1
|
Kashio M. Thermo-TRP regulation by endogenous factors and its physiological function at core body temperature. Physiol Rep 2025; 13:e70164. [PMID: 39793986 PMCID: PMC11723785 DOI: 10.14814/phy2.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025] Open
Abstract
Transient receptor potential (TRP) channels with temperature sensitivities (thermo-TRPs) are involved in various physiological processes. Thermo-TRPs that detect temperature changes in peripheral sensory neurons possess indispensable functions in thermosensation, eliciting defensive behavior against noxious temperatures and driving autonomic/behavioral thermoregulatory responses to maintain body temperature in mammals. Moreover, most thermo-TRPs are functionally expressed in cells and tissues where the temperature is maintained at a constant core body temperature. To perform physiological functions, the activity of each thermo-TRP channel must be regulated by endogenous mechanisms at body temperature. Dysregulation of this process can lead to various diseases. This review highlights the endogenous factors regulating thermo-TRP activity and physiological functions at constant core body temperature.
Collapse
Affiliation(s)
- Makiko Kashio
- Department of Cell PhysiologyKumamoto UniversityKumamotoJapan
| |
Collapse
|
2
|
Behrendt M. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. Biol Chem 2024; 405:583-599. [PMID: 39417661 DOI: 10.1515/hsz-2024-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Marc Behrendt
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, MCTN, Tridomus, Building C, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
3
|
Lewis CM, Griffith TN. Ion channels of cold transduction and transmission. J Gen Physiol 2024; 156:e202313529. [PMID: 39051992 PMCID: PMC11273221 DOI: 10.1085/jgp.202313529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.
Collapse
Affiliation(s)
- Cheyanne M Lewis
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Gandini MA, Zamponi GW. Navigating the Controversies: Role of TRPM Channels in Pain States. Int J Mol Sci 2024; 25:10284. [PMID: 39408620 PMCID: PMC11476983 DOI: 10.3390/ijms251910284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic pain is a debilitating condition that affects up to 1.5 billion people worldwide and bears a tremendous socioeconomic burden. The success of pain medicine relies on our understanding of the type of pain experienced by patients and the mechanisms that give rise to it. Ion channels are among the key targets for pharmacological intervention in chronic pain conditions. Therefore, it is important to understand how changes in channel properties, trafficking, and molecular interactions contribute to pain sensation. In this review, we discuss studies that have demonstrated the involvement of transient receptor potential M2, M3, and M8 channels in pain generation and transduction, as well as the controversies surrounding these findings.
Collapse
Affiliation(s)
- Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Arcas JM, Oudaha K, González A, Fernández-Trillo J, Peralta FA, Castro-Marsal J, Poyraz S, Taberner F, Sala S, de la Peña E, Gomis A, Viana F. The ion channel TRPM8 is a direct target of the immunosuppressant rapamycin in primary sensory neurons. Br J Pharmacol 2024; 181:3192-3214. [PMID: 38741464 DOI: 10.1111/bph.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The mechanistic target of rapamycin (mTOR) signalling pathway is a key regulator of cell growth and metabolism. Its deregulation is implicated in several diseases. The macrolide rapamycin, a specific inhibitor of mTOR, has immunosuppressive, anti-inflammatory and antiproliferative properties. Recently, we identified tacrolimus, another macrolide immunosuppressant, as a novel activator of TRPM8 ion channels, involved in cold temperature sensing, thermoregulation, tearing and cold pain. We hypothesized that rapamycin may also have agonist activity on TRPM8 channels. EXPERIMENTAL APPROACH Using calcium imaging and electrophysiology in transfected HEK293 cells and wildtype or Trpm8 KO mouse DRG neurons, we characterized rapamycin's effects on TRPM8 channels. We also examined the effects of rapamycin on tearing in mice. KEY RESULTS Micromolar concentrations of rapamycin activated rat and mouse TRPM8 channels directly and potentiated cold-evoked responses, effects also observed in human TRPM8 channels. In cultured mouse DRG neurons, rapamycin increased intracellular calcium levels almost exclusively in cold-sensitive neurons. Responses were markedly decreased in Trpm8 KO mice or by TRPM8 channel antagonists. Cutaneous cold thermoreceptor endings were also activated by rapamycin. Topical application of rapamycin to the eye surface evokes tearing in mice by a TRPM8-dependent mechanism. CONCLUSION AND IMPLICATIONS These results identify TRPM8 cationic channels in sensory neurons as novel molecular targets of the immunosuppressant rapamycin. These findings may help explain some of its therapeutic effects after topical application to the skin and the eye surface. Moreover, rapamycin could be used as an experimental tool in the clinic to explore cold thermoreceptors.
