1
|
Voena C, Ambrogio C, Iannelli F, Chiarle R. ALK in cancer: from function to therapeutic targeting. Nat Rev Cancer 2025; 25:359-378. [PMID: 40055571 DOI: 10.1038/s41568-025-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 05/01/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that acts as an oncogenic driver in solid and haematological malignancies in both children and adults. Although ALK-expressing (ALK+) tumours show strong initial responses to the series of ALK inhibitors currently available, many patients will develop resistance. In this Review, we discuss recent advances in ALK oncogenic signalling, together with existing and promising new modalities to treat ALK-driven tumours, including currently approved ALK-directed therapies, namely tyrosine kinase inhibitors, and novel approaches such as ALK-specific immune therapies. Although ALK inhibitors have changed the management and clinical history of ALK+ tumours, they are still insufficient to cure most of the patients. Therefore, more effort is needed to further improve outcomes and prevent the tumour resistance, recurrence and metastatic spread that many patients with ALK+ tumours experience. Here, we outline how a multipronged approach directed against ALK and other essential pathways that sustain the persistence of ALK+ tumours, together with potent or specific immunotherapies, could achieve this goal. We envision that the lessons learned from treating ALK+ tumours in the clinic could ultimately accelerate the implementation of innovative combination therapies to treat tumours driven by other tyrosine kinases or oncogenes with similar properties.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wang Q, Wang J, Mathur R, Youngblood MW, Jin Q, Hou Y, Stasiak LA, Luan Y, Zhao H, Hilz S, Hong C, Chang SM, Lupo JM, Phillips JJ, Costello JF, Yue F. Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples. SCIENCE ADVANCES 2025; 11:eadn2830. [PMID: 40073147 PMCID: PMC11900876 DOI: 10.1126/sciadv.adn2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples. We identified genome subcompartmentalization and chromatin interactions specific to GBM, as well as extensive intertumoral and intratumoral heterogeneity at these levels. We identified copy number variants (CNVs) and structural variations (SVs) and demonstrated how they disrupted 3D genome structures. SVs could not only induce enhancer hijacking but also cause the loss of enhancers to the same gene, both of which contributed to gene dysregulation. Our findings provide insights into the GBM-specific 3D genome organization and the intratumoral heterogeneity of this organization and open avenues for understanding this devastating disease.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mark W. Youngblood
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hengqiang Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M. Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Chen C, Wei Z. Mechanisms and molecular characterization of relapsed/refractory neuroblastomas. Front Oncol 2025; 15:1555419. [PMID: 40115016 PMCID: PMC11922920 DOI: 10.3389/fonc.2025.1555419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Relapsed/refractory neuroblastoma is a type of malignant solid tumor with a very poor prognosis in children. Its pathogenesis is complex, involving multiple molecular pathways and genetic alterations. Recent studies have shown that MYCN amplification, ALK mutation, TERT promoter mutation, p53 pathway inactivation, and chromosomal instability are the key mechanisms and molecular characteristics of relapsed/refractory neuroblastoma. Precision treatment strategies targeting these molecular mechanisms have shown certain prospects in preclinical studies and clinical practice. This review focuses on the relevant mechanisms and molecular characteristics of relapsed/refractory neuroblastoma, explores its relationship with treatment response and clinical prognosis, and briefly introduces the current treatment strategies to provide a theoretical basis for the development of novel and personalized therapeutic regimens to improve the prognosis of children.
Collapse
Affiliation(s)
- Chong Chen
- Department of Clinical Laboratory, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Zixuan Wei
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pediatric Oncology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
4
|
Wei Z, Gong B, Li X, Chen C, Zhao Q. Event-free survival in neuroblastoma with MYCN amplification and deletion of 1p or 11q may be associated with altered immune status. BMC Cancer 2024; 24:1279. [PMID: 39407175 PMCID: PMC11481459 DOI: 10.1186/s12885-024-13044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Neuroblastoma exhibits substantial heterogeneity, which is intricately linked to various genetic alterations. We aimed to explore immune status in the peripheral blood and prognosis of patients with neuroblastoma with different genetic characteristics. METHODS We enrolled 31 patients with neuroblastoma and collected samples to detect three genetic characteristics. Peripheral blood samples were tested for immune cells and cytokines by fluorescent microspheres conjugated with antibodies and flow cytometry. Event-free survival (EFS) was analyzed using the Kaplan‒Meier method. RESULTS Twenty-two patients had genetic aberrations, including MYCN amplification in 6 patients, chromosome 1p deletion in 9 patients, and chromosome 11q deletion in 14 patients. Two genetic alterations were present in seven patients. The EFS was worse in patients with MYCN amplification or 1p deletion than in the corresponding group, whereas 11q deletion was a prognostic factor only in patients with unamplified MYCN. Changes in immune status revealed a decrease in the proportion of T cells in blood, and an increase in regulatory T cells and immunosuppression-related cytokines such as interleukin (IL)-10. The EFS of the IL-10 high-level group was lower than that of the low-level group. Patients with concomitant genetic alterations and a high level of IL-10 had worse EFS than other patients. CONCLUSIONS Patients with neuroblastoma characterized by these genetic characteristics often have suppressed T cell response and an overabundance of immunosuppressive cells and cytokines in the peripheral blood. This imbalance is significantly associated with poor EFS. Moreover, if these patients show an elevated levels of immunosuppressive cytokines such as IL-10, the prognosis will be worse.
