, the mRNA transcripts of PvTBC1D7 were significantly upregulated in hemocyte, hepatopancreas, and gill. Functionally, overexpression of PvTBC1D7 in vitro restored the inhibition to autophagy caused by chloroquine (CLQ) and increased the autophagy level, while the silencing of PvTBC1D7 could inhibit the autophagy. More importantly, after interfering with PvTBC1D7, the autophagy level decreased significantly both in hepatopancreas and hemocyte of P. vannamei, the mRNA expression of PvmTOR was increased remarkably with the significantly decrease of autophagy-related genes (PvATG12 and PvATG14). And the reduction of PvTBC1D7 remarkably exacerbated the damage of hepatopancreas, increased the accumulation of ROS, and reduced the survival proportion of shrimp under ammonia nitrogen stress. Altogether, these results indicated that PvTBC1D7 might positively regulate the autophagy by stabilizing the negative regulation of mTOR by TSC complex, reduce the oxidative stress damage and improve shrimp ammonia nitrogen tolerance.
Collapse
Affiliation(s)
- Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
19
|
Xu X, Wei Z, Wu G. Specific motifs mediate post-synaptic and surface transport of G protein-coupled receptors. iScience 2022; 25:103643. [PMID: 35024582 PMCID: PMC8728401 DOI: 10.1016/j.isci.2021.103643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are key regulators of synaptic functions. However, their targeted trafficking to synapses after synthesis is poorly understood. Here, we demonstrate that multiple motifs mediate α2B-adrenergic receptor transport to the dendritic and post-synaptic compartments in primary hippocampal neurons, with a single leucine residue on the first intracellular loop being specifically involved in synaptic targeting. The N-terminally located tyrosine-serine motif operates differently in neuronal and non-neuronal cells. We further show that the highly conserved dileucine (LL) motif in the C-terminus is required for the dendritic and post-synaptic traffic of all GPCRs studied. The LL motif also directs the export from the endoplasmic reticulum of a chimeric GPCR and confers its transport ability to vesicular stomatitis virus glycoprotein in cell lines. Collectively, these data reveal the intrinsic structural determinants for the synaptic targeting of nascent GPCRs and their cell-type-specific trafficking along the biosynthetic pathways.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
21
|
Rao XS, Cong XX, Gao XK, Shi YP, Shi LJ, Wang JF, Ni CY, He MJ, Xu Y, Yi C, Meng ZX, Liu J, Lin P, Zheng LL, Zhou YT. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ 2021; 28:3214-3234. [PMID: 34045668 PMCID: PMC8630067 DOI: 10.1038/s41418-021-00809-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of glucose homeostasis contributes to insulin resistance and type 2 diabetes. Whilst exercise stimulated activation of AMP-activated protein kinase (AMPK), an important energy sensor, has been highlighted for its potential to promote insulin-stimulated glucose uptake, the underlying mechanisms for this remain largely unknown. Here we found that AMPK positively regulates the activation of Rab5, a small GTPase which is involved in regulating Glut4 translocation, in both myoblasts and skeletal muscles. We further verified that TBC1D17, identified as a potential interacting partner of Rab5 in our recent study, is a novel GTPase activating protein (GAP) of Rab5. TBC1D17-Rab5 axis regulates transport of Glut1, Glut4, and transferrin receptor. TBC1D17 interacts with Rab5 or AMPK via its TBC domain or N-terminal 1-306 region (N-Ter), respectively. Moreover, AMPK phosphorylates the Ser 168 residue of TBC1D17 which matches the predicted AMPK consensus motif. N-Ter of TBC1D17 acts as an inhibitory region by directly interacting with the TBC domain. Ser168 phosphorylation promotes intra-molecular interaction and therefore enhances the auto-inhibition of TBC1D17. Our findings reveal that TBC1D17 acts as a molecular bridge that links AMPK and Rab5 and delineate a previously unappreciated mechanism by which the activation of TBC/RabGAP is regulated.
Collapse
Affiliation(s)
- Xi Sheng Rao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu Kui Gao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Pu Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Jing Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Feng Wang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Yao Ni
- grid.35403.310000 0004 1936 9991The School of Molecular and Cellular Biology, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Ming Jie He
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- grid.13402.340000 0004 1759 700XDepartment of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo-Xian Meng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinling Liu
- grid.13402.340000 0004 1759 700XDepartment of Pulmonology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Peng Lin
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Kunselman JM, Lott J, Puthenveedu MA. Mechanisms of selective G protein-coupled receptor localization and trafficking. Curr Opin Cell Biol 2021; 71:158-165. [PMID: 33965654 PMCID: PMC8328924 DOI: 10.1016/j.ceb.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
The trafficking of G protein-coupled receptors (GPCRs) to different membrane compartments has recently emerged as being a critical determinant of the signaling profiles of activation. GPCRs, which share many structural and functional similarities, also share many mechanisms that traffic them between compartments. This sharing raises the question of how the trafficking of individual GPCRs is selectively regulated. Here, we will discuss recent studies addressing the mechanisms that contribute to selectivity in endocytic and biosynthetic trafficking of GPCRs.