Collapse
Affiliation(s)
- José Miguel Arcas
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Khalid Oudaha
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Alejandro González
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Jorge Fernández-Trillo
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | | - Júlia Castro-Marsal
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Seyma Poyraz
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Francisco Taberner
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Elvira de la Peña
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Ana Gomis
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| |
Collapse
|
6
|
Lee S, Wei ET, Selescu T, Babes A, Park J, Kim J, Chung B, Park C, Kim HO. Histamine- and pruritogen-induced itch is inhibited by a TRPM8 agonist: a randomized vehicle-controlled human trial. Br J Dermatol 2024; 190:885-894. [PMID: 38345103 DOI: 10.1093/bjd/ljae054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Allergies often present challenges in managing itch and the effects of histamine. Cooling agents that act via transient receptor potential melastatin 8 (TRPM8) agonism have shown potential in itch management. However, animal studies on itch have limitations, as animals cannot communicate subjective events and their fur-coated skin differs from that of humans. Human studies offer more direct and reliable information. OBJECTIVES To investigate the effects of a specific TRPM8 agonist gel (cryosim-1) on itch induced by various pruritogens in human skin. METHODS Calcium imaging experiments determined the binding of cryosim-1 and histamine to their respective receptors. Thirty healthy volunteers underwent skin prick tests with pruritogens and a control vehicle. Itch and pain intensity were measured using a numerical rating scale (NRS) across 10 min. Participants were randomly assigned to pretreatments with vehicle or TRPM8 agonist gel. Tests were repeated at a later date, and skin moisture, transepidermal water loss and mechanical sensitivity were measured. RESULTS The in vitro study confirmed that histamine is not a TRPM8 agonist and cryosim-1 does not act as an agonist or antagonist on the human histamine 1 receptor. The TRPM8 agonist gel significantly reduced the itch intensity for all pruritogens compared with the vehicle-only gel. It also reduced itch NRS and the integrated itch score. Mechanical sensitivity was also reduced. CONCLUSIONS The specific TRPM8 agonist gel effectively suppressed human skin itch induced by various pruritogens. These versatile actions suggest that cooling agents may be promising treatments for multiple forms of itch stimuli.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Edward T Wei
- School of Public Health, University of California, Berkeley, CA, USA
| | - Tudor Selescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alexandru Babes
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Jinseo Park
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jincheol Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Boyoung Chung
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chunwook Park
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Trif C, Banica AM, Manolache A, Anghel SA, Huţanu DE, Stratulat T, Badea R, Oprita G, Selescu T, Petrescu SM, Sisignano M, Offermanns S, Babes A, Tunaru S. Inhibition of TRPM8 function by prostacyclin receptor agonists requires coupling to Gq/11 proteins. Br J Pharmacol 2024; 181:1438-1451. [PMID: 38044577 DOI: 10.1111/bph.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The TRPM8 ion channel is involved in innocuous cold sensing and has a potent anti-inflammatory action. Its activation by lower temperature or chemical agonists such as menthol and icilin induces analgesic effects, reversing hypersensitivity and reducing chronic pain. On the other hand, prostacyclin (PGI2) enhances pain and inflammation by activating the IP receptors. Due to the critical roles of TRPM8 and IP receptors in the regulation of inflammatory pain, and considering their overlapping expression pattern, we analysed the functional interaction between human TRPM8 and IP receptors. EXPERIMENTAL APPROACH We transiently expressed human TRPM8 channels and IP receptors in HEK293T cells and carried out intracellular calcium and cAMP measurements. Additionally, we cultured neurons from the dorsal root ganglia (DRGs) of mice and determined the increase in intracellular calcium triggered by the TRPM8 agonist, icilin, in the presence of the IP receptor agonist cicaprost, the IP receptor antagonist Cay10441, and the Gq/11 inhibitor YM254890. KEY RESULTS Activation of IP receptors by selective agonists (cicaprost, beraprost, and iloprost) inhibited TRPM8 channel function, independently of the Gs-cAMP pathway. The potent inhibition of TRPM8 channels by IP receptor agonists involved Gq/11 coupling. These effects were also observed in neurons isolated from murine DRGs. CONCLUSIONS AND IMPLICATIONS Our results demonstrate an unusual signalling pathway of IP receptors by coupling to Gq/11 proteins to inhibit TRPM8 channel function. This pathway may contribute to a better understanding of the role of TRPM8 channels and IP receptors in regulating pain and inflammation.