Collapse
Affiliation(s)
- Zixuan Wei
- Department of Pediatric Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, 300060, Tianjin, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baocheng Gong
- Department of Pediatric Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, 300060, Tianjin, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xin Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Chong Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- National Human Genetic Resources Sharing Service Platform, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, 300060, Tianjin, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
5
|
Hailey DR, Kanjilal D, Koulen P. Differential Expression of Mitogen-Activated Protein Kinase Signaling Pathways in the Human Choroid-Retinal Pigment Epithelial Complex Indicates Regional Predisposition to Disease. Int J Mol Sci 2024; 25:10105. [PMID: 39337590 PMCID: PMC11432750 DOI: 10.3390/ijms251810105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The retina is composed of neuronal layers that include several types of interneurons and photoreceptor cells, and separate underlying retinal pigment epithelium (RPE), Bruch's membrane, and choroid. Different regions of the human retina include the fovea, macula, and periphery, which have unique physiological functions and anatomical features. These regions are also unique in their protein expression, and corresponding cellular and molecular responses to physiological and pathophysiological stimuli. Skeie and Mahajan analyzed regional protein expression in the human choroid-RPE complex. Mitogen-Activated Protein Kinase (MAPK) signaling pathways have been implicated in responses to stimuli such as oxidative stress and inflammation, which are critical factors in retina diseases including age-related macular degeneration. We, therefore, analyzed the Skeie and Mahajan, 2014, dataset for regional differences in the expression of MAPK-related proteins and discussed the potential implications in retinal diseases presenting with regional signs and symptoms. Regional protein expression data from the Skeie and Mahajan, 2014, study were analyzed for members of signaling networks involving MAPK and MAPK-related proteins, categorized by specific MAPK cascades, such as p38, ERK1/2, and JNK1/2, both upstream or downstream of the respective MAPK and MAPK-related proteins. We were able to identify 207 MAPK and MAPK-related proteins, 187 of which belonging to specific MAPK cascades. A total of 31 of these had been identified in the retina with two proteins, DLG2 and FLG downstream, and the other 29 upstream, of MAPK proteins. Our findings provide evidence for potential molecular substrates of retina region-specific disease manifestation and potential new targets for therapeutics development.
Collapse
Affiliation(s)
| | | | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri–Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Qiao S, Jia Y, Xie L, Jing W, Xia Y, Song Y, Zhang J, Cao T, Song H, Meng L, Shi L, Zhang X. KLF7 promotes neuroblastoma differentiation through the GTPase signaling pathway by upregulating neuroblast differentiation-associated protein AHNAKs and glycerophosphodiesterase GDPD5. FEBS J 2024; 291:3870-3888. [PMID: 38924469 DOI: 10.1111/febs.17208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The arrest of neural crest-derived sympathoadrenal neuroblast differentiation contributes to neuroblastoma formation, and overriding this blocked differentiation is a clear strategy for treating high-risk neuroblastoma. A better understanding of neuroblast or neuroblastoma differentiation is essential for developing new therapeutic approaches. It has been proposed that Krueppel-like factor 7 (KLF7) is a neuroblastoma super-enhancer-associated transcription factor gene. Moreover, KLF7 was found to be intensely active in postmitotic neuroblasts of the developing nervous system during embryogenesis. However, the role of KLF7 in the differentiation of neuroblast or neuroblastoma is unknown. Here, we find a strong association between high KLF7 expression and favorable clinical outcomes in neuroblastoma. KLF7 induces differentiation of neuroblastoma cells independently of the retinoic acid (RA) pathway and acts cooperatively with RA to induce neuroblastoma differentiation. KLF7 alters the GTPase activity and multiple differentiation-related genes by binding directly to the promoters of neuroblast differentiation-associated protein (AHNAK and AHNAK2) and glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) and regulating their expression. Furthermore, we also observe that silencing KLF7 in neuroblastoma cells promotes the adrenergic-to-mesenchymal transition accompanied by changes in enhancer-mediated gene expression. Our results reveal that KLF7 is an inducer of neuroblast or neuroblastoma differentiation with prognostic significance and potential therapeutic value.
