1
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova TV, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. RNA (NEW YORK, N.Y.) 2025; 31:781-790. [PMID: 40050069 DOI: 10.1261/rna.080294.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single-nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole-genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
Affiliation(s)
- Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Michelle Zhou
- Irvington High School, Irvington, New York 10533, USA
| | - Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 33607 Pessac, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
2
|
Hayat D, Ogran A, Ashkenazi S, Plotnikov A, Oren R, Zerbib M, Ben-Shmuel A, Dikstein R. Inhibitors of eIF1A-ribosome interaction unveil uORF-dependent regulation of translation initiation and antitumor and antiviral effects. EMBO J 2025:10.1038/s44318-025-00449-6. [PMID: 40355559 DOI: 10.1038/s44318-025-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
During translation initiation, eIF1A binds the ribosome through its N- and C-terminal tails, but the functional importance of this temporal interaction in mammalian cells is lacking. Using a high-throughput drug screen targeting eIF1A-RPS10 interaction, we identified inhibitors (1Ais) for eIF1A, RPS10, or both. Applying 1Ais in biochemical assays along specific and global translation experiments, we confirmed known functions of eIF1A and uncovered new roles for both eIF1A and RPS10. Specifically, the eIF1A N-terminal tail (NTT) binding inhibitors revealed the requirement of eIF1A for translation re-initiation. Moreover, a cytosine at position +5 relative to the start codon AUG, located near eIF1A-NTT in the 48S structure, enhances sensitivity to 1Ais, suggesting that the initiating ribosome recognizes a broader AUG context than the conventional Kozak. Additionally, eIF1A-specific 1Ais predominately affect cancer-related pathways. In xenograft models of ovarian cancer, these 1Ais reduced tumor growth without apparent toxicity. Furthermore, inhibition of RPS10, but not eIF1A, modulates a context-dependent regulatory translation initiation at CUG codon of SARS-CoV-2 and impedes infection. Our study underscores 1Ais as effective means to study the role of eIF1A and RPS10 in translation and suggests their targeted inhibition as potential therapies for cancer and viral infections.
Collapse
Affiliation(s)
- Daniel Hayat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ariel Ogran
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shaked Ashkenazi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
D’Agostino M, Rol-Moreno J, Bec G, Kuhn L, Ennifar E, Simonetti A. A structural element within the 5'UTR of β-catenin mRNA modulates its translation under hypoxia. Nucleic Acids Res 2025; 53:gkaf321. [PMID: 40309781 PMCID: PMC12044334 DOI: 10.1093/nar/gkaf321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of translation initiation is crucial for cellular adaptation to environmental changes. Stress conditions like hypoxia trigger translational reprogramming of mRNAs encoding proteins essential for stress recovery and cell survival. Recent studies highlight alternative translation initiation pathways based on specific motifs in mRNA 5' untranslated regions (5'UTRs). Notably, β-catenin is of particular interest since maintaining its translation promotes cancer cell persistence and plasticity. β-Catenin, an oncogenic protein, plays a key role in Wnt signalling. Besides dysregulation of the β-catenin/Wnt pathway, chemotherapy-induced hypoxia leads to abnormal nuclear β-catenin accumulation, modulating gene expression linked to cancer progression and metastasis. However, the mechanism sustaining β-catenin translation in stressed cells remains elusive. To explore how β-catenin mRNA evades global translational blockade in hypoxic cancer cells, we analysed its 5'UTR and identified a translation regulatory element in cellulo. We discovered a GC-rich three-way junction (TWJ) structure within the β-catenin 5'UTR enhancing its hypoxia-driven translation. A polypurine region within the TWJ anchors eIF4B, eIF4A, and eIF4G2. Importantly, the TWJ makes β-catenin mRNA translation eIF4A-dependent and sensitive to silvestrol, a selective eIF4A inhibitor and promising anticancer agent. This study elucidates the 5'UTR-driven β-catenin mechanism under hypoxia, paving the way to inhibit its translation in cancer.
Collapse
Affiliation(s)
- Mattia D’Agostino
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Javier Rol-Moreno
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
- Sanofi-Aventis R&D, Strasbourg 67000, France
| | - Guillaume Bec
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme protéomique Strasbourg-Esplanade, Université de Strasbourg, 2 Allée Konrad Roentgen, Strasbourg 67084, France
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| | - Angelita Simonetti
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 Allée Konrad Roetgen, Strasbourg 67084, France
| |
Collapse
|
4
|
Pan S, Wang H, Zhang H, Tang Z, Xu L, Yan Z, Hu Y. UTR-Insight: integrating deep learning for efficient 5' UTR discovery and design. BMC Genomics 2025; 26:107. [PMID: 39905334 PMCID: PMC11796101 DOI: 10.1186/s12864-025-11269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
The 5' UTR is critical for mRNA stability and translation efficiency in therapeutics. We developed UTR-Insight, a model integrating a pretrained language model with a CNN-Transformer architecture, explaining 89.1% of the mean ribosome load (MRL) variation in random 5' UTRs and 82.8% in endogenous 5' UTRs, surpassing existing models. Using UTR-Insight, we performed high-throughput in silico screening of hundreds of thousands of endogenous 5' UTRs from primates, mice, and viruses. The screened sequences increased protein expression by up to 319% compared to the human α-globin 5' UTR, and UTR-Insight-designed sequences achieved even greater expression levels than high-performing endogenous 5' UTRs.