Collapse
Affiliation(s)
- Cosmin Trif
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alexandra-Maria Banica
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alexandra Manolache
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Sorina Andreea Anghel
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Debora-Elena Huţanu
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Teodora Stratulat
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Rodica Badea
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - George Oprita
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Tudor Selescu
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Stefana M Petrescu
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alexandru Babes
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Sorin Tunaru
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Prothanor Biotech S.R.L., Bucharest, Romania
| |
Collapse
|
8
|
Rohacs T. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. Annu Rev Physiol 2024; 86:329-355. [PMID: 37871124 DOI: 10.1146/annurev-physiol-042022-013956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
9
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
10
|
Yang C, Yamaki S, Jung T, Kim B, Huyhn R, McKemy DD. Endogenous Inflammatory Mediators Produced by Injury Activate TRPV1 and TRPA1 Nociceptors to Induce Sexually Dimorphic Cold Pain That Is Dependent on TRPM8 and GFRα3. J Neurosci 2023; 43:2803-2814. [PMID: 36898840 PMCID: PMC10089246 DOI: 10.1523/jneurosci.2303-22.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
The detection of environmental temperatures is critical for survival, yet inappropriate responses to thermal stimuli can have a negative impact on overall health. The physiological effect of cold is distinct among somatosensory modalities in that it is soothing and analgesic, but also agonizing in the context of tissue damage. Inflammatory mediators produced during injury activate nociceptors to release neuropeptides, such as calcitonin gene-related peptide (CGRP) and substance P, inducing neurogenic inflammation, which further exasperates pain. Many inflammatory mediators induce sensitization to heat and mechanical stimuli but, conversely, inhibit cold responsiveness, and the identity of molecules inducing cold pain peripherally is enigmatic, as are the cellular and molecular mechanisms altering cold sensitivity. Here, we asked whether inflammatory mediators that induce neurogenic inflammation via the nociceptive ion channels TRPV1 (vanilloid subfamily of transient receptor potential channel) and TRPA1 (transient receptor potential ankyrin 1) lead to cold pain in mice. Specifically, we tested cold sensitivity in mice after intraplantar injection of lysophosphatidic acid or 4-hydroxy-2-nonenal, finding that each induces cold pain that is dependent on the cold-gated channel transient receptor potential melastatin 8 (TRPM8). Inhibition of CGRP, substance P, or toll-like receptor 4 (TLR4) signaling attenuates this phenotype, and each neuropeptide produces TRPM8-dependent cold pain directly. Further, the inhibition of CGRP or TLR4 signaling alleviates cold allodynia differentially by sex. Last, cold pain induced by both inflammatory mediators and neuropeptides requires TRPM8, as well as the neurotrophin artemin and its receptor GDNF receptor α3 (GFRα3). These results are consistent with artemin-induced cold allodynia requiring TRPM8, demonstrating that neurogenic inflammation alters cold sensitivity via localized artemin release that induces cold pain via GFRα3 and TRPM8.SIGNIFICANCE STATEMENT The cellular and molecular mechanisms that generate pain are complex with a diverse array of pain-producing molecules generated during injury that act to sensitize peripheral sensory neurons, thereby inducing pain. Here we identify a specific neuroinflammatory pathway involving the ion channel TRPM8 (transient receptor potential cation channel subfamily M member 8) and the neurotrophin receptor GFRα3 (GDNF receptor α3) that leads to cold pain, providing select targets for potential therapies for this pain modality.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Shanni Yamaki
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Tyler Jung
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Brian Kim
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Ryan Huyhn
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
11
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