Collapse
Affiliation(s)
- Shupei Qiao
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Ying Jia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Li Xie
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Wenwen Jing
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Yang Xia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Yue Song
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Jiahui Zhang
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Tianhua Cao
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Huilin Song
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Lingdi Meng
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Lei Shi
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, China
| | - Xue Zhang
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, China
| |
Collapse
|
7
|
Lai WY, Chuang TP, Borenäs M, Lind DE, Hallberg B, Palmer RH. Anaplastic Lymphoma Kinase signaling stabilizes SLC3A2 expression via MARCH11 to promote neuroblastoma cell growth. Cell Death Differ 2024; 31:910-923. [PMID: 38858548 PMCID: PMC11239919 DOI: 10.1038/s41418-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Solute Carrier Family 3, Member 2 (SLC3A2 or 4F2hc) is a multifunctional glycoprotein that mediates integrin-dependent signaling, acts as a trafficking chaperone for amino acid transporters, and is involved in polyamine transportation. We identified SLC3A2 as a potential Anaplastic Lymphoma Kinase (ALK) interacting partner in a BioID-proximity labeling screen in neuroblastoma (NB) cells. In this work we show that endogenous SLC3A2 and ALK interact in NB cells and that this SLC3A2:ALK interaction was abrogated upon treatment with the ALK inhibitor lorlatinib. We show here that loss of ALK activity leads to decreased SLC3A2 expression and reduced SLC3A2 protein stability in a panel of NB cell lines, while stimulation of ALK with ALKAL2 ligand resulted in increased SLC3A2 protein levels. We further identified MARCH11, an E3 ligase, as a regulator of SLC3A2 ubiquitination downstream of ALK. Further, knockdown of SLC3A2 resulted in inhibition of NB cell growth. To investigate the therapeutic potential of SLC3A2 targeting, we performed monotreatment of NB cells with AMXT-1501 (a polyamine transport inhibitor), which showed only moderate effects in NB cells. In contrast, a combination lorlatinib/AMXT-1501 treatment resulted in synergistic inhibition of cell growth in ALK-driven NB cell lines. Taken together, our results identify a novel role for the ALK receptor tyrosine kinase (RTK), working in concert with the MARCH11 E3 ligase, in regulating SLC3A2 protein stability and function in NB cells. The synergistic effect of combined ALK and polyamine transport inhibition shows that ALK/MARCH11/SLC3A2 regulation of amino acid transport is important for oncogenic growth and survival in NB cells.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
8
|
Borenäs M, Umapathy G, Lind DE, Lai WY, Guan J, Johansson J, Jennische E, Schmidt A, Kurhe Y, Gabre JL, Aniszewska A, Strömberg A, Bemark M, Hall MN, den Eynden JV, Hallberg B, Palmer RH. ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proc Natl Acad Sci U S A 2024; 121:e2315242121. [PMID: 38154064 PMCID: PMC10769851 DOI: 10.1073/pnas.2315242121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
High-risk neuroblastoma (NB) is a significant clinical challenge. MYCN and Anaplastic Lymphoma Kinase (ALK), which are often involved in high-risk NB, lead to increased replication stress in cancer cells, suggesting therapeutic strategies. We previously identified an ATR (ataxia telangiectasia and Rad3-related)/ALK inhibitor (ATRi/ALKi) combination as such a strategy in two independent genetically modified mouse NB models. Here, we identify an underlying molecular mechanism, in which ALK signaling leads to phosphorylation of ATR and CHK1, supporting an effective DNA damage response. The importance of ALK inhibition is supported by mouse data, in which ATRi monotreatment resulted in a robust initial response, but subsequent relapse, in contrast to a 14-d ALKi/ATRi combination treatment that resulted in a robust and sustained response. Finally, we show that the remarkable response to the 14-d combined ATR/ALK inhibition protocol reflects a robust differentiation response, reprogramming tumor cells to a neuronal/Schwann cell lineage identity. Our results identify an ability of ATR inhibition to promote NB differentiation and underscore the importance of further exploring combined ALK/ATR inhibition in NB, particularly in high-risk patient groups with oncogene-induced replication stress.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Dan E. Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Joel Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, Basel University, Basel4056, Switzerland
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Agata Aniszewska
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg SE-405 30, Sweden
| | | | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| |
Collapse
|
9
|
Djos A, Thombare K, Vaid R, Gaarder J, Umapathy G, Reinsbach SE, Georgantzi K, Stenman J, Carén H, Ek T, Mondal T, Kogner P, Martinsson T, Fransson S. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15:5732. [PMID: 38136279 PMCID: PMC10741428 DOI: 10.3390/cancers15245732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.
Collapse
Affiliation(s)
- Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne E. Reinsbach
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Jakob Stenman
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Torben Ek
- Children’s Cancer Center, Sahlgrenska University Hospital, 41650 Gothenburg, Sweden;
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
10
|
Katic L, Priscan A. Multifaceted Roles of ALK Family Receptors and Augmentor Ligands in Health and Disease: A Comprehensive Review. Biomolecules 2023; 13:1490. [PMID: 37892172 PMCID: PMC10605310 DOI: 10.3390/biom13101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This review commemorates the 10-year anniversary of the discovery of physiological ligands Augα (Augmentor α; ALKAL2; Fam150b) and Augβ (Augmentor β; ALKAL1; Fam150a) for anaplastic lymphoma kinase (ALK) and leukocyte tyrosine kinase (LTK), previously considered orphan receptors. This manuscript provides an in-depth review of the biophysical and cellular properties of ALK family receptors and their roles in cancer, metabolism, pain, ophthalmology, pigmentation, central nervous system (CNS) function, and reproduction. ALK and LTK receptors are implicated in the development of numerous cancers, and targeted inhibition of their signaling pathways can offer therapeutic benefits. Additionally, ALK family receptors are involved in regulating body weight and metabolism, modulating pain signaling, and contributing to eye development and pigmentation. In the CNS, these receptors play a role in synapse modulation, neurogenesis, and various psychiatric pathologies. Lastly, ALK expression is linked to reproductive functions, with potential implications for patients undergoing ALK inhibitor therapy. Further research is needed to better understand the complex interactions of ALK family receptors and Aug ligands and to repurpose targeted therapy for a wide range of human diseases.
