1
|
Zhang J, Aishan N, Zheng Z, Ju S, He Q, Meng Q, Lin X, Lang J, Zhou J, Chen Y, Xie B, Cai Y, Ji F, Wang L. TET-mediated 5hmC in breast cancer: mechanism and clinical potential. Epigenetics 2025; 20:2473250. [PMID: 40014756 PMCID: PMC11869774 DOI: 10.1080/15592294.2025.2473250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Breast cancer is the most common cancer among women, with differences in clinical features due to its distinct molecular subtypes. Current studies have demonstrated that epigenetic modifications play a crucial role in regulating the progression of breast cancer. Among these mechanisms, DNA demethylation and its reverse process have been studied extensively for their roles in activating or silencing cancer related gene expression. Specifically, Ten-Eleven Translocation (TET) enzymes are involved in the conversion process from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which results in a significant difference in the global level of 5hmC in breast cancer compared with normal tissues. In this review, we summarize the functions of TET proteins and the regulated 5hmC levels in the pathogenesis of breast cancer. Discussions on the clinical values of 5hmC in early diagnosis and the prediction of prognosis are also mentioned.
Collapse
Affiliation(s)
- Jiahang Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Zhongqiu Zheng
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Qina He
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Qingna Meng
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Jiaheng Lang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Bojian Xie
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Yangjun Cai
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Feiyang Ji
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Räisänen M, Kaasinen E, Jäntti M, Taira A, Siili E, Bützow R, Heikinheimo O, Pasanen A, Karhu A, Berta DG, Välimäki N, Aaltonen LA. Chromatin state origins of uterine leiomyoma. Nat Commun 2025; 16:4307. [PMID: 40341524 PMCID: PMC12062214 DOI: 10.1038/s41467-025-59646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Aberrations in the regulatory genome play a pivotal role in population-level disease predisposition. Annotation of the regulatory regions using appropriate primary tissues - instead of cell lines affected by selection and other confounding factors - could shed new light into mechanisms underlying common conditions. We test this approach in uterine leiomyomas, highly prevalent benign neoplasms of the myometrium, by creating 15-state chromatin annotations for myometrium and uterine leiomyomas. Integration with RNA-seq, ATAC-seq, HiChIP and methylation data enables us to compare the epigenomes of myometrium and ULs with distinct driver mutations, highlighting the role of bivalent regions in the neoplastic process. Subsequently, a genome wide association study meta-analysis is performed, using three different cohorts. Disease association loci are enriched at active chromatin, especially at enhancers, and harbor tumor- and driver mutation-specific chromatin states. At SATB2 locus we show the effect of the risk genotype already in the normal tissue. Integration of genome-wide association studies and deep regulatory genomics data from the correct tissue type represents a powerful approach in understanding population-level disease predisposition.
Collapse
Affiliation(s)
- Maritta Räisänen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Maija Jäntti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Emma Siili
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Davide G Berta
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Hawking ZL, Allan JM. Landscape of TET2 Mutations: From Hematological Malignancies to Solid Tumors. Cancer Med 2025; 14:e70792. [PMID: 40116537 PMCID: PMC11926918 DOI: 10.1002/cam4.70792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND The ten-eleven translocation (TET) enzyme family is a key regulator of DNA methylation, responsible for the conversion of 5-methylcytosine to 5-hydroxymethylcytosine to promote locus-specific demethylation. Thus, it is not surprising that loss or attenuation of TET enzymes is implicated in genomic hypermethylation and transcriptional reprogramming that drives cancer development. Somatic mutations in TET2 are observed in the bone marrow of 5%-10% of healthy adults over 65 years of age, imparting a hematopoietic stem cell advantage and subsequent clonal hematopoiesis of indeterminate potential (CHIP), a condition which is associated with increased risk of myeloid malignancy. Somatic TET2 mutations are frequently reported in myeloid disorders, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Evidence suggests that TET2 mutations also affect prognosis in myeloid leukemia and other hematopoietic malignancies. However, there is a paucity of collated data on the frequency of TET2 mutations in solid human cancers. OBJECTIVES We review the published literature on TET2 mutation in human solid cancers and explore their frequency and impact on patient outcomes. RESULTS & CONCLUSIONS Somatic TET2 mutations are reported in numerous solid human cancers, including those arising in the skin, lung and prostate. Many of the somatic TET2 mutations reported in solid cancers are recurrent, suggesting functionality. There is also evidence to suggest that somatic TET2 mutations affect prognosis in solid human cancers.
