1
|
Ren K, Dai L, Zhang H, He Y, Liu B, Hu Y, Ma K, Tian W, Zhao D. Neuritin attenuates neuroinflammation and apoptosis in early brain injury after subarachnoid hemorrhage via endoplasmic reticulum stress-related inflammatory pathways. Brain Res 2024; 1845:149293. [PMID: 39454807 DOI: 10.1016/j.brainres.2024.149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Neuroinflammation is a key destructive pathophysiological process in early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have discovered that endoplasmic reticulum stress-related inflammatory pathways include the IRE1α-TRAF2-NF-κB pathway, PERK-eIF2α-NF-κB pathway, and ATF6-AKT -NF-κB pathway leading to neuroinflammatory response. Neuritin is a neurotrophin that is involved in neuronal plasticity and regeneration. Studies have suggested that Neuritin has a vital role in reducing neuroinflammation, and can also decrease the expression of proteins related to endoplasmic reticulum stress following SAH. This suggests that Neuritin could be a potential therapeutic target for SAH and other neurological conditions. However, the regulatory mechanisms of Neuritin in ER stress-related inflammatory pathways after SAH are not yet fully understood. In this work, we discovered that the activation of ER stress-related inflammatory pathways leads to neuroinflammation, which further aggravates neuronal apoptosis after SAH. Our findings indicate that Neuritin overexpression play a neuroprotective role by inhibiting IRE1α-TRAF2-NF-κB pathway, PERK-eIF2α-NF-κB pathway, and ATF6-AKT-NF-κB pathway associated with endoplasmic reticulum stress. These inhibitory effects on neuroinflammation ultimately reduce nerve cell apoptosis.
Collapse
Affiliation(s)
- Kunhao Ren
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Linzhi Dai
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Hao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Yaowen He
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Bin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Youjie Hu
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Ketao Ma
- Shihezi University School of Medicine, Shihezi 832000, China
| | - Weidong Tian
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Dong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China.
| |
Collapse
|
2
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake C, Pardoll D. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. eLife 2024; 13:RP96812. [PMID: 39565188 DOI: 10.7554/elife.96812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paolo D A Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Charles Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Drew Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
3
|
Meng P, Zhu L, Guo J, Li Y, Wei Y, Sun J, Zhu J. Preparation of recombinant neuritin protein. Protein Expr Purif 2024; 223:106554. [PMID: 39002828 DOI: 10.1016/j.pep.2024.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Neuritin plays an important role in promoting nerve injury repair and maintaining synaptic plasticity, making it a potential therapeutic target for the treatment of nerve injury and neurodegenerative diseases. The present study aimed to obtain an active, unlabeled neuritin protein. Initially, a neuritin protein expression system with an enterokinase site was constructed in Escherichia coli. After optimizing induction conditions and screening for high expression, a neuritin recombinant protein with purity exceeding 85 % was obtained through Ni-affinity chromatography. Subsequently, unlabeled neuritin with a molecular weight of 11 kDa was obtained through the enzymatic cleavage of the His label using an enterokinase. Furthermore, a neuritin recombinant protein with purity exceeding 95 % was obtained using gel chromatography. Functional investigations revealed that neurite outgrowth of PC12 cells was stimulated by the isolated neuritin. This study establishes a method to obtain active and unlabeled neuritin protein, providing a foundation for subsequent research on its biological functions.
Collapse
Affiliation(s)
- Pingping Meng
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Liyan Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jiatong Guo
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Yuanyuan Li
- Shawan City People's Hospital, Shawan, Xinjiang, 832100, China
| | - Yu Wei
- The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jiawei Sun
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
4
|
Ng B, Tasaki S, Greathouse KM, Walker CK, Zhang A, Covitz S, Cieslak M, Weber AJ, Adamson AB, Andrade JP, Poovey EH, Curtis KA, Muhammad HM, Seidlitz J, Satterthwaite T, Bennett DA, Seyfried NT, Vogel J, Gaiteri C, Herskowitz JH. Integration across biophysical scales identifies molecular and cellular correlates of person-to-person variability in human brain connectivity. Nat Neurosci 2024; 27:2240-2252. [PMID: 39482360 PMCID: PMC11537986 DOI: 10.1038/s41593-024-01788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri. Through the integration of the molecular and dendritic spine morphology data, we identified hundreds of proteins that explain interindividual differences in functional connectivity and structural covariation. These proteins are enriched for synaptic structures and functions, energy metabolism and RNA processing. By integrating data at the genetic, molecular, subcellular and tissue levels, we link specific biochemical changes at synapses to connectivity between brain regions. These results demonstrate the feasibility of integrating data from vastly different biophysical scales to provide a more comprehensive understanding of brain connectivity.