Collapse
Affiliation(s)
- Saichao Pan
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China
| | - Hanyu Wang
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China
| | - Hang Zhang
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China
| | - Zan Tang
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China
| | - Lianqiang Xu
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China
| | - Zhixiang Yan
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China.
| | - Yong Hu
- Shenzhen Rhegen Biotechnology Co. Ltd, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Petrychenko V, Yi SH, Liedtke D, Peng BZ, Rodnina MV, Fischer N. Structural basis for translational control by the human 48S initiation complex. Nat Struct Mol Biol 2025; 32:62-72. [PMID: 39289545 PMCID: PMC11746136 DOI: 10.1038/s41594-024-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome.
Collapse
Affiliation(s)
- Valentyn Petrychenko
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Insempra GmbH, Planegg, Germany
| | - David Liedtke
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Niels Fischer
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Hang R, Li H, Liu W, Wang R, Hu H, Chen M, You C, Chen X. HOT3/eIF5B1 confers Kozak motif-dependent translational control of photosynthesis-associated nuclear genes for chloroplast biogenesis. Nat Commun 2024; 15:9878. [PMID: 39543117 PMCID: PMC11564774 DOI: 10.1038/s41467-024-54194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthesis requires chloroplasts, in which most proteins are nucleus-encoded and produced via cytoplasmic translation. The translation initiation factor eIF5B gates the transition from initiation (I) to elongation (E), and the Kozak motif is associated with translation efficiency, but their relationship is previously unknown. Here, with ribosome profiling, we determined the genome-wide I-E transition efficiencies. We discovered that the most prevalent Kozak motif is associated with high I-E transition efficiency in Arabidopsis, rice, and wheat, thus implicating the potential of the Kozak motif in facilitating the I-E transition. Indeed, the effects of Kozak motifs in promoting translation depend on HOT3/eIF5B1 in Arabidopsis. HOT3 preferentially promotes the translation of photosynthesis-associated nuclear genes in a Kozak motif-dependent manner, which explains the chloroplast defects and reduced photosynthesis activity of hot3 mutants. Our study linked the Kozak motif to eIF5B-mediated I-E transition during translation and uncovered the function of HOT3 in the cytoplasmic translational control of chloroplast biogenesis and photosynthesis.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Hao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wenjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Runyu Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Chenjiang You
- College of Life Sciences, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
8
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova T, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617640. [PMID: 39416079 PMCID: PMC11482936 DOI: 10.1101/2024.10.11.617640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
|
9
|
Villamayor-Belinchón L, Sharma P, Gordiyenko Y, Llácer J, Hussain T. Structural basis of AUC codon discrimination during translation initiation in yeast. Nucleic Acids Res 2024; 52:11317-11335. [PMID: 39193907 PMCID: PMC11472065 DOI: 10.1093/nar/gkae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2β becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2β helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.
Collapse
Affiliation(s)
| | - Prafful Sharma
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | | | - Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
10
|
Swain BC, Sarkis P, Ung V, Rousseau S, Fernandez L, Meltonyan A, Aho VE, Mercadante D, Mackereth CD, Aznauryan M. Disordered regions of human eIF4B orchestrate a dynamic self-association landscape. Nat Commun 2024; 15:8766. [PMID: 39384813 PMCID: PMC11464913 DOI: 10.1038/s41467-024-53136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
Eukaryotic translation initiation factor eIF4B is required for efficient cap-dependent translation, it is overexpressed in cancer cells, and may influence stress granule formation. Due to the high degree of intrinsic disorder, eIF4B is rarely observed in cryo-EM structures of translation complexes and only ever by its single structured RNA recognition motif domain, leaving the molecular details of its large intrinsically disordered region (IDR) unknown. By integrating experiments and simulations we demonstrate that eIF4B IDR orchestrates and fine-tunes an intricate transition from monomers to a condensed phase, in which large-size dynamic oligomers form before mesoscopic phase separation. Single-molecule spectroscopy combined with molecular simulations enabled us to characterize the conformational ensembles and underlying intra- and intermolecular dynamics across the oligomerization transition. The observed sensitivity to ionic strength and molecular crowding in the self-association landscape suggests potential regulation of eIF4B nanoscopic and mesoscopic behaviors such as driven by protein modifications, binding partners or changes to the cellular environment.
Collapse
Affiliation(s)
- Bikash Chandra Swain
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Pascale Sarkis
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Vanessa Ung
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sabrina Rousseau
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Laurent Fernandez
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - Ani Meltonyan
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
| | - V Esperance Aho
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France
- Institut de Biologie Structurale (IBS), UMR 5075, F-38044, Grenoble, France
| | - Davide Mercadante
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Cameron D Mackereth
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, F-33000, Bordeaux, France.
| | - Mikayel Aznauryan
- University of Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France.
| |
Collapse
|
11
|
Li ZM, Lin Y, Luo CH, Sun QL, Mi CL, Wang XY, Wang TY. Optimization of extended Kozak elements enhances recombinant proteins expression in CHO cells. J Biotechnol 2024; 392:96-102. [PMID: 38960098 DOI: 10.1016/j.jbiotec.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, -10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; College of Science and Technology, Nanchang University, Jiujiang 332020, China
| | - Yan Lin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; School of Nursing, Xinxiang Medical University, Xinxiang 453003, China
| | - Cong-Hui Luo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; School of Life Science and Technology,Xinxiang Medical University, Xinxiang 453003, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; School of Life Science and Technology,Xinxiang Medical University, Xinxiang 453003, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
12
|
Ide NA, Gentry RC, Rudbach MA, Yoo K, Velez PK, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL, Aitken CE. A dynamic compositional equilibrium governs mRNA recognition by eIF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.581977. [PMID: 38712078 PMCID: PMC11071631 DOI: 10.1101/2024.04.25.581977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Eukaryotic translation initiation factor (eIF) 3 is a multi-subunit protein complex that binds both ribosomes and messenger RNAs (mRNAs) to drive a diverse set of mechanistic steps during translation of an mRNA into the protein it encodes. And yet, a unifying framework explaining how eIF3 performs these numerous activities is lacking. Using single-molecule light scattering microscopy, we demonstrate that Saccharomyces cerevisiae eIF3 is in dynamic exchange between the full complex, subcomplexes, and subunits. By extending our microscopy approach to an in vitro reconstituted eIF3 and complementing it with biochemical assays, we define the subspecies comprising this dynamic compositional equilibrium and show that mRNA binding by eIF3 is not driven by the full complex but instead by the eIF3a subunit within eIF3a-containing subcomplexes. Our findings provide a mechanistic model for the role of eIF3 in mRNA recruitment and establish a mechanistic framework for explaining and investigating the other activities of eIF3.