Collapse
Affiliation(s)
- Zoë L. Hawking
- Newcastle University Centre for Cancer, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James M. Allan
- Newcastle University Centre for Cancer, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Godschalk R, Faulk C, LaRocca J, van Benthem J, Marchetti F. Epigenotoxicity: Decoding the epigenetic imprints of genotoxic agents and their implications for regulatory genetic toxicology. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39262275 DOI: 10.1002/em.22626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Regulatory genetic toxicology focuses on DNA damage and subsequent gene mutations. However, genotoxic agents can also affect epigenetic marks, and incorporation of epigenetic data into the regulatory framework may thus enhance the accuracy of risk assessment. Additionally, epigenetic alterations may identify non-genotoxic carcinogens that are not captured with the current battery of tests. Epigenetic alterations could also explain long-term consequences and potential transgenerational effects in the absence of DNA mutations. Therefore, at the 2022 International Workshops on Genotoxicity Testing (IWGT) in Ottawa (Ontario, Canada), an expert workgroup explored whether including epigenetic endpoints would improve regulatory genetic toxicology. Here we summarize the presentations and the discussions on technical advancements in assessing epigenetics, how the assessment of epigenetics can enhance strategies for detecting genotoxic and non-genotoxic carcinogens and the correlation between epigenetic alterations with other relevant apical endpoints.
Collapse
Affiliation(s)
- Roger Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Wu SL, Yang L, Huang C, Li Q, Ma C, Yuan F, Zhou Y, Wang X, Tong WM, Niu Y, Jin F. Genome-wide characterization of dynamic DNA 5-hydroxymethylcytosine and TET2-related DNA demethylation during breast tumorigenesis. Clin Epigenetics 2024; 16:125. [PMID: 39261937 PMCID: PMC11391647 DOI: 10.1186/s13148-024-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fang Yuan
- National Institute of Measurement and Testing Technology, Chengdu, 610021, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
6
|
Da W, Song Z, Liu X, Wang Y, Wang S, Ma J. The role of TET2 in solid tumors and its therapeutic potential: a comprehensive review. Clin Transl Oncol 2024; 26:2156-2165. [PMID: 38598002 DOI: 10.1007/s12094-024-03478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Indeed, tumors are a significant health concern worldwide, and understanding the underlying mechanisms of tumor development is crucial for effective prevention and treatment. Epigenetics, which refers to changes in gene expression that are not caused by alterations in the DNA sequence itself, plays a critical role in the entire process of tumor development. It goes without saying that the effect of methylation on tumors is a significant aspect of epigenetics. Among the methylation modifications, DNA methylation is an important part, which plays a regulatory role in tumor-related genes. Ten-eleven translocation 2 (TET2) is a highly influential protein involved in the modification of DNA methylation. Its primary role is associated with the suppression of tumor development, making it a significant player in cancer research. However, TET2 is frequently mentioned in hematological diseases, its role in solid tumors has received little attention. Studying the changes of TET2 in solid tumors and the regulatory mechanism will facilitate its investigation as a clinical target for targeted therapy and may also provide directions for clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Wenxin Da
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Ziyu Song
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Xiaodong Liu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Yahui Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, Brożyna AA, Foksiński M. Selective Estrogen Receptor Modulators' (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024; 25:8561. [PMID: 39201247 PMCID: PMC11354732 DOI: 10.3390/ijms25168561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Justyna Szpotan
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| |
Collapse
|
8
|
Theofilatos D, Ho T, Waitt G, Äijö T, Schiapparelli LM, Soderblom EJ, Tsagaratou A. Deciphering the TET3 interactome in primary thymic developing T cells. iScience 2024; 27:109782. [PMID: 38711449 PMCID: PMC11070343 DOI: 10.1016/j.isci.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation. However, TET-deficient mice exhibit complex phenotypes, suggesting that TET3 exerts multifaceted roles, potentially by interacting with other proteins. We performed liquid chromatography with tandem mass spectrometry in primary developing T cells to identify TET3 interacting partners in endogenous, in vivo conditions. We discover TET3 interacting partners. Our data establish that TET3 participates in a plethora of fundamental biological processes, such as transcriptional regulation, RNA polymerase elongation, splicing, DNA repair, and DNA replication. This resource brings in the spotlight emerging functions of TET3 and sets the stage for systematic studies to dissect the precise mechanistic contributions of TET3 in shaping T cell biology.