Collapse
Affiliation(s)
- Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ada Zhang
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sydney Covitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Matt Cieslak
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley B Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia P Andrade
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily H Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hamad M Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jakob Seidlitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ted Satterthwaite
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake CG, Pardoll DM. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578284. [PMID: 38352414 PMCID: PMC10862906 DOI: 10.1101/2024.01.31.578284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo D A Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: University of Pittsburgh, Carnegie Mellon
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Gillani RL, Kironde EN, Whiteman S, Zwang TJ, Bacskai BJ. Instability of excitatory synapses in experimental autoimmune encephalomyelitis and the outcome for excitatory circuit inputs to individual cortical neurons. Brain Behav Immun 2024; 119:251-260. [PMID: 38552924 PMCID: PMC11298162 DOI: 10.1016/j.bbi.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Synapses are lost on a massive scale in the brain and spinal cord of people living with multiple sclerosis (PwMS), and this synaptic loss extends far beyond demyelinating lesions. Post-mortem studies show the long-term consequences of multiple sclerosis (MS) on synapses but do not inform on the early impacts of neuroinflammation on synapses that subsequently lead to synapse loss. How excitatory circuit inputs are altered across the dendritic tree of individual neurons under neuroinflammatory stress is not well understood. Here, we directly assessed the structural dynamics of labeled excitatory synapses in experimental autoimmune encephalomyelitis (EAE) as a model of immune-mediated cortical neuronal damage. We used in vivo two-photon imaging and a synthetic tissue-hydrogel super-resolution imaging technique to reveal the dynamics of excitatory synapses, map their location across the dendritic tree of individual neurons, and examine neurons at super-resolution for synaptic loss. We found that excitatory synapses are destabilized but not lost from dendritic spines in EAE, starting with the earliest imaging session before symptom onset. This led to changes in excitatory circuit inputs to individual cells. In EAE, stable synapses are replaced by synapses that appear or disappear across the imaging sessions or repeatedly change at the same location. These unstable excitatory inputs occur closer to one another in EAE than in healthy controls and are distributed across the dendritic tree. When imaged at super-resolution, we found that a small proportion of dendritic protrusions lost their presynapse and/or postsynapse. Our finding of diffuse destabilizing effects of neuroinflammation on excitatory synapses across cortical neurons may have significant functional consequences since normal dendritic spine dynamics and clustering are essential for learning and memory.
Collapse
Affiliation(s)
- Rebecca L Gillani
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Neuroimmunology and Neuro-Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA.
| | - Eseza N Kironde
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sara Whiteman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Theodore J Zwang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Flores A, Nguyen NM, Devanaboyina M, Sanketh S, Athota P, Jagadesan S, Guda C, Yelamanchili SV, Pendyala G. Neurobehavioral Characterization of Perinatal Oxycodone-Exposed Offspring in Early Adolescence. J Neuroimmune Pharmacol 2024; 19:29. [PMID: 38874861 DOI: 10.1007/s11481-024-10129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The opioid epidemic has received considerable attention, but the impact on perinatal opioid-exposed (POE) offspring remains underexplored. This study addresses the emerging public health challenge of understanding and treating POE children. We examined two scenarios using preclinical models: offspring exposed to oxycodone (OXY) in utero (IUO) and acute postnatal OXY (PNO). We hypothesized exposure to OXY during pregnancy primes offspring for neurodevelopmental deficits and severity of deficits is dependent on timing of exposure. Notable findings include reduced head size and brain weight in offspring. Molecular analyses revealed significantly lower levels of inflammasome-specific genes in the prefrontal cortex (PFC). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) highlighted the enrichment of genes associated with mitochondrial and synapse dysfunction in POE offspring. Western blot analysis validated IPA predictions of mitochondrial dysfunction in PFC-derived synaptosomes. Behavioral studies identified significant social deficits in POE offspring. This study presents the first comparative analysis of acute PNO- and IUO-offspring during early adolescence finding acute PNO-offspring have considerably greater deficits. The striking difference in deficit severity in acute PNO-offspring suggests that exposure to opioids in late pregnancy pose the greatest risk for offspring well-being.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, 68198, USA
| | - Nghi M Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Murali Devanaboyina
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Samarth Sanketh
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Pranavi Athota
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | | | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA.