Collapse
Affiliation(s)
- Luka Katic
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside/West, 1000 Tenth Avenue, New York, NY 10019, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anamarija Priscan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
11
|
Guan J, Borenäs M, Xiong J, Lai WY, Palmer RH, Hallberg B. IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers (Basel) 2023; 15:4252. [PMID: 37686528 PMCID: PMC10563084 DOI: 10.3390/cancers15174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) by activating point mutation or amplification drives 5-12% of neuroblastoma (NB). Previous work has identified the involvement of the insulin-like growth factor 1 receptor (IGF1R) receptor tyrosine kinase (RTK) in a wide range of cancers. We show here that many NB cell lines exhibit IGF1R activity, and that IGF1R inhibition led to decreased cell proliferation to varying degrees in ALK-driven NB cells. Furthermore, combined inhibition of ALK and IGF1R resulted in synergistic anti-proliferation effects, in particular in ALK-mutated NB cells. Mechanistically, both ALK and IGF1R contribute significantly to the activation of downstream PI3K-AKT and RAS-MAPK signaling pathways in ALK-mutated NB cells. However, these two RTKs employ a differential repertoire of adaptor proteins to mediate downstream signaling effects. We show here that ALK signaling led to activation of the RAS-MAPK pathway by preferentially phosphorylating the adaptor proteins GAB1, GAB2, and FRS2, while IGF1R signaling preferentially phosphorylated IRS2, promoting activation of the PI3K-AKT pathway. Together, these findings reveal a potentially important role of the IGF1R RTK in ALK-mutated NB and that co-targeting of ALK and IGF1R may be advantageous in clinical treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Junfeng Xiong
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| |
Collapse
|
12
|
Bioinformatics analysis of miRNAs in the neuroblastoma 11q-deleted region reveals a role of miR-548l in both 11q-deleted and MYCN amplified tumour cells. Sci Rep 2022; 12:19729. [PMID: 36396668 PMCID: PMC9671919 DOI: 10.1038/s41598-022-24140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma is a childhood tumour that is responsible for approximately 15% of all childhood cancer deaths. Neuroblastoma tumours with amplification of the oncogene MYCN are aggressive, however, another aggressive subgroup without MYCN amplification also exists; rather, they have a deleted region at chromosome arm 11q. Twenty-six miRNAs are located within the breakpoint region of chromosome 11q and have been checked for a possible involvement in development of neuroblastoma due to the genomic alteration. Target genes of these miRNAs are involved in pathways associated with cancer, including proliferation, apoptosis and DNA repair. We could show that miR-548l found within the 11q region is downregulated in neuroblastoma cell lines with 11q deletion or MYCN amplification. In addition, we showed that the restoration of miR-548l level in a neuroblastoma cell line led to a decreased proliferation of these cells as well as a decrease in the percentage of cells in the S phase. We also found that miR-548l overexpression suppressed cell viability and promoted apoptosis, while miR-548l knockdown promoted cell viability and inhibited apoptosis in neuroblastoma cells. Our results indicate that 11q-deleted neuroblastoma and MYCN amplified neuroblastoma coalesce by downregulating miR-548l.
Collapse
|
13
|
Keller KM, Eleveld TF, Schild L, van den Handel K, van den Boogaard M, Amo-Addae V, Eising S, Ober K, Koopmans B, Looijenga L, Tytgat GA, Ylstra B, Molenaar JJ, Dolman MEM, van Hooff SR. Chromosome 11q loss and MYCN amplification demonstrate synthetic lethality with checkpoint kinase 1 inhibition in neuroblastoma. Front Oncol 2022; 12:929123. [PMID: 36237330 PMCID: PMC9552537 DOI: 10.3389/fonc.2022.929123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Kaylee M. Keller
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Thomas F. Eleveld
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Linda Schild
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kim van den Handel
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Vicky Amo-Addae
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Selma Eising
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kimberley Ober
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bianca Koopmans
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Leendert Looijenga
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Godelieve A.M. Tytgat
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Jan J. Molenaar
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pharmaceutical Sciences, University Utrecht, Utrecht, Netherlands
- *Correspondence: Jan J. Molenaar,
| | - M. Emmy M. Dolman
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Sander R. van Hooff
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
14
|
Li C, Lu C, Gong L, Liu J, Kan C, Zheng H, Wang S. SHP2/SPI1axis promotes glycolysis and the inflammatory response of macrophages in Helicobacter pylori-induced pediatric gastritis. Helicobacter 2022; 27:e12895. [PMID: 35437862 DOI: 10.1111/hel.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Macrophages, as innate immune cells, were reported to participate in the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. However, the role and mechanism of macrophage dysfunction in H. pylori-associated pediatric gastritis remain unclear. MATERIALS AND METHODS An RNA-sequencing assay was used to examine the differential gene expression in normal gastric antrum, non-H. pylori-infected tissue, and H. pylori-infected pediatric gastritis tissue. qPCR assays were applied to verify the expression of target genes. HE staining was performed to identify the occurrence of inflammation in the normal gastric antrum, non-H. pylori-infected tissue, and H. pylori-infected pediatric gastritis tissue. Western blotting was used to measure the expression of SHP2 in pediatric gastritis tissue. The metabolic profile of macrophages was determined via Seahorse metabolic analysis. Flow cytometry analysis was used to examine the level of reactive oxygen species (ROS). RESULTS We found that H. pylori -infected gastritis tissue exhibited many differentially expressed genes (DEGs) compared to gastritis tissue without H. pylori infection. Moreover, H. pylori -infected gastritis tissue showed many DEGs annotated with an overactive immune response. We identified that tyrosine-protein phosphatase nonreceptor type 11 (PTPN11), which encodes SHP2, was significantly increased in macrophages of H. pylori -infected gastritis tissue. Furthermore, we revealed that SHP2 could activate the glycolytic function of macrophages to promote H. pylori -induced inflammation. The transcription factor SPI1 , as the downstream molecule of SHP2, could be responsible for the regulation of metabolism-associated gene expression and inflammation. CONCLUSION Our study illustrated the molecular landscape of H. pylori-infected gastritis tissue in children and suggested that the SHP2/SPI1axis could be a novel therapeutic target in H. pylori-induced pediatric gastritis.