Collapse
Affiliation(s)
- Dimitris Theofilatos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tricia Ho
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Achinger-Kawecka J, Stirzaker C, Portman N, Campbell E, Chia KM, Du Q, Laven-Law G, Nair SS, Yong A, Wilkinson A, Clifton S, Milioli HH, Alexandrou S, Caldon CE, Song J, Khoury A, Meyer B, Chen W, Pidsley R, Qu W, Gee JMW, Schmitt A, Wong ES, Hickey TE, Lim E, Clark SJ. The potential of epigenetic therapy to target the 3D epigenome in endocrine-resistant breast cancer. Nat Struct Mol Biol 2024; 31:498-512. [PMID: 38182927 PMCID: PMC10948365 DOI: 10.1038/s41594-023-01181-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/15/2023] [Indexed: 01/07/2024]
Abstract
Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.
Collapse
Affiliation(s)
- Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elyssa Campbell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Kee-Ming Chia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Qian Du
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Shalima S Nair
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Aliza Yong
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ashleigh Wilkinson
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Samuel Clifton
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Heloisa H Milioli
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah Alexandrou
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jenny Song
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amanda Khoury
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Braydon Meyer
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Wenhan Chen
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ruth Pidsley
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wenjia Qu
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Julia M W Gee
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | | | - Emily S Wong
- Victor Chang Cardiac Institute, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Lu X, Mao J, Qian C, Lei H, Mu F, Sun H, Yan S, Fang Z, Lu J, Xu Q, Dong J, Su D, Wang J, Jin N, Chen S, Wang X. High estrogen during ovarian stimulation induced loss of maternal imprinted methylation that is essential for placental development via overexpression of TET2 in mouse oocytes. Cell Commun Signal 2024; 22:135. [PMID: 38374066 PMCID: PMC10875811 DOI: 10.1186/s12964-024-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Ovarian stimulation (OS) during assisted reproductive technology (ART) appears to be an independent factor influencing the risk of low birth weight (LBW). Previous studies identified the association between LBW and placenta deterioration, potentially resulting from disturbed genomic DNA methylation in oocytes caused by OS. However, the mechanisms by which OS leads to aberrant DNA methylation patterns in oocytes remains unclear. METHODS Mouse oocytes and mouse parthenogenetic embryonic stem cells (pESCs) were used to investigate the roles of OS in oocyte DNA methylation. Global 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels were evaluated using immunofluorescence or colorimetry. Genome-wide DNA methylation was quantified using an Agilent SureSelectXT mouse Methyl-Seq. The DNA methylation status of mesoderm-specific transcript homologue (Mest) promoter region was analyzed using bisulfite sequencing polymerase chain reaction (BSP). The regulatory network between estrogen receptor alpha (ERα, ESR1) and DNA methylation status of Mest promoter region was further detected following the knockdown of ERα or ten-eleven translocation 2 (Tet2). RESULTS OS resulted in a significant decrease in global 5mC levels and an increase in global 5hmC levels in oocytes. Further investigation revealed that supraphysiological β-estradiol (E2) during OS induced a notable decrease in DNA 5mC and an increase in 5hmC in both oocytes and pESCs of mice, whereas inhibition of estrogen signaling abolished such induction. Moreover, Tet2 may be a direct transcriptional target gene of ERα, and through the ERα-TET2 axis, supraphysiological E2 resulted in the reduced global levels of DNA 5mC. Furthermore, we identified that MEST, a maternal imprinted gene essential for placental development, lost its imprinted methylation in parthenogenetic placentas originating from OS, and ERα and TET2 combined together to form a protein complex that may promote Mest demethylation. CONCLUSIONS In this study, a possible mechanism of loss of DNA methylation in oocyte caused by OS was revealed, which may help increase safety and reduce epigenetic abnormalities in ART procedures.