Collapse
Affiliation(s)
- Jennifer M Kunselman
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua Lott
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Manojkumar A Puthenveedu
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Lovera M, Lüders J. The ciliary impact of nonciliary gene mutations. Trends Cell Biol 2021; 31:876-887. [PMID: 34183231 DOI: 10.1016/j.tcb.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023]
Abstract
Mutations in genes encoding centriolar or ciliary proteins cause diseases collectively known as 'ciliopathies'. Interestingly, the Human Phenotype Ontology database lists numerous disorders that display clinical features reminiscent of ciliopathies but do not involve defects in the centriole-cilium proteome. Instead, defects in different cellular compartments may impair cilia indirectly and cause additional, nonciliopathy phenotypes. This phenotypic heterogeneity, perhaps combined with the field's centriole-cilium-centric view, may have hindered the recognition of ciliary contributions. Identifying these diseases and dissecting how the underlying gene mutations impair cilia not only will add to our understanding of cilium assembly and function but also may open up new therapeutic avenues.
Collapse
Affiliation(s)
- Marta Lovera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Khater M, Bryant CN, Wu G. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein-coupled receptor signaling to MAPK. J Biol Chem 2021; 296:100805. [PMID: 34022220 PMCID: PMC8215300 DOI: 10.1016/j.jbc.2021.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
After activation of G protein-coupled receptors, G protein βγ dimers may translocate from the plasma membrane to the Golgi apparatus (GA). We recently report that this translocation activates extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) via PI3Kγ; however, how Gβγ-PI3Kγ activates the ERK1/2 pathway is unclear. Here, we demonstrate that chemokine receptor CXCR4 activates ADP-ribosylation factor 1 (ARF1), a small GTPase important for vesicle-mediated membrane trafficking. This activation is blocked by CRISPR-Cas9-mediated knockout of the GA-translocating Gγ9 subunit. Inducible targeting of different Gβγ dimers to the GA can directly activate ARF1. CXCR4 activation and constitutive Gβγ recruitment to the GA also enhance ARF1 translocation to the GA. We further demonstrate that pharmacological inhibition and CRISPR-Cas9-mediated knockout of PI3Kγ markedly inhibit CXCR4-mediated and Gβγ translocation-mediated ARF1 activation. We also show that depletion of ARF1 by siRNA and CRISPR-Cas9 and inhibition of GA-localized ARF1 activation abolish ERK1/2 activation by CXCR4 and Gβγ translocation to the GA and suppress prostate cancer PC3 cell migration and invasion. Collectively, our data reveal a novel function for Gβγ translocation to the GA to activate ARF1 and identify GA-localized ARF1 as an effector acting downstream of Gβγ-PI3Kγ to spatiotemporally regulate G protein-coupled receptor signaling to mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Christian N Bryant
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
25
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
26
|
Wei Z, Xu X, Fang Y, Khater M, Naughton SX, Hu G, Terry AV, Wu G. Rab43 GTPase directs postsynaptic trafficking and neuron-specific sorting of G protein-coupled receptors. J Biol Chem 2021; 296:100517. [PMID: 33676895 PMCID: PMC8050390 DOI: 10.1016/j.jbc.2021.100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are important modulators of synaptic functions. A fundamental but poorly addressed question in neurobiology is how targeted GPCR trafficking is achieved. Rab GTPases are the master regulators of vesicle-mediated membrane trafficking, but their functions in the synaptic presentation of newly synthesized GPCRs are virtually unknown. Here, we investigate the role of Rab43, via dominant-negative inhibition and CRISPR–Cas9–mediated KO, in the export trafficking of α2-adrenergic receptor (α2-AR) and muscarinic acetylcholine receptor (mAChR) in primary neurons and cells. We demonstrate that Rab43 differentially regulates the overall surface expression of endogenous α2-AR and mAChR, as well as their signaling, in primary neurons. In parallel, Rab43 exerts distinct effects on the dendritic and postsynaptic transport of specific α2B-AR and M3 mAChR subtypes. More interestingly, the selective actions of Rab43 toward α2B-AR and M3 mAChR are neuronal cell specific and dictated by direct interaction. These data reveal novel, neuron-specific functions for Rab43 in the dendritic and postsynaptic targeting and sorting of GPCRs and imply multiple forward delivery routes for different GPCRs in neurons. Overall, this study provides important insights into regulatory mechanisms of GPCR anterograde traffic to the functional destination in neurons.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yinquan Fang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
27
|