Collapse
Affiliation(s)
- Chuanying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Gastroenterology, Children's Hospital of Anhui Medical University, Hefei, China
| | - Changyun Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liangju Gong
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Yoo T, Joshi S, Prajapati S, Cho YS, Kim J, Park PH, Bae YC, Kim E, Kim SY. A Deficiency of the Psychiatric Risk Gene DLG2/PSD-93 Causes Excitatory Synaptic Deficits in the Dorsolateral Striatum. Front Mol Neurosci 2022; 15:938590. [PMID: 35966008 PMCID: PMC9370999 DOI: 10.3389/fnmol.2022.938590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear. Here, we found that the corticostriatal synaptic transmission was significantly impaired in Dlg2–/– mice, which did not seem attributed to defects in presynaptic releases of cortical neurons, but to the reduced number of functional synapses in the striatum, as manifested in the suppressed frequency of miniature excitatory postsynaptic currents in spiny projection neurons (SPNs). Using transmission electron microscopy, we found that both the density of postsynaptic densities and the fraction of perforated synapses were significantly decreased in the Dlg2–/– dorsolateral striatum. The density of dendritic spines was significantly reduced in striatal SPNs, but notably, not in the cortical pyramidal neurons of Dlg2–/– mice. Furthermore, a DLG2/PSD-93 deficiency resulted in the compensatory increases of DLG4/PSD-95 and decreases in the expression of TrkA in the striatum, but not particularly in the cortex. These results suggest that striatal dysfunction might play a role in the pathology of psychiatric disorders that are associated with a disruption of the Dlg2 gene.
Collapse
Affiliation(s)
- Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Shambhu Joshi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | | | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Soo Young Kim,
| |
Collapse
|
16
|
Sainero-Alcolado L, Mushtaq M, Liaño-Pons J, Rodriguez-Garcia A, Yuan Y, Liu T, Ruiz-Pérez MV, Schlisio S, Bedoya-Reina O, Arsenian-Henriksson M. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:226. [PMID: 35850708 PMCID: PMC9295514 DOI: 10.1186/s13046-022-02399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neuroblastoma (NB), a childhood tumor derived from the sympathetic nervous system, presents with heterogeneous clinical behavior. While some tumors regress spontaneously without medical intervention, others are resistant to therapy, associated with an aggressive phenotype. MYCN-amplification, frequently occurring in high-risk NB, is correlated with an undifferentiated phenotype and poor prognosis. Differentiation induction has been proposed as a therapeutic approach for high-risk NB. We have previously shown that MYCN maintains an undifferentiated state via regulation of the miR-17 ~ 92 microRNA cluster, repressing the nuclear hormone receptors (NHRs) estrogen receptor alpha (ERα) and the glucocorticoid receptor (GR). METHODS Cell viability was determined by WST-1. Expression of differentiation markers was analyzed by Western blot, RT-qPCR, and immunofluorescence analysis. Metabolic phenotypes were studied using Agilent Extracellular Flux Analyzer, and accumulation of lipid droplets by Nile Red staining. Expression of angiogenesis, proliferation, and neuronal differentiation markers, and tumor sections were assessed by immunohistochemistry. Gene expression from NB patient as well as adrenal gland cohorts were analyzed using GraphPad Prism software (v.8) and GSEA (v4.0.3), while pseudo-time progression on post-natal adrenal gland cells from single-nuclei transcriptome data was computed using scVelo. RESULTS Here, we show that simultaneous activation of GR and ERα potentiated induction of neuronal differentiation, reduced NB cell viability in vitro, and decreased tumor burden in vivo. This was accompanied by a metabolic reprogramming manifested by changes in the glycolytic and mitochondrial functions and in lipid droplet accumulation. Activation of the retinoic acid receptor alpha (RARα) with all-trans retinoic acid (ATRA) further enhanced the differentiated phenotype as well as the metabolic switch. Single-cell nuclei transcriptome analysis of human adrenal glands indicated a sequential expression of ERα, GR, and RARα during development from progenitor to differentiated chromaffin cells. Further, in silico analysis revealed that patients with higher combined expression of GR, ERα, and RARα mRNA levels had elevated expression of neuronal differentiation markers and a favorable outcome. CONCLUSION Together, our findings suggest that combination therapy involving activation of several NHRs could be a promising pharmacological approach for differentiation treatment of NB patients.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Muhammad Mushtaq
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.440526.10000 0004 0609 3164Present address: Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300 Pakistan
| | - Judit Liaño-Pons
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Ye Yuan
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tong Liu
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Present address: Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institutet, SE-171 64 Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Susanne Schlisio
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar Bedoya-Reina
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
17
|