Collapse
Affiliation(s)
- Nicholas A. Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Riley C. Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Kyungyoon Yoo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Current Address: Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Erik W. Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Biochemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D. Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | | | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Biology Department, Vassar College, Poughkeepsie, NY, USA
| |
Collapse
|
13
|
Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Zuber P, Du Y, Albacete-Albacete L, Ramakrishnan V, Fraser CS. Human tumor suppressor protein Pdcd4 binds at the mRNA entry channel in the 40S small ribosomal subunit. Nat Commun 2024; 15:6633. [PMID: 39117603 PMCID: PMC11310195 DOI: 10.1038/s41467-024-50672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Translation is regulated mainly in the initiation step, and its dysregulation is implicated in many human diseases. Several proteins have been found to regulate translational initiation, including Pdcd4 (programmed cell death gene 4). Pdcd4 is a tumor suppressor protein that prevents cell growth, invasion, and metastasis. It is downregulated in most tumor cells, while global translation in the cell is upregulated. To understand the mechanisms underlying translational control by Pdcd4, we used single-particle cryo-electron microscopy to determine the structure of human Pdcd4 bound to 40S small ribosomal subunit, including Pdcd4-40S and Pdcd4-40S-eIF4A-eIF3-eIF1 complexes. The structures reveal the binding site of Pdcd4 at the mRNA entry site in the 40S, where the C-terminal domain (CTD) interacts with eIF4A at the mRNA entry site, while the N-terminal domain (NTD) is inserted into the mRNA channel and decoding site. The structures, together with quantitative binding and in vitro translation assays, shed light on the critical role of the NTD for the recruitment of Pdcd4 to the ribosomal complex and suggest a model whereby Pdcd4 blocks the eIF4F-independent role of eIF4A during recruitment and scanning of the 5' UTR of mRNA.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | | | - Yifei Du
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Grosely R, Alvarado C, Ivanov IP, Nicholson OB, Puglisi JD, Dever TE, Lapointe CP. eIF1 and eIF5 dynamically control translation start site fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602410. [PMID: 39026837 PMCID: PMC11257575 DOI: 10.1101/2024.07.10.602410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Translation initiation defines the identity of a synthesized protein through selection of a translation start site on a messenger RNA. This process is essential to well-controlled protein synthesis, modulated by stress responses, and dysregulated in many human diseases. The eukaryotic initiation factors eIF1 and eIF5 interact with the initiator methionyl-tRNAi Met on the 40S ribosomal subunit to coordinate start site selection. Here, using single-molecule analysis of in vitro reconstituted human initiation combined with translation assays in cells, we examine eIF1 and eIF5 function. During translation initiation on a panel of RNAs, we monitored both proteins directly and in real time using single-molecule fluorescence. As expected, eIF1 loaded onto mRNAs as a component of the 43S initiation complex. Rapid (~ 2 s) eIF1 departure required a translation start site and was delayed by alternative start sites and a longer 5' untranslated region (5'UTR). After its initial departure, eIF1 rapidly and transiently sampled initiation complexes, with more prolonged sampling events on alternative start sites. By contrast, eIF5 only transiently bound initiation complexes late in initiation immediately prior to association of eIF5B, which allowed joining of the 60S ribosomal subunit. eIF5 association required the presence of a translation start site and was inhibited and destabilized by alternative start sites. Using both knockdown and overexpression experiments in human cells, we validated that eIF1 and eIF5 have opposing roles during initiation. Collectively, our findings demonstrate how multiple eIF1 and eIF5 binding events control start-site selection fidelity throughout initiation, which is tuned in response to changes in the levels of both proteins.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos Alvarado
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivaylo P. Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph D. Puglisi
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E. Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
15
|
Weiss B, Dikstein R. Unraveling the landscapes and regulation of scanning, leaky scanning, and 48S initiation complex conformations. Cell Rep 2024; 43:114126. [PMID: 38630588 DOI: 10.1016/j.celrep.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Scanning and initiation are critical steps in translation. Here, we utilized translation complex profiling (TCP-seq) to investigate 48S organization and eIF4G1-eIF1 inhibition impact. We provide global views of scanning and leaky scanning, uncovering a central role of eIF4G1-eIF1 in their regulation. We confirm AUG context importance, with non-leaky genes featuring a Kozak context and cytosine at positions -1 and +5. Capturing 48S complexes associated with eIF1, eIF4G1, eIF3, and eIF2 through selective TCP-seq revealed that the eIF3-scanning ribosome is highly vulnerable to eIF4G1-eIF1 inhibition, and eIF1 tends to dissociate upon AUG recognition. Initiation-site footprint analysis revealed a class spanning -12 to +18/19 from the AUG, representing the entire 48S and enriched with eIF2, eIF1, and eIF4G1, indicative of early initiation. Another eIF3-dependent class extends up to +26 and exhibits reduced eIF2 and eIF4G1 association, suggesting a late/alternative initiation complex. Our analysis provides an overview of scanning, initiation, and evidence for conformational rearrangements in vivo.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Bothe A, Ban N. A highly optimized human in vitro translation system. CELL REPORTS METHODS 2024; 4:100755. [PMID: 38608690 PMCID: PMC11046033 DOI: 10.1016/j.crmeth.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
In vitro translation is an important method for studying fundamental aspects of co- and post-translational gene regulation, as well as for protein expression in the laboratory and on an industrial scale. Here, by re-examining and improving a human in vitro translation system (HITS), we were able to develop a minimal system where only four components are needed to supplement human cell lysates. Functional characterization of our improved HITS revealed the synergistic effect of mRNA capping and polyadenylation. Furthermore, we found that mRNAs are translated with an efficiency equal to or higher than existing state-of-the-art mammalian in vitro translation systems. Lastly, we present an easy preparation procedure for cytoplasmic extracts from cultured HeLa cells, which can be performed in any cell culture laboratory. These methodological advances will allow HITSs to become a widespread tool in basic molecular biology research.