12
|
Yang C, Yamaki S, Jung T, Kim B, Huyhn R, McKemy DD. Endogenous inflammatory mediators produced by injury activate TRPV1 and TRPA1 nociceptors to induce sexually dimorphic cold pain that is dependent on TRPM8 and GFRα3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525238. [PMID: 36747719 PMCID: PMC9900806 DOI: 10.1101/2023.01.23.525238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The detection of environmental temperatures is critical for survival, yet inappropriate responses to thermal stimuli can have a negative impact on overall health. The physiological effect of cold is distinct among somatosensory modalities in that it is soothing and analgesic, but also agonizing in the context of tissue damage. Inflammatory mediators produced during injury activate nociceptors to release neuropeptides, such as CGRP and substance P, inducing neurogenic inflammation which further exasperates pain. Many inflammatory mediators induce sensitization to heat and mechanical stimuli but, conversely, inhibit cold responsiveness, and the identity of molecules inducing cold pain peripherally is enigmatic, as are the cellular and molecular mechanisms altering cold sensitivity. Here, we asked if inflammatory mediators that induce neurogenic inflammation via the nociceptive ion channels TRPV1 and TRPA1 lead to cold pain in mice. Specifically, we tested cold sensitivity in mice after intraplantar injection of lysophosphatidic acid (LPA) or 4-hydroxy-2-nonenal (4HNE), finding each induces cold pain that is dependent on the cold-gated channel TRPM8. Inhibition of either CGRP, substance P, or toll-like receptor 4 (TLR4) signaling attenuates this phenotype, and each neuropeptide produces TRPM8-dependent cold pain directly. Further, the inhibition of CGRP or TLR4 signaling alleviates cold allodynia differentially by sex. Lastly, we find that cold pain induced by inflammatory mediators and neuropeptides requires the neurotrophin artemin and its receptor GFRα3. These results demonstrate that tissue damage alters cold sensitivity via neurogenic inflammation, likely leading to localized artemin release that induces cold pain via GFRα3 and TRPM8. Significance Statement The cellular and molecular mechanisms that generate pain are complex with a diverse array of pain-producing molecules generated during injury that act to sensitize peripheral sensory neurons, thereby inducing pain. Here we identify a specific neuroinflammatory pathway involving the ion channel TRPM8 and the neurotrophin receptor GFRα3 that leads to cold pain, providing select targets for potential therapies for this pain modality.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology Graduate Program; University of Southern California, Los Angeles, CA 90089
| | - Shanni Yamaki
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology Graduate Program; University of Southern California, Los Angeles, CA 90089
| | - Tyler Jung
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089
| | - Brian Kim
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089
| | - Ryan Huyhn
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology Graduate Program; University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
13
|
Davies A, Tomas A. Appreciating the potential for GPCR crosstalk with ion channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:101-120. [PMID: 36707150 DOI: 10.1016/bs.pmbts.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are expressed by most tissues in the body and are exploited pharmacologically in a variety of pathological conditions including diabetes, cardiovascular disease, neurological diseases, and cancers. Numerous cell signaling pathways can be regulated by GPCR activation, depending on the specific GPCR, ligand and cell type. Ion channels are among the many effector proteins downstream of these signaling pathways. Saliently, ion channels are also recognized as druggable targets, and there is evidence that their activity may regulate GPCR function via membrane potential and cytoplasmic ion concentration. Overall, there appears to be a large potential for crosstalk between ion channels and GPCRs. This might have implications not only for targeting GPCRs for drug development, but also opens the possibility of co-targeting them with ion channels to achieve improved therapeutic outcomes. In this review, we highlight the large variety of possible GPCR-ion channel crosstalk modes.