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA.
- Child Health Research Institute, Omaha, NE, 68198, USA.
- National Strategic Research Institute, UNMC, Omaha, NE, USA.
| |
Collapse
|
9
|
Lian P, Cai X, Yang X, Ma Z, Wang C, Liu K, Wu Y, Cao X, Xu Y. Analysis and experimental validation of necroptosis-related molecular classification, immune signature and feature genes in Alzheimer's disease. Apoptosis 2024; 29:726-742. [PMID: 38478169 PMCID: PMC11055779 DOI: 10.1007/s10495-024-01943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 04/28/2024]
Abstract
Necroptosis, a programmed cell death pathway, has been demonstrated to be activated in Alzheimer's disease (AD). However, the precise role of necroptosis and its correlation with immune cell infiltration in AD remains unclear. In this study, we conducted non-negative matrix factorization clustering analysis to identify three subtypes of AD based on necroptosis-relevant genes. Notably, these subtypes exhibited varying necroptosis scores, clinical characteristics and immune infiltration signatures. Cluster B, characterized by high necroptosis scores, showed higher immune cell infiltration and was associated with a more severe pathology, potentially representing a high-risk subgroup. To identify potential biomarkers for AD within cluster B, we employed two machine learning algorithms: the least absolute shrinkage and selection operator regression and Random Forest. Subsequently, we identified eight feature genes (CARTPT, KLHL35, NRN1, NT5DC3, PCYOX1L, RHOQ, SLC6A12, and SLC38A2) that were utilized to develop a diagnosis model with remarkable predictive capacity for AD. Moreover, we conducted validation using bulk RNA-seq, single-nucleus RNA-seq, and in vivo experiments to confirm the expression of these feature genes. In summary, our study identified a novel necroptosis-related subtype of AD and eight diagnostic biomarkers, explored the roles of necroptosis in AD progression and shed new light for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cai
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Fok AHK, Huang Y, So BWL, Zheng Q, Tse CSC, Li X, Wong KKY, Huang J, Lai KO, Lai CSW. KIF5B plays important roles in dendritic spine plasticity and dendritic localization of PSD95 and FMRP in the mouse cortex in vivo. Cell Rep 2024; 43:113906. [PMID: 38451812 DOI: 10.1016/j.celrep.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.
Collapse
Affiliation(s)
- Albert Hiu Ka Fok
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Beth Wing Lam So
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiyu Zheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Sing Carlos Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyang Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Kin-Yip Wong
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiandong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong SAR, China.
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Niraula S, Yan SS, Subramanian J. Amyloid Pathology Impairs Experience-Dependent Inhibitory Synaptic Plasticity. J Neurosci 2024; 44:e0702232023. [PMID: 38050105 PMCID: PMC10860629 DOI: 10.1523/jneurosci.0702-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
12
|
Gillani RL, Kironde EN, Whiteman S, Zwang TJ, Bacskai BJ. Instability of excitatory synapses in experimental autoimmune encephalomyelitis and the outcome for excitatory circuit inputs to individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576662. [PMID: 38328177 PMCID: PMC10849614 DOI: 10.1101/2024.01.23.576662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Synapses are lost on a massive scale in the brain and spinal cord of people living with multiple sclerosis (PwMS), and this synaptic loss extends far beyond demyelinating lesions. Post-mortem studies show the long-term consequences of multiple sclerosis (MS) on synapses but do not inform on the early impacts of neuroinflammation on synapses that subsequently lead to synapse loss. How excitatory circuit inputs are altered across the dendritic tree of individual neurons under neuroinflammatory stress is not well understood. Here, we directly assessed the structural dynamics of labeled excitatory synapses in experimental autoimmune encephalomyelitis (EAE) as a model of immune-mediated cortical neuronal damage. We used in vivo two-photon imaging and a synthetic tissue-hydrogel super-resolution imaging technique to reveal the dynamics of excitatory synapses, map their location across the dendritic tree of individual neurons, and examine neurons at super-resolution for synaptic loss. We found that excitatory synapses are destabilized but not lost from dendritic spines in EAE, starting with the earliest imaging session before symptom onset. This led to dramatic changes in excitatory circuit inputs to individual cells. In EAE, stable synapses are replaced by synapses that appear or disappear across the imaging sessions or repeatedly change at the same location. These unstable excitatory inputs occur closer to one another in EAE than in healthy controls and are distributed across the dendritic tree. When imaged at super-resolution, we found that a small proportion of dendritic protrusions lost their presynapse and/or postsynapse. Our finding of diffuse destabilizing effects of neuroinflammation on excitatory synapses across cortical neurons may have significant functional consequences since normal dendritic spine dynamics and clustering are essential for learning and memory.