Collapse
Affiliation(s)
- Adrian Bothe
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Schiffers S, Oberdoerffer S. ac4C: a fragile modification with stabilizing functions in RNA metabolism. RNA (NEW YORK, N.Y.) 2024; 30:583-594. [PMID: 38531654 PMCID: PMC11019744 DOI: 10.1261/rna.079948.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
In recent years, concerted efforts to map and understand epitranscriptomic modifications in mRNA have unveiled new complexities in the regulation of gene expression. These studies cumulatively point to diverse functions in mRNA metabolism, spanning pre-mRNA processing, mRNA degradation, and translation. However, this emerging landscape is not without its intricacies and sources of discrepancies. Disparities in detection methodologies, divergent interpretations of functional outcomes, and the complex nature of biological systems across different cell types pose significant challenges. With a focus of N4-acetylcytidine (ac4C), this review endeavors to unravel conflicting narratives by examining the technological, biological, and methodological factors that have contributed to discrepancies and thwarted research progress. Our goal is to mitigate detection inconsistencies and establish a unified model to elucidate the contribution of ac4C to mRNA metabolism and cellular equilibrium.
Collapse
Affiliation(s)
- Sarah Schiffers
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Kim YA, Mousavi K, Yazdi A, Zwierzyna M, Cardinali M, Fox D, Peel T, Coller J, Aggarwal K, Maruggi G. Computational design of mRNA vaccines. Vaccine 2024; 42:1831-1840. [PMID: 37479613 DOI: 10.1016/j.vaccine.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
mRNA technology has emerged as a successful vaccine platform that offered a swift response to the COVID-19 pandemic. Accumulating evidence shows that vaccine efficacy, thermostability, and other important properties, are largely impacted by intrinsic properties of the mRNA molecule, such as RNA sequence and structure, both of which can be optimized. Designing mRNA sequence for vaccines presents a combinatorial problem due to an extremely large selection space. For instance, due to the degeneracy of the genetic code, there are over 10632 possible mRNA sequences that could encode the spike protein, the COVID-19 vaccines' target. Moreover, designing different elements of the mRNA sequence simultaneously against multiple objectives such as translational efficiency, reduced reactogenicity, and improved stability requires an efficient and sophisticated optimization strategy. Recently, there has been a growing interest in utilizing computational tools to redesign mRNA sequences to improve vaccine characteristics and expedite discovery timelines. In this review, we explore important biophysical features of mRNA to be considered for vaccine design and discuss how computational approaches can be applied to rapidly design mRNA sequences with desirable characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeff Coller
- Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
19
|
Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Fraser CS, Ramakrishnan V. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Nat Struct Mol Biol 2024; 31:455-464. [PMID: 38287194 PMCID: PMC10948362 DOI: 10.1038/s41594-023-01196-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
20
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
21
|
Sharma H, Valentine MNZ, Toki N, Sueki HN, Gustincich S, Takahashi H, Carninci P. Decryption of sequence, structure, and functional features of SINE repeat elements in SINEUP non-coding RNA-mediated post-transcriptional gene regulation. Nat Commun 2024; 15:1400. [PMID: 38383605 PMCID: PMC10881587 DOI: 10.1038/s41467-024-45517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
RNA structure folding largely influences RNA regulation by providing flexibility and functional diversity. In silico and in vitro analyses are limited in their ability to capture the intricate relationships between dynamic RNA structure and RNA functional diversity present in the cell. Here, we investigate sequence, structure and functional features of mouse and human SINE-transcribed retrotransposons embedded in SINEUPs long non-coding RNAs, which positively regulate target gene expression post-transcriptionally. In-cell secondary structure probing reveals that functional SINEs-derived RNAs contain conserved short structure motifs essential for SINEUP-induced translation enhancement. We show that SINE RNA structure dynamically changes between the nucleus and cytoplasm and is associated with compartment-specific binding to RBP and related functions. Moreover, RNA-RNA interaction analysis shows that the SINE-derived RNAs interact directly with ribosomal RNAs, suggesting a mechanism of translation regulation. We further predict the architecture of 18 SINE RNAs in three dimensions guided by experimental secondary structure data. Overall, we demonstrate that the conservation of short key features involved in interactions with RBPs and ribosomal RNA drives the convergent function of evolutionarily distant SINE-transcribed RNAs.