Collapse
Affiliation(s)
- Amy Davies
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
14
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
15
|
Plaza‐Cayón A, González‐Muñiz R, Martín‐Martínez M. Mutations of TRPM8 channels: Unraveling the molecular basis of activation by cold and ligands. Med Res Rev 2022; 42:2168-2203. [PMID: 35976012 PMCID: PMC9805079 DOI: 10.1002/med.21920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The cation nonselective channel TRPM8 is activated by multiple stimuli, including moderate cold and various chemical compounds (i.e., menthol and icilin [Fig. 1], among others). While research continues growing on the understanding of the physiological involvement of TRPM8 channels and their role in various pathological states, the information available on its activation mechanisms has also increased, supported by mutagenesis and structural studies. This review compiles known information on specific mutations of channel residues and their consequences on channel viability and function. Besides, the comparison of sequence of animals living in different environments, together with chimera and mutagenesis studies are helping to unravel the mechanism of adaptation to different temperatures. The results of mutagenesis studies, grouped by different channel regions, are compared with the current knowledge of TRPM8 structures obtained by cryo-electron microscopy. Trying to make this review self-explicative and highly informative, important residues for TRPM8 function are summarized in a figure, and mutants, deletions and chimeras are compiled in a table, including also the observed effects by different methods of activation and the corresponding references. The information provided by this review may also help in the design of new ligands for TRPM8, an interesting biological target for therapeutic intervention.
Collapse
|
16
|
Behrendt M, Solinski HJ, Schmelz M, Carr R. Bradykinin-Induced Sensitization of Transient Receptor Potential Channel Melastatin 3 Calcium Responses in Mouse Nociceptive Neurons. Front Cell Neurosci 2022; 16:843225. [PMID: 35496916 PMCID: PMC9043526 DOI: 10.3389/fncel.2022.843225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
TRPM3 is a calcium-permeable cation channel expressed in a range of sensory neurons that can be activated by heat and the endogenous steroid pregnenolone sulfate (PS). During inflammation, the expression and function of TRPM3 are both augmented in somatosensory nociceptors. However, in isolated dorsal root ganglion (DRG) neurons application of inflammatory mediators like prostaglandins and bradykinin (BK) inhibit TRPM3. Therefore, the aim of this study was to examine the effect of preceding activation of cultured 1 day old mouse DRG neurons by the inflammatory mediator BK on TRPM3-mediated calcium responses. Calcium signals were recorded using the intensity-based dye Fluo-8. We found that TRPM3-mediated calcium responses to PS were enhanced by preceding application of BK in cells that responded to BK with a calcium signal, indicating BK receptor (BKR) expression. The majority of cells that co-expressed TRPM3 and BKRs also expressed TRPV1, however, only a small fraction co-expressed TRPA1, identified by calcium responses to capsaicin and supercinnamaldehyde, respectively. Signaling and trafficking pathways responsible for sensitization of TRPM3 following BK were characterized using inhibitors of second messenger signaling cascades and exocytosis. Pharmacological blockade of protein kinase C, calcium–calmodulin-dependent protein kinase II and diacylglycerol (DAG) lipase did not affect BK-induced sensitization, but inhibition of DAG kinase did. In addition, release of calcium from intracellular stores using thapsigargin also resulted in TRPM3 sensitization. Finally, BK did not sensitize TRPM3 in the presence of exocytosis inhibitors. Collectively, we show that preceding activation of DRG neurons by BK sensitized TRPM3-mediated calcium responses to PS. Our results indicate that BKR-mediated activation of intracellular signaling pathways comprising DAG kinase, calcium and exocytosis may contribute to TRPM3 sensitization during inflammation.