Keane S, Herring M, Rolny P, Wettergren Y, Ejeskär K. Inflammation suppresses DLG2 expression decreasing inflammasome formation. J Cancer Res Clin Oncol 2022; 148:2295-2311. [PMID: 35499706 PMCID: PMC9349146 DOI: 10.1007/s00432-022-04029-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Purpose Loss of expression of DLG2 has been identified in a number of cancers to contribute to the disease by resulting in increased tumor cell proliferation and poor survival. In light of the previous evidence that DLG2 alters the cell cycle and affects proliferation, combined with indications that DLG2 is involved in NLRP3 inflammasome axis we speculated that DLG2 has an immune function. So far, there is no data that clearly elucidates this role, and this study was designed to investigate DLG2 in inflammatory colon disease and in colon cancer as well as its impact on inflammasome induction. Methods The DLG2 expression levels were established in publicly available inflammation, colon cancer and mouse model datasets. The overexpression and silencing of DLG2 in colon cancer cells were used to determine the effect of DLG2 expression on the activation of the inflammasome and subsequent cytokine release. Results The expression of DLG2 is repressed in inflammatory colon diseases IBD and Ulcerative colitis as well as colorectal cancer tissue compared to healthy individuals. We subsequently show that induction with inflammatory agents in cell and animal models results in a biphasic alteration of DLG2 with an initial increase followed by an ensuing decrease. DLG2 overexpression leads to a significant increase in expression of IL1B, IκBζ and BAX, components that result in inflammasome formation. DLG2 silencing in THP1 cells resulted in increased release of IL-6 into the microenvironment which once used to treat bystander COLO205 cells resulted in an increase in STAT3 phosphorylation and an increase proliferating cells and more cells in the G2/M phase. Restoration of DLG2 to the colon resulted in reduced AKT and S6 signaling. Conclusion DLG2 expression is altered in response to inflammation in the gut as well as colon cancer, resulting in altered ability to form inflammasomes. Trial registration NCT03072641. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04029-7.
Collapse
Affiliation(s)
- Simon Keane
- School of Health Science, DHEAR, Translational Medicine, University of Skövde, Skövde, Sweden.
| | - Matthew Herring
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Peter Rolny
- Division of Gastroenterology/Hepatology, Department of Medicine, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, The Sahlgrenska Academy at University of Gothenburg, SU/Östra, Gothenburg, Sweden
| | - Katarina Ejeskär
- School of Health Science, DHEAR, Translational Medicine, University of Skövde, Skövde, Sweden
| |
Collapse
|
18
|
Nuclear translocation of p85β promotes tumorigenesis of PIK3CA helical domain mutant cancer. Nat Commun 2022; 13:1974. [PMID: 35418124 PMCID: PMC9007954 DOI: 10.1038/s41467-022-29585-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
PI3Ks consist of p110 catalytic subunits and p85 regulatory subunits. PIK3CA, encoding p110α, is frequently mutated in human cancers. Most PIK3CA mutations are clustered in the helical domain or the kinase domain. Here, we report that p85β disassociates from p110α helical domain mutant protein and translocates into the nucleus through a nuclear localization sequence (NLS). Nuclear p85β recruits deubiquitinase USP7 to stabilize EZH1 and EZH2 and enhances H3K27 trimethylation. Knockout of p85β or p85β NLS mutant reduces the growth of tumors harboring a PIK3CA helical domain mutation. Our studies illuminate a novel mechanism by which PIK3CA helical domain mutations exert their oncogenic function. Finally, a combination of Alpelisib, a p110α-specific inhibitor, and an EZH inhibitor, Tazemetostat, induces regression of xenograft tumors harboring a PIK3CA helical domain mutation, but not tumors with either a WT PIK3CA or a PIK3CA kinase domain mutation, suggesting that the drug combination could be an effective therapeutic approach for PIK3CA helical domain mutant tumors. The mechanisms behind the oncogenic role of the PIK3CA helical domain mutant is poorly understood. Here, the authors show that its oncogenic function depends on the release of p85β from mutated p110α, its translocation to the nucleus and the consequent increased activity of EZH proteins.
Collapse
|
19
|
Keane S, de Weerd HA, Ejeskär K. DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma. DNA Repair (Amst) 2022; 112:103302. [DOI: 10.1016/j.dnarep.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
|
20
|
Chen Z, Wen H, Zhang J, Zou X, Wu S. Silencing of AKIP1 Suppresses the Proliferation, Migration, and Epithelial-Mesenchymal Transition Process of Glioma Cells by Upregulating DLG2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5648011. [PMID: 35111846 PMCID: PMC8803424 DOI: 10.1155/2022/5648011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Gliomas, the most prevalent brain tumors, account for nearly one-third of the all brain and central nervous system (CNS) tumors diagnosed in the USA. The purpose of this study was to discuss the important role of A kinase-interacting protein 1 (AKIP1) in glioma and reveal the potential mechanism. After prediction by CCLE, the expression of AKIP1 was determined by qRT-PCR and western blot. The impacts of AKIP1 knockdown on the proliferation, migration, and invasion were then measured by MTT, colony formation assay, wound healing, and transwell assays. Western blot was used to assess the protein levels of migration and epithelial-mesenchymal transition- (EMT-) related factors. Subsequently, the expression of Disks Large Homolog 2 (DLG2) was predicted by bioinformatics analyses, and the interaction between AKIP1 and DLG2 was confirmed by IP assay, qRT-PCR, and western blot. Finally, DLG2 was further downregulated in glioma cells to detect the association between AKIP1 and DLG2 in the cellular functions of glioma. It was demonstrated that AKIP1 exhibited a high level in glioma cells, and interference of AKIP1 led to reductions in the proliferation, migration, invasion, and EMT of glioma cells. DLG2, which was lowly expressed in glioma cells, demonstrated a negative link to AKIP2. Inhibition of both AKIP2 and DLG2 counteracted the inhibited cellular behaviors on account of AKIP1 interference. To be concluded, this study presented evidence that AKIP1 silencing suppressed the progression of glioma via targeting DLG2, which could provide novel insights to impede the development of glioma.