Collapse
Affiliation(s)
- Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Matthew N Z Valentine
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Toki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiromi Nishiyori Sueki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Human Technopole, Milan, 20157, Italy.
| |
Collapse
|
22
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
23
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Coureux PD, Mechulam Y, Schmitt E. Structural insights into the evolution of late steps of translation initiation in the three domains of life. Biochimie 2024; 217:31-41. [PMID: 36773835 DOI: 10.1016/j.biochi.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
24
|
Guca E, Alarcon R, Palo MZ, Santos L, Alonso-Gil S, Davyt M, de Lima LHF, Boissier F, Das S, Zagrovic B, Puglisi JD, Hashem Y, Ignatova Z. N 6-methyladenosine in 5' UTR does not promote translation initiation. Mol Cell 2024; 84:584-595.e6. [PMID: 38244546 PMCID: PMC10909339 DOI: 10.1016/j.molcel.2023.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.
Collapse
Affiliation(s)
- Ewelina Guca
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Rodrigo Alarcon
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo H F de Lima
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Department of Exact and Biological Sciences, Federal University of São João Del Rei, Sete Lagoas Campus, Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Fanny Boissier
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
25
|
Metkar M, Pepin CS, Moore MJ. Tailor made: the art of therapeutic mRNA design. Nat Rev Drug Discov 2024; 23:67-83. [PMID: 38030688 DOI: 10.1038/s41573-023-00827-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
mRNA medicine is a new and rapidly developing field in which the delivery of genetic information in the form of mRNA is used to direct therapeutic protein production in humans. This approach, which allows for the quick and efficient identification and optimization of drug candidates for both large populations and individual patients, has the potential to revolutionize the way we prevent and treat disease. A key feature of mRNA medicines is their high degree of designability, although the design choices involved are complex. Maximizing the production of therapeutic proteins from mRNA medicines requires a thorough understanding of how nucleotide sequence, nucleotide modification and RNA structure interplay to affect translational efficiency and mRNA stability. In this Review, we describe the principles that underlie the physical stability and biological activity of mRNA and emphasize their relevance to the myriad considerations that factor into therapeutic mRNA design.
Collapse
|
26
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
27
|
Ikeuchi K, Ivic N, Buschauer R, Cheng J, Fröhlich T, Matsuo Y, Berninghausen O, Inada T, Becker T, Beckmann R. Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2. Nat Commun 2023; 14:2730. [PMID: 37169754 PMCID: PMC10175282 DOI: 10.1038/s41467-023-38161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Nives Ivic
- Division of Physical Chemistry, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000, Zagreb, Croatia
| | - Robert Buschauer
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Jingdong Cheng
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Institutes of biomedical science, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan university, Dong'an Road 131, 200032, Shanghai, China
| | - Thomas Fröhlich
- LAFUGA, Laboratory for Functional Genome Analysis, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
28
|
Pellegrino S, Dent KC, Spikes T, Warren AJ. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. Nucleic Acids Res 2023; 51:4043-4054. [PMID: 36951107 PMCID: PMC10164566 DOI: 10.1093/nar/gkad194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialisation in development and disease. However, the inability to accurately visualise these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualise post-transcriptional modifications within the 18S rRNA and four post-translational modifications of ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilisation and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unravelling the functional role of ribosomal RNA modifications.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kyle C Dent
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Tobias Spikes
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alan J Warren
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Parker MD, Karbstein K. Quality control ensures fidelity in ribosome assembly and cellular health. J Cell Biol 2023; 222:e202209115. [PMID: 36790396 PMCID: PMC9960125 DOI: 10.1083/jcb.202209115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The coordinated integration of ribosomal RNA and protein into two functional ribosomal subunits is safeguarded by quality control checkpoints that ensure ribosomes are correctly assembled and functional before they engage in translation. Quality control is critical in maintaining the integrity of ribosomes and necessary to support healthy cell growth and prevent diseases associated with mistakes in ribosome assembly. Its importance is demonstrated by the finding that bypassing quality control leads to misassembled, malfunctioning ribosomes with altered translation fidelity, which change gene expression and disrupt protein homeostasis. In this review, we outline our understanding of quality control within ribosome synthesis and how failure to enforce quality control contributes to human disease. We first provide a definition of quality control to guide our investigation, briefly present the main assembly steps, and then examine stages of assembly that test ribosome function, establish a pass-fail system to evaluate these functions, and contribute to altered ribosome performance when bypassed, and are thus considered "quality control."