Collapse
Affiliation(s)
- Xueyan Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Jiaqin Mao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Chenxi Qian
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huijun Sun
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Song Yan
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Zheng Fang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Qian Xu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Danjie Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Jingjing Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Ni Jin
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China.
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Baqiao District, Xi'an, 710000, Shaanxi Province, China.
| |
Collapse
|
11
|
Lanciano S, Philippe C, Sarkar A, Pratella D, Domrane C, Doucet AJ, van Essen D, Saccani S, Ferry L, Defossez PA, Cristofari G. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. CELL GENOMICS 2024; 4:100498. [PMID: 38309261 PMCID: PMC10879037 DOI: 10.1016/j.xgen.2024.100498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.
Collapse
Affiliation(s)
- Sophie Lanciano
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Claude Philippe
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Arpita Sarkar
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - David Pratella
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Cécilia Domrane
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Aurélien J Doucet
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Dominic van Essen
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Simona Saccani
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Laure Ferry
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | | | - Gael Cristofari
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France.
| |
Collapse
|
12
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Torres-Rojas FI, Antonio-Véjar V, Ávila-López PA, Baños-Hernández CJ, Núñez-Martínez HN, Dircio-Maldonado R, Martínez-Carrillo DN, Ortiz-Ortiz J, Jiménez-Wences H. TET Enzymes and 5hmC Levels in Carcinogenesis and Progression of Breast Cancer: Potential Therapeutic Targets. Int J Mol Sci 2023; 25:272. [PMID: 38203443 PMCID: PMC10779134 DOI: 10.3390/ijms25010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.
Collapse
Affiliation(s)
- Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Francisco Israel Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C. P. 44340, Jalisco, Mexico;
| | - Hober Nelson Núñez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C. P. 04510, Mexico;
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| |
Collapse
|
13
|
Ochoa S, Hernández-Lemus E. Molecular mechanisms of multi-omic regulation in breast cancer. Front Oncol 2023; 13:1148861. [PMID: 37564937 PMCID: PMC10411627 DOI: 10.3389/fonc.2023.1148861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Breast cancer is a complex disease that is influenced by the concurrent influence of multiple genetic and environmental factors. Recent advances in genomics and other high throughput biomolecular techniques (-omics) have provided numerous insights into the molecular mechanisms underlying breast cancer development and progression. A number of these mechanisms involve multiple layers of regulation. In this review, we summarize the current knowledge on the role of multiple omics in the regulation of breast cancer, including the effects of DNA methylation, non-coding RNA, and other epigenomic changes. We comment on how integrating such diverse mechanisms is envisioned as key to a more comprehensive understanding of breast carcinogenesis and cancer biology with relevance to prognostics, diagnostics and therapeutics. We also discuss the potential clinical implications of these findings and highlight areas for future research. Overall, our understanding of the molecular mechanisms of multi-omic regulation in breast cancer is rapidly increasing and has the potential to inform the development of novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Cortes LR, Forger NG. DNA methylation and demethylation shape sexual differentiation of neurochemical phenotype. Horm Behav 2023; 151:105349. [PMID: 37001316 PMCID: PMC10133097 DOI: 10.1016/j.yhbeh.2023.105349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
Some of the best-studied neural sex differences depend on differential cell death in males and females, but other sex differences persist even if cell death is prevented. These include sex differences in neurochemical phenotype (i.e., stable patterns of gene expression). Work in our laboratory over the last several years has tested the hypothesis that sex differences in DNA methylation early in life underlie sexual differentiation of neuronal phenotype. We have shown that 1) expression of enzymes that place or remove DNA methylation marks is greatest during the first week of life in the mouse brain and overlaps with the perinatal critical period of sexual differentiation; 2) a transient inhibition of DNA methylation during neonatal life abolishes several sex differences in cell phenotype in the mouse hypothalamus; 3) both DNA methylation and de-methylation contribute to the development of neural sex differences; and 4) the effects of DNA methylation and de-methylation are brain region- and cell type-specific.