Collapse
|
13
|
Zammit AR, Klein HU, Yu L, Levey AI, Seyfried NT, Wingo AP, Wingo TS, Schneider JA, Bennett DA, Buchman AS. Proteome-wide Analyses Identified Cortical Proteins Associated With Resilience for Varied Cognitive Abilities. Neurology 2024; 102:e207816. [PMID: 38165375 PMCID: PMC10834136 DOI: 10.1212/wnl.0000000000207816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. METHODS Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. RESULTS We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10-6; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10-1; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10-7). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. DISCUSSION This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.
Collapse
Affiliation(s)
- Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Allan I Levey
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Nicholas T Seyfried
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Aliza P Wingo
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Thomas S Wingo
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
14
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
15
|
Niraula S, Yan SS, Subramanian J. Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539450. [PMID: 37205469 PMCID: PMC10187277 DOI: 10.1101/2023.05.04.539450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by the broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
16
|
Wei H, Wu C, Yuan Y, Lai L. Uncovering the Achilles heel of genetic heterogeneity: machine learning-based classification and immunological properties of necroptosis clusters in Alzheimer's disease. Front Aging Neurosci 2023; 15:1249682. [PMID: 37799623 PMCID: PMC10548137 DOI: 10.3389/fnagi.2023.1249682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Background Alzheimer's disease (AD) is an age-associated neurodegenerative disease, and the currently available diagnostic modalities and therapeutic agents are unsatisfactory due to its high clinical heterogeneity. Necroptosis is a common type of programmed cell death that has been shown to be activated in AD. Methods In this study, we first investigated the expression profiles of necroptosis-related genes (NRGs) and the immune landscape of AD based on GSE33000 dataset. Next, the AD samples in the GSE33000 dataset were extracted and subjected to consensus clustering based upon the differentially expressed NRGs. Key genes associated with necroptosis clusters were identified using Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm, and then intersected with the key gene related to AD. Finally, we developed a diagnostic model for AD by comparing four different machine learning approaches. The discrimination performance and clinical relevance of the diagnostic model were assessed using various evaluation metrics, including the nomogram, calibration plot, decision curve analysis (DCA), and independent validation datasets. Results Aberrant expression patterns of NRGs and specific immune landscape were identified in the AD samples. Consensus clustering revealed that patients in the GSE33000 dataset could be classified into two necroptosis clusters, each with distinct immune landscapes and enriched pathways. The Extreme Gradient Boosting (XGB) was found to be the most optimal diagnostic model for the AD based on the predictive ability and reliability of the models constructed by four machine learning approaches. The five most important variables, including ACAA2, BHLHB4, CACNA2D3, NRN1, and TAC1, were used to construct a five-gene diagnostic model. The constructed nomogram, calibration plot, DCA, and external independent validation datasets exhibited outstanding diagnostic performance for AD and were closely related with the pathologic hallmarks of AD. Conclusion This work presents a novel diagnostic model that may serve as a framework to study disease heterogeneity and provide a plausible mechanism underlying neuronal loss in AD.
Collapse
Affiliation(s)
- Huangwei Wei
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunle Wu
- Department of Blood Transfusion, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yulin Yuan
- Department of Laboratory, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lichuan Lai
- Department of Laboratory, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
17
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. Impact of Adolescent Nicotine Exposure in Pre- and Post-natal Oxycodone Exposed Offspring. J Neuroimmune Pharmacol 2023; 18:413-426. [PMID: 37351737 DOI: 10.1007/s11481-023-10074-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found synaptic protein alterations, especially upregulation of synaptophysin in IUO-withdrawal animals. RT-qPCR further validated immune dysfunction in the central nervous system (CNS). Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning IUO animals. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal. Graphical Abstract.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Victoria L Schaal
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | | | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
- Department of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, NE, USA.
- Child Health Research Institute, UNMC, Omaha, NE, USA.