Khater M, Wei Z, Xu X, Huang W, Lokeshwar BL, Lambert NA, Wu G. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers. J Biol Chem 2021; 296:100325. [PMID: 33493514 PMCID: PMC7949113 DOI: 10.1016/j.jbc.2021.100325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Abstract
The Golgi apparatus (GA) is a cellular organelle that plays a critical role in the processing of proteins for secretion. Activation of G protein-coupled receptors at the plasma membrane (PM) induces the translocation of G protein βγ dimers to the GA. However, the functional significance of this translocation is largely unknown. Here, we study PM-GA translocation of all 12 Gγ subunits in response to chemokine receptor CXCR4 activation and demonstrate that Gγ9 is a unique Golgi-translocating Gγ subunit. CRISPR-Cas9-mediated knockout of Gγ9 abolishes activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), two members of the mitogen-activated protein kinase family, by CXCR4. We show that chemically induced recruitment to the GA of Gβγ dimers containing different Gγ subunits activates ERK1/2, whereas recruitment to the PM is ineffective. We also demonstrate that pharmacological inhibition of phosphoinositide 3-kinase γ (PI3Kγ) and depletion of its subunits p110γ and p101 abrogate ERK1/2 activation by CXCR4 and Gβγ recruitment to the GA. Knockout of either Gγ9 or PI3Kγ significantly suppresses prostate cancer PC3 cell migration, invasion, and metastasis. Collectively, our data demonstrate a novel function for Gβγ translocation to the GA, via activating PI3Kγ heterodimers p110γ-p101, to spatiotemporally regulate mitogen-activated protein kinase activation by G protein-coupled receptors and ultimately control tumor progression.
Collapse
Affiliation(s)
- Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
28
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
29
|
Tang L, Peng C, Zhu SS, Zhou Z, Liu H, Cheng Q, Chen X, Chen XP. Tre2-Bub2-Cdc16 Family Proteins Based Nomogram Serve as a Promising Prognosis Predicting Model for Melanoma. Front Oncol 2020; 10:579625. [PMID: 33194704 PMCID: PMC7656061 DOI: 10.3389/fonc.2020.579625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Tre2-Bub2-Cdc16 (TBC) proteins are conserved in eukaryotic organisms and function as negative feedback dominating the GAPs for Rab GTPases, while the function of TBC proteins in melanoma remains unclear. In this study, we observed the differential expression of 33 TBC genes in TCGA datasets classified by clinical features. Seven prognostic-associated TBC genes were identified by LASSO Cox regression analysis. Mutation analysis revealed distinctive frequency alteration in the seven prognostic-associated TBCs between cases with high and low scores. High-risk score and cluster 1 based on LASSO Cox regression and consensus clustering analysis were relevant to clinical features and unfavorable prognosis. GSVA analysis showed that prognostic-associated TBCs were related to metabolism and protein transport signaling pathway. Correlation analysis indicated the relationship between the prognostic-associated TBCs with RAB family members, invasion-related genes and immune cells. The prognostic nomogram model was well established to predict survival in melanoma. What's more, interference of one of the seven TBC proteins TBC1D7 was confirmed to inhibit the proliferation, migration and invasion of melanoma cells in vitro. In summary, we preliminarily investigated the impact of TBCs on melanoma through multiple bioinformatics analysis and experimental validation, which is helpful for clarifying the mechanism of melanoma and the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Su-Si Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Zhou
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Quan Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| |
Collapse
|
30
|
Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene 2020; 39:7106-7113. [PMID: 33024277 DOI: 10.1038/s41388-020-01491-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy using immune-checkpoint blockade has displayed promising clinical effects, but prevalent antibody-based inhibitors face multiple challenges such as low response rate, acquired resistance, and adverse effects. The intracellular expression of PD-1/PD-L1 in recycling endosomes and their active trafficking to membrane highlight the importance of depleting rather than interfering with checkpoint proteins. Preclinical investigations on the therapeutic effects of lead compounds that function by degrading immune checkpoint ligands and receptors have reported highly promising results. By harnessing the degradation capabilities of the lysosome, proteasome and autophagosomes, different small molecules and peptides potently induced degradation of checkpoint proteins and enhanced anti-tumor immunity. Both in vitro and in vivo experiments support the therapeutic efficacy of these molecules. Thus, targeted degradation through endo-lysosomal, autophagic, proteasomal, or endoplasmic reticulum-related pathways may provide promising strategies for tackling the challenges in cancer immunotherapy.