Collapse
Affiliation(s)
- L R Cortes
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - N G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
16
|
Zheng C, Wei Y, Zhang P, Xu L, Zhang Z, Lin K, Hou J, Lv X, Ding Y, Chiu Y, Jain A, Islam N, Malovannaya A, Wu Y, Ding F, Xu H, Sun M, Chen X, Chen Y. CRISPR/Cas9 screen uncovers functional translation of cryptic lncRNA-encoded open reading frames in human cancer. J Clin Invest 2023; 133:e159940. [PMID: 36856111 PMCID: PMC9974104 DOI: 10.1172/jci159940] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
Emerging evidence suggests that cryptic translation within long noncoding RNAs (lncRNAs) may produce novel proteins with important developmental/physiological functions. However, the role of this cryptic translation in complex diseases (e.g., cancer) remains elusive. Here, we applied an integrative strategy combining ribosome profiling and CRISPR/Cas9 screening with large-scale analysis of molecular/clinical data for breast cancer (BC) and identified estrogen receptor α-positive (ER+) BC dependency on the cryptic ORFs encoded by lncRNA genes that were upregulated in luminal tumors. We confirmed the in vivo tumor-promoting function of an unannotated protein, GATA3-interacting cryptic protein (GT3-INCP) encoded by LINC00992, the expression of which was associated with poor prognosis in luminal tumors. GTE-INCP was upregulated by estrogen/ER and regulated estrogen-dependent cell growth. Mechanistically, GT3-INCP interacted with GATA3, a master transcription factor key to mammary gland development/BC cell proliferation, and coregulated a gene expression program that involved many BC susceptibility/risk genes and impacted estrogen response/cell proliferation. GT3-INCP/GATA3 bound to common cis regulatory elements and upregulated the expression of the tumor-promoting and estrogen-regulated BC susceptibility/risk genes MYB and PDZK1. Our study indicates that cryptic lncRNA-encoded proteins can be an important integrated component of the master transcriptional regulatory network driving aberrant transcription in cancer, and suggests that the "hidden" lncRNA-encoded proteome might be a new space for therapeutic target discovery.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
| | - Kangyu Lin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Anna Malovannaya
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core and
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center
- Genetics and Epigenetics Program, and
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
17
|
ESR1 dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer’s disease process. Aging (Albany NY) 2022; 14:8595-8614. [DOI: 10.18632/aging.204359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
18
|
Kumar P, Khadirnaikar S, Bhandari N, Chatterjee A, Shukla S. An epithelial-mesenchymal plasticity signature identifies two novel LncRNAs with the opposite regulation. Front Cell Dev Biol 2022; 10:885785. [PMID: 36120580 PMCID: PMC9474898 DOI: 10.3389/fcell.2022.885785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is crucial for cancer progression and chemoresistance. EMT is a dynamic process with multiple phases that change cell migration and invasion activity. We used pan-cancer expression data to find 14-LncRNAs that had a high correlation with the EMT markers VIM, CDH1, FN1, SNAI1, and SNAI2. The expression of 14 EMT-associated LncRNA, which also showed high cancer specificity, was used to calculate the pan-cancer EMT score. The EMT score was then applied to the 32 cancer types to classify them as epithelial, epithelial-mesenchymal, mesenchymal-epithelial, or mesenchymal tumors. We discovered that the EMT score is a poor prognostic predictor and that as tumor mesenchymal nature increased, patient survival decreased. We also showed that the cell of origin did not influence the EMT nature of tumors. Pathway analysis employing protein expression data revealed that the PI3K pathway is the most crucial in determining the EMTness of tumors. Further, we divided CCLE-cell lines into EMT classes and discovered that mesenchymal cells, which exhibited higher PI3K pathway activation, were more sensitive to PI3K inhibitors than epithelial cells. We identified Linc01615 as a mesenchymal LncRNA whose expression significantly correlated with survival in several cancer types. We showed that Linc01615 is regulated by the TGFβ-STAT3 pathway in a feedback loop. Knockdown of Linc01615 inhibited cell proliferation and migration by regulating the PI3K pathway and mesenchymal markers. We also identified RP4-568C11.4 as an epithelial cancer marker. We showed that knocking down RP4-568C11.4 decreased cell growth but not migration. In addition, we discovered that ESR1 regulates RP4-5681C11.4 in breast cancer. Taken together, we have developed a pan-cancer EMT signature. Also, we found two new LncRNAs that have different effects on cancer development and EMT.