- National Strategic Research Institute, UNMC, Omaha, NE, USA.
| |
Collapse
|
18
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
19
|
Hurst C, Pugh DA, Abreha MH, Duong DM, Dammer EB, Bennett DA, Herskowitz JH, Seyfried NT. Integrated Proteomics to Understand the Role of Neuritin (NRN1) as a Mediator of Cognitive Resilience to Alzheimer's Disease. Mol Cell Proteomics 2023; 22:100542. [PMID: 37024090 PMCID: PMC10233303 DOI: 10.1016/j.mcpro.2023.100542] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
The molecular mechanisms and pathways enabling certain individuals to remain cognitively normal despite high levels of Alzheimer's disease (AD) pathology remain incompletely understood. These cognitively normal people with AD pathology are described as preclinical or asymptomatic AD (AsymAD) and appear to exhibit cognitive resilience to the clinical manifestations of AD dementia. Here we present a comprehensive network-based approach from cases clinically and pathologically defined as asymptomatic AD to map resilience-associated pathways and extend mechanistic validation. Multiplex tandem mass tag MS (TMT-MS) proteomic data (n = 7787 proteins) was generated on brain tissue from Brodmann area 6 and Brodmann area 37 (n = 109 cases, n = 218 total samples) and evaluated by consensus weighted gene correlation network analysis. Notably, neuritin (NRN1), a neurotrophic factor previously linked to cognitive resilience, was identified as a hub protein in a module associated with synaptic biology. To validate the function of NRN1 with regard to the neurobiology of AD, we conducted microscopy and physiology experiments in a cellular model of AD. NRN1 provided dendritic spine resilience against amyloid-β (Aβ) and blocked Aβ-induced neuronal hyperexcitability in cultured neurons. To better understand the molecular mechanisms of resilience to Aβ provided by NRN1, we assessed how exogenous NRN1 alters the proteome by TMT-MS (n = 8238 proteins) of cultured neurons and integrated the results with the AD brain network. This revealed overlapping synapse-related biology that linked NRN1-induced changes in cultured neurons with human pathways associated with cognitive resilience. Collectively, this highlights the utility of integrating the proteome from the human brain and model systems to advance our understanding of resilience-promoting mechanisms and prioritize therapeutic targets that mediate resilience to AD.
Collapse
Affiliation(s)
- Cheyenne Hurst
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - Derian A Pugh
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Measho H Abreha
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA.
| |
Collapse
|
20
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. An Integrated Systems Approach to Decode the Impact of Adolescent Nicotine Exposure in Utero and Postnatally Oxycodone Exposed Offspring. RESEARCH SQUARE 2023:rs.3.rs-2753084. [PMID: 37066266 PMCID: PMC10104203 DOI: 10.21203/rs.3.rs-2753084/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found alterations of the blood-brain barrier (B.B.B.) and synaptic proteins. RT-qPCR further validated immune dysfunction in the central nervous system (CNS) consistent with compromised B.B.B. Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning PNO & IUO, a predictor of greater addiction risk. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal.
Collapse
Affiliation(s)
| | | | | | - Sneh Koul
- University of Nebraska Medical Center (UNMC)
| | | | | | | |
Collapse
|
21
|
Nagappan-Chettiar S, Yasuda M, Johnson-Venkatesh EM, Umemori H. The molecular signals that regulate activity-dependent synapse refinement in the brain. Curr Opin Neurobiol 2023; 79:102692. [PMID: 36805716 PMCID: PMC10023433 DOI: 10.1016/j.conb.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The formation of appropriate synaptic connections is critical for the proper functioning of the brain. Early in development, neurons form a surplus of immature synapses. To establish efficient, functional neural networks, neurons selectively stabilize active synapses and eliminate less active ones. This process is known as activity-dependent synapse refinement. Defects in this process have been implicated in neuropsychiatric disorders such as schizophrenia and autism. Here we review the manner and mechanisms by which synapse elimination is regulated through activity-dependent competition. We propose a theoretical framework for the molecular mechanisms of synapse refinement, in which three types of signals regulate the refinement. We then describe the identity of these signals and discuss how multiple molecular signals interact to achieve appropriate synapse refinement in the brain.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/sivapratha
| | - Masahiro Yasuda
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Balcioglu A, Gillani R, Doron M, Burnell K, Ku T, Erisir A, Chung K, Segev I, Nedivi E. Mapping thalamic innervation to individual L2/3 pyramidal neurons and modeling their 'readout' of visual input. Nat Neurosci 2023; 26:470-480. [PMID: 36732641 DOI: 10.1038/s41593-022-01253-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
The thalamus is the main gateway for sensory information from the periphery to the mammalian cerebral cortex. A major conundrum has been the discrepancy between the thalamus's central role as the primary feedforward projection system into the neocortex and the sparseness of thalamocortical synapses. Here we use new methods, combining genetic tools and scalable tissue expansion microscopy for whole-cell synaptic mapping, revealing the number, density and size of thalamic versus cortical excitatory synapses onto individual layer 2/3 (L2/3) pyramidal cells (PCs) of the mouse primary visual cortex. We find that thalamic inputs are not only sparse, but remarkably heterogeneous in number and density across individual dendrites and neurons. Most surprising, despite their sparseness, thalamic synapses onto L2/3 PCs are smaller than their cortical counterparts. Incorporating these findings into fine-scale, anatomically faithful biophysical models of L2/3 PCs reveals how individual neurons with sparse and weak thalamocortical synapses, embedded in small heterogeneous neuronal ensembles, may reliably 'read out' visually driven thalamic input.