Collapse
|
31
|
Xu X, Wu G. Quantification of The Surface Expression of G Protein-coupled Receptors Using Intact Live-cell Radioligand Binding Assays. Bio Protoc 2020; 10:e3761. [PMID: 33628863 DOI: 10.21769/bioprotoc.3761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most structurally diverse family of signaling proteins and regulate a variety of cell function. For most GPCRs, the cell surface is their functional destination where they are able to respond a wide range of extracellular stimuli, leading to the activation of intracellular signal transduction cascades. Thus, the quantity of receptor expression at the cell surface is a crucial factor regulating the functionality of the receptors. Over the past decades, many methods have been developed to measure the cell surface expression of GPCRs. Here, we describe an intact live-cell radioligand binding assay to quantify the surface expression of GPCRs at the endogenous levels or after overexpression. In this assay, cell cultures will be incubated with specific cell-nonpermeable radioligands which selectively and stoichiometrically bind to individual GPCRs and the receptor numbers at the cell surface are quantified by the radioactivity of receptor-bound ligands. This method is highly specific for measuring the functional GPCRs at the surface of intact live cells and is particularly useful for endogenous, low-abundant GPCRs.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
32
|
Janezic EM, Lauer SML, Williams RG, Chungyoun M, Lee KS, Navaluna E, Lau HT, Ong SE, Hague C. N-glycosylation of α 1D-adrenergic receptor N-terminal domain is required for correct trafficking, function, and biogenesis. Sci Rep 2020; 10:7209. [PMID: 32350295 PMCID: PMC7190626 DOI: 10.1038/s41598-020-64102-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) biogenesis, trafficking, and function are regulated by post-translational modifications, including N-glycosylation of asparagine residues. α1D-adrenergic receptors (α1D-ARs) - key regulators of central and autonomic nervous system function - contain two putative N-glycosylation sites within the large N-terminal domain at N65 and N82. However, determining the glycosylation state of this receptor has proven challenging. Towards understanding the role of these putative glycosylation sites, site-directed mutagenesis and lectin affinity purification identified N65 and N82 as bona fide acceptors for N-glycans. Surprisingly, we also report that simultaneously mutating N65 and N82 causes early termination of α1D-AR between transmembrane domain 2 and 3. Label-free dynamic mass redistribution and cell surface trafficking assays revealed that single and double glycosylation deficient mutants display limited function with impaired plasma membrane expression. Confocal microscopy imaging analysis and SNAP-tag sucrose density fractionation assays revealed the dual glycosylation mutant α1D-AR is widely distributed throughout the cytosol and nucleus. Based on these novel findings, we propose α1D-AR transmembrane domain 2 acts as an ER localization signal during active protein biogenesis, and that α1D-AR N-terminal glycosylation is required for complete translation of nascent, functional receptor.
Collapse
Affiliation(s)
- Eric M Janezic
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Sophia My-Linh Lauer
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Robert George Williams
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Michael Chungyoun
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Edelmar Navaluna
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Ho-Tak Lau
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Chris Hague
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA.
| |
Collapse
|
33
|
A Naturally Occurring Splice Variant of GGA1 Inhibits the Anterograde Post-Golgi Traffic of α 2B-Adrenergic Receptor. Sci Rep 2019; 9:10378. [PMID: 31316103 PMCID: PMC6637153 DOI: 10.1038/s41598-019-46547-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/29/2019] [Indexed: 11/08/2022] Open
Abstract
The regulatory mechanisms of cell surface targeting of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum through the Golgi remain poorly understood. We have recently demonstrated that three Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding proteins (GGAs) mediate the post-Golgi export of α2B-adrenergic receptor (α2B-AR), a prototypic GPCR, and directly interact with the receptor. In particular, GGA1 interaction with α2B-AR is mediated via its hinge domain. Here we determined the role of a naturally occurring truncated form of GGA1 (GGA1t) which lacks the N-terminal portion of the hinge domain in α2B-AR trafficking and elucidated the underlying mechanisms. We demonstrated that both GGA1 and GGA1t were colocalized and mainly expressed at the Golgi. In marked contrast to GGA1, the expression of GGA1t significantly attenuated the cell surface export of newly synthesized α2B-AR from the Golgi and in parallel receptor-mediated signaling. Furthermore, we found that GGA1t formed homodimers and heterodimers with GGA1. More interestingly, GGA1t was unable to bind the cargo α2B-AR and to recruit clathrin onto the trans-Golgi network. These data provide evidence implicating that the truncated form of GGA1 behaviors as a dominant-negative regulator for the cell surface export of α2B-AR and this function of GGA1t is attributed to its abilities to dimerize with its wide type counterpart and to inhibit cargo interaction and clathrin recruitment to form specialized transport vesicles.
Collapse
|