Collapse
Affiliation(s)
- Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Seema Khadirnaikar
- Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Nikita Bhandari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Annesha Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
- *Correspondence: Sudhanshu Shukla,
| |
Collapse
|
19
|
Äijö T, Theofilatos D, Cheng M, Smith MD, Xiong Y, Baldwin AS, Tsagaratou A. TET proteins regulate T cell and iNKT cell lineage specification in a TET2 catalytic dependent manner. Front Immunol 2022; 13:940995. [PMID: 35990681 PMCID: PMC9389146 DOI: 10.3389/fimmu.2022.940995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
TET proteins mediate DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other oxidative derivatives. We have previously demonstrated a dynamic enrichment of 5hmC during T and invariant natural killer T cell lineage specification. Here, we investigate shared signatures in gene expression of Tet2/3 DKO CD4 single positive (SP) and iNKT cells in the thymus. We discover that TET proteins exert a fundamental role in regulating the expression of the lineage specifying factor Th-POK, which is encoded by Zbtb7b. We demonstrate that TET proteins mediate DNA demethylation - surrounding a proximal enhancer, critical for the intensity of Th-POK expression. In addition, TET proteins drive the DNA demethylation of site A at the Zbtb7b locus to facilitate GATA3 binding. GATA3 induces Th-POK expression in CD4 SP cells. Finally, by introducing a novel mouse model that lacks TET3 and expresses full length, catalytically inactive TET2, we establish a causal link between TET2 catalytic activity and lineage specification of both conventional and unconventional T cells.
Collapse
Affiliation(s)
- Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitris Theofilatos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew D. Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
20
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
21
|
Epigenetic Factors as Etiological Agents, Diagnostic Markers, and Therapeutic Targets for Luminal Breast Cancer. Biomedicines 2022; 10:biomedicines10040748. [PMID: 35453496 PMCID: PMC9031900 DOI: 10.3390/biomedicines10040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Luminal breast cancer, an etiologically heterogeneous disease, is characterized by high steroid hormone receptor activity and aberrant gene expression profiles. Endocrine therapy and chemotherapy are promising therapeutic approaches to mitigate breast cancer proliferation and recurrence. However, the treatment of therapy-resistant breast cancer is a major challenge. Recent studies on breast cancer etiology have revealed the critical roles of epigenetic factors in luminal breast cancer tumorigenesis and drug resistance. Tumorigenic epigenetic factor-induced aberrant chromatin dynamics dysregulate the onset of gene expression and consequently promote tumorigenesis and metastasis. Epigenetic dysregulation, a type of somatic mutation, is a high-risk factor for breast cancer progression and therapy resistance. Therefore, epigenetic modulators alone or in combination with other therapies are potential therapeutic agents for breast cancer. Several clinical trials have analyzed the therapeutic efficacy of potential epi-drugs for breast cancer and reported beneficial clinical outcomes, including inhibition of tumor cell adhesion and invasiveness and mitigation of endocrine therapy resistance. This review focuses on recent findings on the mechanisms of epigenetic factors in the progression of luminal breast cancer. Additionally, recent findings on the potential of epigenetic factors as diagnostic biomarkers and therapeutic targets for breast cancer are discussed.