Collapse
Affiliation(s)
- Aygul Balcioglu
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca Gillani
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Doron
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Kendyll Burnell
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taeyun Ku
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kwanghun Chung
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Medical Engineering and Science, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Niraula S, Doderer JJ, Indulkar S, Berry KP, Hauser WL, L'Esperance OJ, Deng JZ, Keeter G, Rouse AG, Subramanian J. Excitation-inhibition imbalance disrupts visual familiarity in amyloid and non-pathology conditions. Cell Rep 2023; 42:111946. [PMID: 36640331 PMCID: PMC9939293 DOI: 10.1016/j.celrep.2022.111946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Julia J Doderer
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shreya Indulkar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Kalen P Berry
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Oliver J L'Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Jasmine Z Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Griffin Keeter
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
24
|
Ray A, Christian JA, Mosso MB, Park E, Wegner W, Willig KI, Barth AL. Quantitative Fluorescence Analysis Reveals Dendrite-Specific Thalamocortical Plasticity in L5 Pyramidal Neurons during Learning. J Neurosci 2023; 43:584-600. [PMID: 36639912 PMCID: PMC9888508 DOI: 10.1523/jneurosci.1372-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning.SIGNIFICANCE STATEMENT Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.
Collapse
Affiliation(s)
- Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Matthew B Mosso
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Katrin I Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| |
Collapse
|
25
|
Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Mol Neurobiol 2022; 59:6666-6683. [DOI: 10.1007/s12035-022-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
26
|
Sneve MA, Piatkevich KD. Towards a Comprehensive Optical Connectome at Single Synapse Resolution via Expansion Microscopy. Front Synaptic Neurosci 2022; 13:754814. [PMID: 35115916 PMCID: PMC8803729 DOI: 10.3389/fnsyn.2021.754814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Mapping and determining the molecular identity of individual synapses is a crucial step towards the comprehensive reconstruction of neuronal circuits. Throughout the history of neuroscience, microscopy has been a key technology for mapping brain circuits. However, subdiffraction size and high density of synapses in brain tissue make this process extremely challenging. Electron microscopy (EM), with its nanoscale resolution, offers one approach to this challenge yet comes with many practical limitations, and to date has only been used in very small samples such as C. elegans, tadpole larvae, fruit fly brain, or very small pieces of mammalian brain tissue. Moreover, EM datasets require tedious data tracing. Light microscopy in combination with tissue expansion via physical magnification-known as expansion microscopy (ExM)-offers an alternative approach to this problem. ExM enables nanoscale imaging of large biological samples, which in combination with multicolor neuronal and synaptic labeling offers the unprecedented capability to trace and map entire neuronal circuits in fully automated mode. Recent advances in new methods for synaptic staining as well as new types of optical molecular probes with superior stability, specificity, and brightness provide new modalities for studying brain circuits. Here we review advanced methods and molecular probes for fluorescence staining of the synapses in the brain that are compatible with currently available expansion microscopy techniques. In particular, we will describe genetically encoded probes for synaptic labeling in mice, zebrafish, Drosophila fruit flies, and C. elegans, which enable the visualization of post-synaptic scaffolds and receptors, presynaptic terminals and vesicles, and even a snapshot of the synaptic activity itself. We will address current methods for applying these probes in ExM experiments, as well as appropriate vectors for the delivery of these molecular constructs. In addition, we offer experimental considerations and limitations for using each of these tools as well as our perspective on emerging tools.