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
- Howard Hughes Medical Institute Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
30
|
Li K, Kong J, Zhang S, Zhao T, Qian W. Distance-dependent inhibition of translation initiation by downstream out-of-frame AUGs is consistent with a Brownian ratchet process of ribosome scanning. Genome Biol 2022; 23:254. [PMID: 36510274 PMCID: PMC9743702 DOI: 10.1186/s13059-022-02829-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5'-3' movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5' proximal AUG codon (i.e., the first-AUG rule). RESULTS We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5'-3' and 3'-5' oscillations with a net 5'-3' movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans. CONCLUSIONS Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinhui Kong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Navarro-Quiles C, Mateo-Bonmatí E, Candela H, Robles P, Martínez-Laborda A, Fernández Y, Šimura J, Ljung K, Rubio V, Ponce MR, Micol JL. The Arabidopsis ATP-Binding Cassette E protein ABCE2 is a conserved component of the translation machinery. FRONTIERS IN PLANT SCIENCE 2022; 13:1009895. [PMID: 36325553 PMCID: PMC9618717 DOI: 10.3389/fpls.2022.1009895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Collapse
Affiliation(s)
| | | | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | | | | | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
32
|
Bulygin KN, Malygin AA, Graifer DM, Karpova GG. The functional role of the eukaryote-specific motif YxxPKxYxK of the human ribosomal protein eS26 in translation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194842. [PMID: 35817369 DOI: 10.1016/j.bbagrm.2022.194842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The protein eS26 is a structural component of the eukaryotic small ribosomal subunit involved in the formation of the mRNA binding channel in the region of the exit site. By applying site-directed cross-linking to mammalian 80S ribosomes, it has been shown that the same mRNA nucleotide residues are implicated in the interaction with both eS26 and translation initiation factor 3 (eIF3) and that contacts of the protein with mRNAs are mediated by its eukaryote-specific motif YxxPKxYxK. To examine the role of eS26 in translation, we transfected HEK293T cells with plasmid constructs encoding the wild-type FLAG-labeled protein (wt-eS26FLAG) or its forms with either a single substitution of any conserved amino acid residue in the above motif, or a simultaneous replacement of all the five ones (5A). The western blot analysis of fractions of polysome profiles from the transfected cells revealed no effects of the single mutations in eS26, but showed that the replacement of the five conserved residues led to the increased share of the light polysome fraction compared to that detected with control, wt-eS26FLAG-producing cells. In addition, the above fraction exhibited the enhanced content of the eIF3e subunit that is known to promote selective translation. These findings, together with real-time PCR data on the relative contents of specific mRNAs in light and heavy polysomes from cells producing the mutant 5A compared to those from control cells, suggest a possible involvement of the YxxPKxYxK motif of eS26 in the fine regulation of translation to maintain the required balance of synthesized proteins.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
33
|
Brown ZP, Abaeva IS, De S, Hellen CUT, Pestova TV, Frank J. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. EMBO J 2022; 41:e110581. [PMID: 35822879 DOI: 10.15252/embj.2022110581] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Lapointe CP, Grosely R, Sokabe M, Alvarado C, Wang J, Montabana E, Villa N, Shin BS, Dever TE, Fraser CS, Fernández IS, Puglisi JD. eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Nature 2022; 607:185-190. [PMID: 35732735 PMCID: PMC9728550 DOI: 10.1038/s41586-022-04858-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Carlos Alvarado
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Montabana
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Villa
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Byung-Sik Shin
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Thomas E Dever
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Israel S Fernández
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Arango D, Sturgill D, Yang R, Kanai T, Bauer P, Roy J, Wang Z, Hosogane M, Schiffers S, Oberdoerffer S. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell 2022; 82:2797-2814.e11. [PMID: 35679869 PMCID: PMC9361928 DOI: 10.1016/j.molcel.2022.05.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
mRNA function is influenced by modifications that modulate canonical nucleobase behavior. We show that a single modification mediates distinct impacts on mRNA translation in a position-dependent manner. Although cytidine acetylation (ac4C) within protein-coding sequences stimulates translation, ac4C within 5' UTRs impacts protein synthesis at the level of initiation. 5' UTR acetylation promotes initiation at upstream sequences, competitively inhibiting annotated start codons. Acetylation further directly impedes initiation at optimal AUG contexts: ac4C within AUG-flanking Kozak sequences reduced initiation in base-resolved transcriptome-wide HeLa results and in vitro utilizing substrates with site-specific ac4C incorporation. Cryo-EM of mammalian 80S initiation complexes revealed that ac4C in the -1 position adjacent to an AUG start codon disrupts an interaction between C and hypermodified t6A at nucleotide 37 of the initiator tRNA. These findings demonstrate the impact of RNA modifications on nucleobase function at a molecular level and introduce mRNA acetylation as a factor regulating translation in a location-specific manner.
Collapse
Affiliation(s)
- Daniel Arango
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Renbin Yang
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21701, USA
| | - Tapan Kanai
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21701, USA
| | - Paulina Bauer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jyoti Roy
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ziqiu Wang
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21701, USA
| | - Masaki Hosogane
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sarah Schiffers
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Yi SH, Petrychenko V, Schliep JE, Goyal A, Linden A, Chari A, Urlaub H, Stark H, Rodnina MV, Adio S, Fischer N. Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Res 2022; 50:5282-5298. [PMID: 35489072 PMCID: PMC9122606 DOI: 10.1093/nar/gkac283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2–GTP–Met-tRNAiMet and eIF3. The ‘open’ 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The ‘closed’ form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Collapse
Affiliation(s)
- Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jan Erik Schliep
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ashwin Chari
- Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University of Göttingen, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
37
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
38
|
Young DJ, Guydosh NR. Rebirth of the translational machinery: The importance of recycling ribosomes. Bioessays 2022; 44:e2100269. [PMID: 35147231 PMCID: PMC9270684 DOI: 10.1002/bies.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Gamble N, Paul EE, Anand B, Marintchev A. Regulation of the interactions between human eIF5 and eIF1A by the CK2 kinase. Curr Res Struct Biol 2022; 4:308-319. [PMID: 36164648 PMCID: PMC9508154 DOI: 10.1016/j.crstbi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in eukaryotes relies on a complex network of interactions that are continuously reorganized throughout the process. As more information becomes available about the structure of the ribosomal preinitiation complex (PIC) at various points in translation initiation, new questions arise about which interactions occur when, their roles, and regulation. The eukaryotic translation factor (eIF) 5 is the GTPase-activating protein (GAP) for the GTPase eIF2, which brings the initiator Met-tRNAi to the PIC. eIF5 also plays a central role in PIC assembly and remodeling through interactions with other proteins, including eIFs 1, 1A, and 3c. Phosphorylation by casein kinase 2 (CK2) significantly increases the eIF5 affinity for eIF2. The interaction between eIF5 and eIF1A was reported to be mediated by the eIF5 C-terminal domain (CTD) and the eIF1A N-terminal tail. Here, we report a new contact interface, between eIF5-CTD and the oligonucleotide/oligosaccharide-binding fold (OB) domain of eIF1A, which contributes to the overall affinity between the two proteins. We also show that the interaction is modulated by dynamic intramolecular interactions within both eIF5 and eIF1A. CK2 phosphorylation of eIF5 increases its affinity for eIF1A, offering new insights into the mechanisms by which CK2 stimulates protein synthesis and cell proliferation. eIF5-CTD interacts with both the N-terminal tail and the OB domain of eIF1A. The OB domain contacts stabilize the overall interaction. The eIF1A C-terminal tail and the eIF5 DWEAR motif interfere with OB domain binding. CK2 phosphorylation of eIF5 increases its affinity for eIF1A.