Collapse
|
17
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
18
|
Izquierdo C, Martín-Martínez M, Gómez-Monterrey I, González-Muñiz R. TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation. Int J Mol Sci 2021; 22:ijms22168502. [PMID: 34445208 PMCID: PMC8395166 DOI: 10.3390/ijms22168502] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a cold sensor in humans, activated by low temperatures (>10, <28 °C), but also a polymodal ion channel, stimulated by voltage, pressure, cooling compounds (menthol, icilin), and hyperosmolarity. An increased number of experimental results indicate the implication of TRPM8 channels in cold thermal transduction and pain detection, transmission, and maintenance in different tissues and organs. These channels also have a repercussion on different kinds of life-threatening tumors and other pathologies, which include urinary and respiratory tract dysfunctions, dry eye disease, and obesity. This compendium firstly covers newly described papers on the expression of TRPM8 channels and their correlation with pathological states. An overview on the structural knowledge, after cryo-electron microscopy success in solving different TRPM8 structures, as well as some insights obtained from mutagenesis studies, will follow. Most recently described families of TRPM8 modulators are also covered, along with a section of molecules that have reached clinical trials. To finalize, authors provide an outline of the potential prospects in the TRPM8 field.
Collapse
Affiliation(s)
- Carolina Izquierdo
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
- Programa de Doctorado en Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Martín-Martínez
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
| | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (I.G.-M.); (R.G.-M.)
| | - Rosario González-Muñiz
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
- Correspondence: (I.G.-M.); (R.G.-M.)
| |
Collapse
|
19
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) channels play a central role in the detection of environmental cold temperatures in the somatosensory system. TRPM8 is found in a subset of unmyelinated (C-type) afferents located in the dorsal root (DRG) and trigeminal ganglion (TG). Cold hypersensitivity is a common symptom of neuropathic pain conditions caused by cancer therapy, spinal cord injury, viral infection, multiple sclerosis, diabetes, or withdrawal symptoms associated with chronic morphine treatment. Therefore, TRPM8 has received great attention as a therapeutic target. However, as the activity of TRPM8 is unique in sensing cool temperature as well as warming, it is critical to understand the signaling transduction pathways that control modality-specific activity of TRPM8 in healthy versus pathological settings. This review summarizes recent advances in our understanding of the mechanisms involved in the regulation of the TRPM8 activity.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
20
|
Liu L, Rohacs T. Regulation of the cold-sensing TRPM8 channels by phosphoinositides and G q-coupled receptors. Channels (Austin) 2020; 14:79-86. [PMID: 32101066 PMCID: PMC7153793 DOI: 10.1080/19336950.2020.1734266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 11/05/2022] Open
Abstract
The Transient Receptor Potential Melastatin 8 (TRPM8) ion channel is an important sensor of environmental cold temperatures. Cold- and menthol-induced activation of this channel requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. This review discusses recent findings on the role of PI(4,5)P2 and G-proteins in the modulation of TRPM8 upon receptor activation. We will also summarize knowledge on the role of PI(4,5)P2 in Ca2+ dependent desensitization/adaptation of TRPM8 activity, and recent advances in the structural basis of how this lipid binds to TRPM8.
Collapse
Affiliation(s)
- Luyu Liu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
21
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
22
|
Mernea M, Ulăreanu R, Călboreanu O, Chirițoiu G, Cucu D, Mihăilescu DF. N-glycosylation state of TRPM8 protein revealed by terahertz spectroscopy and molecular modelling. Biochim Biophys Acta Gen Subj 2020; 1864:129580. [DOI: 10.1016/j.bbagen.2020.129580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
|
23
|
Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons. Int J Mol Sci 2020; 21:ijms21124420. [PMID: 32580281 PMCID: PMC7352406 DOI: 10.3390/ijms21124420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 01/19/2023] Open
Abstract
TRPM8 is the main molecular entity responsible for cold sensing. This polymodal ion channel is activated by cold, cooling compounds such as menthol, voltage, and rises in osmolality. In corneal cold thermoreceptor neurons (CTNs), TRPM8 expression determines not only their sensitivity to cold, but also their role as neural detectors of ocular surface wetness. Several reports suggest that Protein Kinase C (PKC) activation impacts on TRPM8 function; however, the molecular bases of this functional modulation are still poorly understood. We explored PKC-dependent regulation of TRPM8 using Phorbol 12-Myristate 13-Acetate to activate this kinase. Consistently, recombinant TRPM8 channels, cultured trigeminal neurons, and free nerve endings of corneal CTNs revealed a robust reduction of TRPM8-dependent responses under PKC activation. In corneal CTNs, PKC activation decreased ongoing activity, a key parameter in the role of TRPM8-expressing neurons as humidity detectors, and also the maximal cold-evoked response, which were validated by mathematical modeling. Biophysical analysis indicated that PKC-dependent downregulation of TRPM8 is mainly due to a decreased maximal conductance value, and complementary noise analysis revealed a reduced number of functional channels at the cell surface, providing important clues to understanding the molecular mechanisms of how PKC activity modulates TRPM8 channels in CTNs.