Collapse
Affiliation(s)
- Madison A. Sneve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
27
|
Park J, Khan S, Yun DH, Ku T, Villa KL, Lee JE, Zhang Q, Park J, Feng G, Nedivi E, Chung K. Epitope-preserving magnified analysis of proteome (eMAP). SCIENCE ADVANCES 2021; 7:eabf6589. [PMID: 34767453 PMCID: PMC8589305 DOI: 10.1126/sciadv.abf6589] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Synthetic tissue-hydrogel methods have enabled superresolution investigation of biological systems using diffraction-limited microscopy. However, chemical modification by fixatives can cause loss of antigenicity, limiting molecular interrogation of the tissue gel. Here, we present epitope-preserving magnified analysis of proteome (eMAP) that uses purely physical tissue-gel hybridization to minimize the loss of antigenicity while allowing permanent anchoring of biomolecules. We achieved success rates of 96% and 94% with synaptic antibodies for mouse and marmoset brains, respectively. Maximal preservation of antigenicity allows imaging of nanoscopic architectures in 1000-fold expanded tissues without additional signal amplification. eMAP-processed tissue gel can endure repeated staining and destaining without epitope loss or structural damage, enabling highly multiplexed proteomic analysis. We demonstrated the utility of eMAP as a nanoscopic proteomic interrogation tool by investigating molecular heterogeneity in inhibitory synapses in the mouse brain neocortex and characterizing the spatial distributions of synaptic proteins within synapses in mouse and marmoset brains.
Collapse
Affiliation(s)
- Joha Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Sarim Khan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Roorkee, Uttarakhand 247667, India
| | - Dae Hee Yun
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Taeyun Ku
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Katherine L. Villa
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Jiachen E. Lee
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Juhyuk Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Elly Nedivi
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Shen M, Lian N, Song C, Qin C, Yu Y, Yu Y. Different Anesthetic Drugs Mediate Changes in Neuroplasticity During Cognitive Impairment in Sleep-Deprived Rats via Different Factors. Med Sci Monit 2021; 27:e932422. [PMID: 34564688 PMCID: PMC8482804 DOI: 10.12659/msm.932422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Perioperative neuro-cognitive disorders (PND) are preoperative and postoperative complications of multiple nervous systems, typically manifested as decreased memory and learning ability after surgery. It was used to replace the original definition of postoperative cognitive dysfunctions (POCD) from 2018. Our previous studies have shown that sevoflurane inhalation can lead to cognitive dysfunction in Sprague-Dawley rats, but the specific mechanism is still unclear. Material/Methods Thirty-six male Sprague-Dawley rats were randomly divided into 6 groups (n=6): the SD group was given 24-h acute sleep deprivation; Sevoflurane was inhaled for 2 h in the Sevo group. Two mL propofol was injected into the tail vein of rats in the Prop group. The rats in the SD+Sevo group and SD+Prop group were deprived of sleep before intervention in the same way as before. Results We noted significant behavioral changes in rats treated with SIK3 inhibitors or tau phosphorylation agonists before propofol injection or sevoflurane inhalation, with associated protein levels and dendritic spine density documented. Sevoflurane anesthesia-induced cognitive impairment following acute sleep deprivation was more pronounced than sleep deprivation-induced cognitive impairment alone and resulted in increased brain SIK3 levels, increased phosphorylation of total tau and tau, and decreased acetylation modifications. After using propofol, the cognitive function returned to baseline levels with a series of reversals of cognitive dysfunction. Conclusions These results suggest that sevoflurane inhalation via the SIK3 pathway aggravates cognitive impairment after acute sleep deprivation and that propofol anesthesia reverses the effects of sleep deprivation by affecting modifications of tau protein.
Collapse
Affiliation(s)
- Mengxi Shen
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Chengcheng Song
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Chao Qin
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| |
Collapse
|
29
|
Utsunomiya S, Kishi Y, Tsuboi M, Kawaguchi D, Gotoh Y, Abe M, Sakimura K, Maeda K, Takemoto H. Ezh1 regulates expression of Cpg15/Neuritin in mouse cortical neurons. Drug Discov Ther 2021; 15:55-65. [PMID: 33678755 DOI: 10.5582/ddt.2021.01017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immature neurons undergo morphological and physiological maturation in order to establish neuronal networks. During neuronal maturation, a large number of genes change their transcriptional levels, and these changes may be mediated by chromatin modifiers. In this study, we found that the level of Ezh1, a component of Polycomb repressive complex 2 (PRC2), increases during neuronal maturation in mouse neocortical culture. In addition, conditional knockout of Ezh1 in post-mitotic excitatory neurons leads to downregulation of a set of genes related to neuronal maturation. Moreover, the locus encoding Cpg15/Neuritin (Nrn1), which is regulated by neuronal activity and implicated in stabilization and maturation of excitatory synapses, is a direct target of Ezh1 in cortical neurons. Together, these results suggest that elevated expression of Ezh1 contributes to maturation of cortical neurons.