Collapse
|
40
|
Schmalzing G, Markwardt F. Established Protocols for cRNA Expression and Voltage-Clamp Characterization of the P2X7 Receptor in Xenopus laevis Oocytes. Methods Mol Biol 2022; 2510:157-192. [PMID: 35776325 DOI: 10.1007/978-1-0716-2384-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P2X7 receptors (P2X7Rs) are fast ATP4--gated ion channels that, like other members of the P2X receptor family, function as homotrimers. A high-resolution cryo-EM structure of the full-length rat P2X7R is available. Using voltage-clamp experiments in Xenopus laevis oocytes, even the earliest steps of P2X7R activation can be quantitatively recorded in the millisecond range. Site-directed mutagenesis combined with voltage-clamp recordings can reveal residues and domains of the P2X7R involved in ATP4- binding, gating (i.e., opening and closing of the channel pore) and ion selectivity. We present here proven voltage-clamp protocols that take into account requirements that are important at the levels of cDNA and vector sequences, cRNA synthesis, and Xenopus laevis oocyte isolation for reliable results.
Collapse
Affiliation(s)
- Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
41
|
Ichihara K, Matsumoto A, Nishida H, Kito Y, Shimizu H, Shichino Y, Iwasaki S, Imami K, Ishihama Y, Nakayama KI. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res 2021; 49:7298-7317. [PMID: 34226921 PMCID: PMC8287933 DOI: 10.1093/nar/gkab549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Although ribosome-profiling and translation initiation sequencing (TI-seq) analyses have identified many noncanonical initiation codons, the precise detection of translation initiation sites (TISs) remains a challenge, mainly because of experimental artifacts of such analyses. Here, we describe a new method, TISCA (TIS detection by translation Complex Analysis), for the accurate identification of TISs. TISCA proved to be more reliable for TIS detection compared with existing tools, and it identified a substantial number of near-cognate codons in Kozak-like sequence contexts. Analysis of proteomics data revealed the presence of methionine at the NH2-terminus of most proteins derived from near-cognate initiation codons. Although eukaryotic initiation factor 2 (eIF2), eIF2A and eIF2D have previously been shown to contribute to translation initiation at near-cognate codons, we found that most noncanonical initiation events are most probably dependent on eIF2, consistent with the initial amino acid being methionine. Comprehensive identification of TISs by TISCA should facilitate characterization of the mechanism of noncanonical initiation.
Collapse
Affiliation(s)
- Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hiroshi Nishida
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Kito
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan
| | - Koshi Imami
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
42
|
Singh CR, Glineburg MR, Moore C, Tani N, Jaiswal R, Zou Y, Aube E, Gillaspie S, Thornton M, Cecil A, Hilgers M, Takasu A, Asano I, Asano M, Escalante CR, Nakamura A, Todd PK, Asano K. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Rep 2021; 36:109376. [PMID: 34260931 PMCID: PMC8363759 DOI: 10.1016/j.celrep.2021.109376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
eIF5-mimic protein (5MP) is a translational regulatory protein that binds the small ribosomal subunit and modulates its activity. 5MP is proposed to reprogram non-AUG translation rates for oncogenes in cancer, but its role in controlling non-AUG initiated synthesis of deleterious repeat-peptide products, such as FMRpolyG observed in fragile-X-associated tremor ataxia syndrome (FXTAS), is unknown. Here, we show that 5MP can suppress both general and repeat-associated non-AUG (RAN) translation by a common mechanism in a manner dependent on its interaction with eIF3. Essentially, 5MP displaces eIF5 through the eIF3c subunit within the preinitiation complex (PIC), thereby increasing the accuracy of initiation. In Drosophila, 5MP/Kra represses neuronal toxicity and enhances the lifespan in an FXTAS disease model. These results implicate 5MP in protecting cells from unwanted byproducts of non-AUG translation in neurodegeneration.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Chelsea Moore
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Naoki Tani
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Eric Aube
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ariana Cecil
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Madelyn Hilgers
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Azuma Takasu
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Izumi Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Masayo Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Akira Nakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Ann Arbor VA Medical Center, Ann Arbor, MI 48105, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
43
|
Danchin A. Three overlooked key functional classes for building up minimal synthetic cells. Synth Biol (Oxf) 2021; 6:ysab010. [PMID: 35174295 PMCID: PMC8842674 DOI: 10.1093/synbio/ysab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet abstract, currency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads to the second set of functions, usually ignored. Being abstract, information must nevertheless be embodied into material entities, with unavoidable idiosyncratic properties. This brings about novel unmet needs. Hence, the buildup of cells elicits specific but awkward material implementations, ‘kludges’ that become essential under particular settings, while difficult to identify. Finally, a third functional category characterizes the need for growth, with metabolic implementations allowing the cell to put together the growth of its cytoplasm, membranes, and genome, spanning different spatial dimensions. Solving this metabolic quandary, critical for engineering novel synthetic biology chassis, uncovered an unexpected role for CTP synthetase as the coordinator of nonhomothetic growth. Because a significant number of SynBio constructs aim at creating cell factories we expect that they will be attacked by viruses (it is not by chance that the function of the CRISPR system was identified in industrial settings). Substantiating the role of CTP, natural selection has dealt with this hurdle via synthesis of the antimetabolite 3′‐deoxy‐3′,4′‐didehydro‐CTP, recruited for antiviral immunity in all domains of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos Labs/Stellate Therapeutics, Institut Cochin, Paris, France