Collapse
|
24
|
Yin Y, Lee SY. Current View of Ligand and Lipid Recognition by the Menthol Receptor TRPM8. Trends Biochem Sci 2020; 45:806-819. [PMID: 32532587 DOI: 10.1016/j.tibs.2020.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Transient receptor potential (TRP) melastatin member 8 (TRPM8), which is a calcium-permeable ion channel, functions as the primary molecular sensor of cold and menthol in humans. Recent cryoelectron microscopy (cryo-EM) studies of TRPM8 have shown distinct structural features in its architecture and domain assembly compared with the capsaicin receptor TRP vanilloid member 1 (TRPV1). Moreover, ligand-bound TRPM8 structures have uncovered unforeseen binding sites for both cooling agonists and membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. These complex structures unveil the molecular basis of cooling agonist sensing by TRPM8 and the allosteric role of PI(4,5)P2 in agonist binding for TRPM8 activation. Here, we review the recent advances in TRPM8 structural biology and investigate the molecular principles governing the distinguishing role of TRPM8 as the evolutionarily conserved menthol receptor.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Iftinca M, Basso L, Flynn R, Kwok C, Roland C, Hassan A, Defaye M, Ramachandran R, Trang T, Altier C. Chronic morphine regulates TRPM8 channels via MOR-PKCβ signaling. Mol Brain 2020; 13:61. [PMID: 32290846 PMCID: PMC7155267 DOI: 10.1186/s13041-020-00599-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 02/05/2023] Open
Abstract
Postoperative shivering and cold hypersensitivity are major side effects of acute and chronic opioid treatments respectively. TRPM8 is a cold and menthol-sensitive channel found in a subset of dorsal root ganglion (DRG) nociceptors. Deletion or inhibition of the TRPM8 channel was found to prevent the cold hyperalgesia induced by chronic administration of morphine. Here, we examined the mechanisms by which morphine was able to promote cold hypersensitivity in DRG neurons and transfected HEK cells. Mice daily injected with morphine for 5 days developed cold hyperalgesia. Treatment with morphine did not alter the expressions of cold sensitive TREK-1, TRAAK and TRPM8 in DRGs. However, TRPM8-expressing DRG neurons isolated from morphine-treated mice exhibited hyperexcitability. Sustained morphine treatment in vitro sensitized TRPM8 responsiveness to cold or menthol and reduced activation-evoked desensitization of the channel. Blocking phospholipase C (PLC) as well as protein kinase C beta (PKCβ), but not protein kinase A (PKA) or Rho-associated protein kinase (ROCK), restored channel desensitization. Identification of two PKC phosphorylation consensus sites, S1040 and S1041, in the TRPM8 and their site-directed mutation were able to prevent the MOR-induced reduction in TRPM8 desensitization. Our results show that activation of MOR by morphine 1) promotes hyperexcitability of TRPM8-expressing neurons and 2) induces a PKCβ-mediated reduction of TRPM8 desensitization. This MOR-PKCβ dependent modulation of TRPM8 may underlie the onset of cold hyperalgesia caused by repeated administration of morphine. Our findings point to TRPM8 channel and PKCβ as important targets for opioid-induced cold hypersensitivity.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Lilian Basso
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Robyn Flynn
- Hotchkiss Brain Institute. Cumming School of Medicine. University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Charlie Kwok
- Hotchkiss Brain Institute. Cumming School of Medicine. University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Corinne Roland
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology. Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Tuan Trang
- Hotchkiss Brain Institute. Cumming School of Medicine. University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|