Collapse
Affiliation(s)
- Zhaohui Chen
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410000 Hunan Province, China
| | - Haitao Wen
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410000 Hunan Province, China
| | - Jinwei Zhang
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410000 Hunan Province, China
| | - Xin Zou
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410000 Hunan Province, China
| | - Shuihua Wu
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410000 Hunan Province, China
| |
Collapse
|
21
|
Chromosome Imbalances in Neuroblastoma-Recent Molecular Insight into Chromosome 1p-deletion, 2p-gain, and 11q-deletion Identifies New Friends and Foes for the Future. Cancers (Basel) 2021; 13:cancers13235897. [PMID: 34885007 PMCID: PMC8657310 DOI: 10.3390/cancers13235897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Neuroblastoma is a pediatric cancer that arises in the sympathetic nervous system. High-risk neuroblastoma is clinically challenging and identification of novel therapies, particularly those that offer a reduction in morbidity for these patients, is a high priority. Combining genetic analyses with investigation of molecular mechanisms, while considering recent advances in our understanding of key developmental events, provides avenues for future treatment. Here we review and highlight several recently published articles that address novel molecular mechanisms arising from chromosome 1p, 2p, and 11q aberrations, which likely contribute to high-risk neuroblastoma, and discusses their potential impact on treatment options. Abstract Neuroblastoma is the most common extracranial solid pediatric tumor, with around 15% childhood cancer-related mortality. High-risk neuroblastomas exhibit a range of genetic, morphological, and clinical heterogeneities, which add complexity to diagnosis and treatment with existing modalities. Identification of novel therapies is a high priority in high-risk neuroblastoma, and the combination of genetic analysis with increased mechanistic understanding—including identification of key signaling and developmental events—provides optimism for the future. This focused review highlights several recent findings concerning chromosomes 1p, 2p, and 11q, which link genetic aberrations with aberrant molecular signaling output. These novel molecular insights contribute important knowledge towards more effective treatment strategies for neuroblastoma.
Collapse
|
22
|
Szydzik J, Lind DE, Arefin B, Kurhe Y, Umapathy G, Siaw JT, Claeys A, Gabre JL, Van den Eynden J, Hallberg B, Palmer RH. ATR inhibition enables complete tumour regression in ALK-driven NB mouse models. Nat Commun 2021; 12:6813. [PMID: 34819497 PMCID: PMC8613282 DOI: 10.1038/s41467-021-27057-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
High-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention. Effective therapeutic options are still needed in neuroblastoma treatment. Here, the authors, through a comprehensive proteomics analysis, identify ATR as a potential therapeutic target of neuroblastoma and demonstrate the efficacy of the ATR inhibitor BAY1895344 in combination with the ALK tyrosine kinase inhibitor lorlatinib.
Collapse
Affiliation(s)
- Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jonatan L Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
23
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
24
|
Romiani A, Spetz J, Shubbar E, Lind DE, Hallberg B, Palmer RH, Forssell-Aronsson E. Neuroblastoma xenograft models demonstrate the therapeutic potential of 177Lu-octreotate. BMC Cancer 2021; 21:950. [PMID: 34433438 PMCID: PMC8386073 DOI: 10.1186/s12885-021-08551-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is one of the most frequently diagnosed tumors in infants. NB is a neuroendocrine tumor type with various characteristics and features, and with diverse outcome. The most malignant NBs have a 5-year survival rate of only 40-50%, indicating the need for novel and improved treatment options. 177Lu-octreotate is routinely administered for treatment of neuroendocrine tumors overexpressing somatostatin receptors (SSTR). The aim of this study was to examine the biodistribution of 177Lu-octreotate in mice bearing aggressive human NB cell lines, in order to evaluate the potential usefulness of 177Lu-octreotate for treatment of NB. METHODS BALB/c nude mice bearing CLB-BAR, CLB-GE or IMR-32 tumor xenografts (n = 5-7/group) were i.v. injected with 0.15 MBq, 1.5 MBq or 15 MBq 177Lu-octreotate and sacrificed 1 h, 24 h, 48 h and 168 h after administration. The radioactivity concentration was determined for collected tissue samples, tumor-to-normal-tissue activity concentration ratios (T/N) and mean absorbed dose for each tissue were calculated. Immunohistochemical (IHC) staining for SSTR1-5, and Ki67 were carried out for tumor xenografts from the three cell lines. RESULTS High 177Lu concentration levels and T/N values were observed in all NB tumors, with the highest for CLB-GE tumor xenografts (72%IA/g 24 h p.i.; 1.5 MBq 177Lu-octreotate). The mean absorbed dose to the tumor was 6.8 Gy, 54 Gy and 29 Gy for CLB-BAR, CLB-GE and IMR-32, respectively, p.i. of 15 MBq 177Lu-octreotate. Receptor saturation was clearly observed in CLB-BAR, resulting in higher concentration levels in the tumor when lower activity levels where administered. IHC staining demonstrated highest expression of SSTR2 in CLB-GE, followed by CLB-BAR and IMR-32. CONCLUSION T/N values for all three human NB tumor xenograft types investigated were high relative to previously investigated neuroendocrine tumor types. The results indicate a clear potential of 177Lu-octreotate as a therapeutic alternative for metastatic NB.