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, SAR Hong Kong, China
| |
Collapse
|
44
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021; 118:e2017715118. [PMID: 33479166 PMCID: PMC8017934 DOI: 10.1073/pnas.2017715118] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
45
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021. [PMID: 33479166 DOI: 10.1101/2020.08.20.259770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
46
|
Mõttus J, Maiste S, Eek P, Truve E, Sarmiento C. Mutational analysis of Arabidopsis thaliana ABCE2 identifies important motifs for its RNA silencing suppressor function. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:21-31. [PMID: 33040451 PMCID: PMC7839781 DOI: 10.1111/plb.13193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
ATP-binding cassette sub-family E member 1 (ABCE1) is recognized as a strongly conserved ribosome recycling factor, indispensable for translation in archaea and eukaryotes, however, its role in plants remains largely unidentified. Arabidopsis thaliana encodes two paralogous ABCE proteins (AtABCE1 and AtABCE2), sharing 81% identity. We previously reported that AtABCE2 functions as a suppressor of RNA silencing and that its gene is ubiquitously expressed. Here we describe the structural requirements of AtABCE2 for its suppressor function. Using agroinfiltration assays, we transiently overexpressed mutated versions of AtABCE2 together with GFP, to induce silencing in GFP transgenic Nicotiana benthamiana leaves. The influence of mutations was analysed at both local and systemic levels by in vivo imaging of GFP, Northern blot analysis of GFP siRNAs and observation of plants under UV light. Mutants of AtABCE2 with impaired ATP binding in either active site I or II failed to suppress GFP RNA silencing. Mutations disrupting ATP hydrolysis influenced the suppression of silencing differently at active site I or II. We also found that the N-terminal iron-sulphur cluster domain of AtABCE2 is crucial for its suppressor function. Meaningfully, the observed structural requirements of AtABCE2 for RNA silencing suppression were found to be similar to those of archaeal ABCE1 needed for ribosome recycling. AtABCE2 might therefore suppress RNA silencing via supporting the competing RNA degradation mechanisms associated with ribosome recycling.
Collapse
Affiliation(s)
- J. Mõttus
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - S. Maiste
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - P. Eek
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - E. Truve
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - C. Sarmiento
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| |
Collapse
|
47
|
Brito Querido J, Sokabe M, Kraatz S, Gordiyenko Y, Skehel JM, Fraser CS, Ramakrishnan V. Structure of a human 48 S translational initiation complex. Science 2020; 369:1220-1227. [PMID: 32883864 DOI: 10.1126/science.aba4904] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.
Collapse
Affiliation(s)
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
48
|
Structural Differences in Translation Initiation between Pathogenic Trypanosomatids and Their Mammalian Hosts. Cell Rep 2020; 33:108534. [PMID: 33357443 PMCID: PMC7773551 DOI: 10.1016/j.celrep.2020.108534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Canonical mRNA translation in eukaryotes begins with the formation of the 43S pre-initiation complex (PIC). Its assembly requires binding of initiator Met-tRNAiMet and several eukaryotic initiation factors (eIFs) to the small ribosomal subunit (40S). Compared to their mammalian hosts, trypanosomatids present significant structural differences in their 40S, suggesting substantial variability in translation initiation. Here, we determine the structure of the 43S PIC from Trypanosoma cruzi, the parasite causing Chagas disease. Our structure shows numerous specific features, such as the variant eIF3 structure and its unique interactions with the large rRNA expansion segments (ESs) 9S, 7S, and 6S, and the association of a kinetoplastid-specific DDX60-like helicase. It also reveals the 40S-binding site of the eIF5 C-terminal domain and structures of key terminal tails of several conserved eIFs underlying their activities within the PIC. Our results are corroborated by glutathione S-transferase (GST) pull-down assays in both human and T. cruzi and mass spectrometry data. Structure of the 43S pre-initiation complex from Trypanosoma cruzi is solved at 3.33 Å The kinetoplastids’ eIF3 core is a septamer that binds mainly the unique, extended ES7s A kinetoplastid-specific DDX60-like helicase binds to the 43S PIC entry pore The 40S positions of eIF5-CTD and key tails of several eIFs are determined
Collapse
|
49
|
Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, Bhat P, Ollikainen N, Quinodoz SA, Loney C, Thai J, Miller ZD, Lin AE, Schmidt MM, Stewart DG, Goldfarb D, De Lorenzo G, Rihn SJ, Voorhees RM, Botten JW, Majumdar D, Guttman M. SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell 2020; 183:1325-1339.e21. [PMID: 33080218 PMCID: PMC7543886 DOI: 10.1016/j.cell.2020.10.004] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.
Collapse
Affiliation(s)
- Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Emily A Bruce
- Departments of Medicine, Division of Immunobiology and Microbiology, and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Drew D Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Linlin M Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Jasmine Thai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zachary D Miller
- Department of Surgery and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Aaron E Lin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Madaline M Schmidt
- Departments of Medicine, Division of Immunobiology and Microbiology, and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Douglas G Stewart
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Suzannah J Rihn
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jason W Botten
- Departments of Medicine, Division of Immunobiology and Microbiology, and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Devdoot Majumdar
- Department of Surgery and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
50
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|