Collapse
Affiliation(s)
- Shun Utsunomiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masafumi Tsuboi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuma Maeda
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Zhang Z, Zhou H, Zhou J. Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction. J Mol Endocrinol 2021; 66:259-272. [PMID: 33729996 PMCID: PMC8111324 DOI: 10.1530/jme-20-0321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Earlier, it was shown that reversing the downregulation of neuritin expression in the brain improves central neuropathy in diabetic rats. We investigated the protective mechanism of neuritin in diabetic cognitive dysfunction via astrocytes. Further, the impact of the overexpression of neuritin in the cortex and the hippocampus on diabetic cognitive dysfunction and astrogliosis in type 2 diabetic (db/db) mice was assessed. Antagonists were used to inhibit the JAK2/STAT3 signaling pathway in U-118MG, an astrocyte cell line. Immunofluorescence, Western blotting, and real-time PCR were performed. Neuritin overexpression in the hippocampus of db/db mice significantly ameliorated cognitive dysfunction, hippocampal neuronal impairment, and synaptic plasticity deterioration, and inhibited astrogliosis and the JAK2/STAT3 signaling pathway in the hippocampus. Neuritin suppressed the JAK2/STAT3 signaling pathway to inhibit lipopolysaccharide-induced gliosis in U-118MG cells. It was observed that neuritin regulates the JAK2/STAT3 signaling pathway in astrocytes to inhibit astrogliosis and improve diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Correspondence should be addressed to J Zhou:
| |
Collapse
|
31
|
Subramanian J, Savage JC, Tremblay MÈ. Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front Cell Neurosci 2020; 14:592607. [PMID: 33408613 PMCID: PMC7780885 DOI: 10.3389/fncel.2020.592607] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton in vivo imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.
Collapse
Affiliation(s)
- Jaichandar Subramanian
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Zhou J, Brown AM, Lackey EP, Arancillo M, Lin T, Sillitoe RV. Purkinje cell neurotransmission patterns cerebellar basket cells into zonal modules defined by distinct pinceau sizes. eLife 2020; 9:55569. [PMID: 32990595 PMCID: PMC7561353 DOI: 10.7554/elife.55569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Ramón y Cajal proclaimed the neuron doctrine based on circuit features he exemplified using cerebellar basket cell projections. Basket cells form dense inhibitory plexuses that wrap Purkinje cell somata and terminate as pinceaux at the initial segment of axons. Here, we demonstrate that HCN1, Kv1.1, PSD95 and GAD67 unexpectedly mark patterns of basket cell pinceaux that map onto Purkinje cell functional zones. Using cell-specific genetic tracing with an Ascl1CreERT2 mouse conditional allele, we reveal that basket cell zones comprise different sizes of pinceaux. We tested whether Purkinje cells instruct the assembly of inhibitory projections into zones, as they do for excitatory afferents. Genetically silencing Purkinje cell neurotransmission blocks the formation of sharp Purkinje cell zones and disrupts excitatory axon patterning. The distribution of pinceaux into size-specific zones is eliminated without Purkinje cell GABAergic output. Our data uncover the cellular and molecular diversity of a foundational synapse that revolutionized neuroscience.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
33
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
34
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
35
|
Schwenk J, Fakler B. Building of AMPA‐type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. J Physiol 2020; 599:2639-2653. [DOI: 10.1113/jp279025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jochen Schwenk
- Institute of Physiology, Faculty of Medicine University of Freiburg Hermann‐Herder‐Str. 7 Freiburg 79104 Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine University of Freiburg Hermann‐Herder‐Str. 7 Freiburg 79104 Germany
- Signalling Research Centres BIOSS and CIBSS Schänzlestr. 18 Freiburg 79104 Germany
- Center for Basics in NeuroModulation Breisacherstr. 4 Freiburg 79106 Germany
| |
Collapse
|
36
|
Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020; 318:C1264-C1283. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|