Collapse
Affiliation(s)
- Arman Romiani
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Physics, Sahlgrenska University Hospital, SE-41345, Gothenburg, Sweden.
| | - Johan Spetz
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Siaw JT, Gabre JL, Uçkun E, Vigny M, Zhang W, Van den Eynden J, Hallberg B, Palmer RH, Guan J. Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13081909. [PMID: 33921066 PMCID: PMC8071449 DOI: 10.3390/cancers13081909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.
Collapse
Affiliation(s)
- Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France;
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Jimmy Van den Eynden
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
- Correspondence:
| |
Collapse
|
26
|
Keane S, Martinsson T, Kogner P, Ejeskär K. The loss of DLG2 isoform 7/8, but not isoform 2, is critical in advanced staged neuroblastoma. Cancer Cell Int 2021; 21:170. [PMID: 33726762 PMCID: PMC7962242 DOI: 10.1186/s12935-021-01851-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma is a childhood neural crest tumor showing large clinical and genetic heterogeneity, one form displaying 11q-deletion is very aggressive. It has been shown that 11q-deletion results in decreased expression of DLG2, a gene residing in the deleted region. DLG2 has a number of different isoforms with the main difference is the presence or absence of a L27 domain. The L27 domain containing DLG proteins can form complexes with CASK/MPP and LIN7 protein family members, which will control cell polarity and signaling. METHODS We evaluated the DLG gene family and the LIN7 gene family for their expression in differently INSS staged neuroblastoma from publically available data and primary tumors, we included two distinct DLG1 and DLG2 N-terminal transcript isoforms encoding L27 domains for their expression. Functionality of DLG2 isoforms and of LIN7A were evaluated in the 11q-deleted neuroblastoma cell line SKNAS. RESULTS In neuroblastoma only two DLG2 isoforms were expressed: isoform 2 and isoform 7/8. Using the array data we could determine that higher expression of DLG members that contain L27 domains correlated to better survival and prognosis. Whilst DLG1 showed a decrease in both isoforms with increased INSS stage, only the full length L27 containing DLG2 transcripts DLG2-isoform 7/8 showed a decrease in expression in high stage neuroblastoma. We could show that the protein encoded by DLG2-isoform 7 could bind to LIN7A, and increased DLG2-isoform 7 gene expression increased the expression of LIN7A, this reduced neuroblastoma cell proliferation and viability, with increased BAX/BCL2 ratio indicating increased apoptosis. CONCLUSION We have provided evidence that gene expression of the L27 domain containing DLG2-isoform 7/8 but not L27 domain lacking DLG2-isoform 2 is disrupted in neuroblastoma, in particular in the aggressive subsets of tumors. The presence of the complete L27 domain allows for the binding to LIN7A, which will control cell polarity and signaling, thus affecting cancer cell viability.
Collapse
Affiliation(s)
- Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden.
| |
Collapse
|
27
|
Fernández-Blanco B, Berbegall AP, Martin-Vañó S, Castel V, Navarro S, Noguera R. Imbalance between genomic gain and loss identifies high-risk neuroblastoma patients with worse outcomes. Neoplasia 2020; 23:12-20. [PMID: 33190090 PMCID: PMC7674617 DOI: 10.1016/j.neo.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Survival in high-risk neuroblastoma (HR-NB) patients remains poor despite multimodal treatment. We aimed to identify HR-NB patients with worse outcomes by analyzing the genomic instability derived from segmental chromosomal aberrations. We calculated 3 genomic instability indexes for primary tumor SNP array profiles from 127 HR-NB patients: (1) Copy number aberration burden (%gainslength+%losseslength), (2) copy number load (CNL) (%gainslength-%losseslength) and (3) net genomic load (NGL) (%gainsamount-%lossesamount). Tumors were classified according to positive or negative CNL and NGL genomic subtypes. The impact of the genomic instability indexes on overall survival (OS) was assessed with Cox regression. We identified 38% of HR-NB patients with poor 5-year OS. A negative CNL genomic background was related to poor prognosis in patients ≥18 months showing tumors with homogeneous MYCN amplification (9.5% survival probability, P < 0.05) and patients with non-MYCN amplified NB (18.8% survival probability related to >2.4% CNL, P < 0.01). A positive CNL genomic background was associated with worse outcome in patients with heterogeneous MYCN amplification (22.5% survival probability, P < 0.05). We conclude that characterizing a tumor genomic background according to predominance of genome gained or lost contributes toward improved outcome prediction and brings greater insight into the tumor biology of HR-NB patients.
Collapse
Affiliation(s)
| | - Ana Pilar Berbegall
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Susana Martin-Vañó
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Victoria Castel
- Clinical and Translational Oncology Research Group, Investigation Institute La Fe, Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain.
| |
Collapse
|