Collapse
|
22
|
Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers (Basel) 2022; 14:474. [PMID: 35158742 PMCID: PMC8833457 DOI: 10.3390/cancers14030474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Susan Clark
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
23
|
Zhu X, Xiong L, Lyu R, Shen Y, Liu L, Li S, Argueta C, Tan L. Regulation of TET2 gene expression and 5mC oxidation in breast cancer cells by estrogen signaling. Biochem Biophys Res Commun 2021; 589:240-246. [PMID: 34929447 DOI: 10.1016/j.bbrc.2021.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Estrogen signaling plays important roles in diverse physiological and pathophysiological processes. However, the relationship between estrogen signaling and epigenetic regulation is not fully understood. Here, we explored the effect of estrogen signaling on the expression of Ten-Eleven Translocation (TET) family genes and DNA hydroxylmethylation in estrogen receptor alpha positive (ERα+) breast cancer cells. By analyzing the RNA-seq data, we identified TET2 as an estradiol (E2)-responsive gene in ERα+ MCF7 cells. RT-qPCR and Western blot analyses confirmed that both the mRNA and protein levels of TET2 gene were upregulated in MCF7 cells by E2 treatment. ChIP-seq and qPCR analyses showed that the enrichment of ERα and H3K27ac on the upstream regulatory regions of TET2 gene was increased in MCF7 cells upon E2 treatment. Moreover, E2 treatment also led to a significant increase in the global 5-hydroxymethylcytosine (5hmC) level, while knockout of TET2 abolished such E2-induced 5hmC increase. Conversely, treatment with ICI 182780, a potent and selective estrogen receptor degrader (SERD), inhibited TET2 gene expression and down-regulated the 5hmC level in MCF7 cells. Taken together, our study identified an ERα/TET2/5hmC epigenetic pathway, which may participate in the estrogen-associated physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Xuguo Zhu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lijun Xiong
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruitu Lyu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yinghui Shen
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lu Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuangqi Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Christian Argueta
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Xu B, Wang H, Tan L. Dysregulated TET Family Genes and Aberrant 5mC Oxidation in Breast Cancer: Causes and Consequences. Cancers (Basel) 2021; 13:cancers13236039. [PMID: 34885145 PMCID: PMC8657367 DOI: 10.3390/cancers13236039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Both genetic and epigenetic mechanisms contribute to the pathogenesis of breast cancer. Since Tahiliani et al. identified TET1 as the first methyl-cytosine dioxygenase in 2009, accumulating evidence has shown that aberrant 5mC oxidation and dysregulated TET family genes are associated with diseases, including breast cancer. In this review we provide an overview on the diagnosis and prognosis values of aberrant 5mC oxidation in breast cancer and emphasize the causes and consequences of such epigenetic alterations. Abstract DNA methylation (5-methylcytosine, 5mC) was once viewed as a stable epigenetic modification until Rao and colleagues identified Ten-eleven translocation 1 (TET1) as the first 5mC dioxygenase in 2009. TET family genes (including TET1, TET2, and TET3) encode proteins that can catalyze 5mC oxidation and consequently modulate DNA methylation, not only regulating embryonic development and cellular differentiation, but also playing critical roles in various physiological and pathophysiological processes. Soon after the discovery of TET family 5mC dioxygenases, aberrant 5mC oxidation and dysregulation of TET family genes have been reported in breast cancer as well as other malignancies. The impacts of aberrant 5mC oxidation and dysregulated TET family genes on the different aspects (so-called cancer hallmarks) of breast cancer have also been extensively investigated in the past decade. In this review, we summarize current understanding of the causes and consequences of aberrant 5mC oxidation in the pathogenesis of breast cancer. The challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Bo Xu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (H.W.); (L.T.); Tel.: +86-21-54237876 (L.T.)
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
- Correspondence: (H.W.); (L.T.); Tel.: +86-21-54237876 (L.T.)
| |
Collapse
|
25
|
Cortes LR, Cisternas CD, Cabahug INKV, Mason D, Ramlall EK, Castillo-Ruiz A, Forger NG. DNA Methylation and Demethylation Underlie the Sex Difference in Estrogen Receptor Alpha in the Arcuate Nucleus. Neuroendocrinology 2021; 112:636-648. [PMID: 34547753 PMCID: PMC8934748 DOI: 10.1159/000519671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurons expressing estrogen receptor (ER) ɑ in the arcuate (ARC) and ventromedial (VMH) nuclei of the hypothalamus sex-specifically control energy homeostasis, sexual behavior, and bone density. Females have more ERɑ neurons in the VMH and ARC than males, and the sex difference in the VMH is eliminated by neonatal treatment with testosterone or a DNA methylation inhibitor. OBJECTIVE Here, we tested the roles of testosterone and DNA methylation/demethylation in development of ERɑ in the ARC. METHODS ERɑ was examined at birth and weaning in mice that received vehicle or testosterone subcutaneously, and vehicle or DNA methyltransferase inhibitor intracerebroventricularly, as neonates. To examine effects of DNA demethylation on the ERɑ cell number in the ARC, mice were treated neonatally with small interfering RNAs against ten-eleven translocase enzymes. The methylation status of the ERɑ gene (Esr1) was determined in the ARC and VMH using pyrosequencing of bisulfite-converted DNA. RESULTS A sex difference in ERɑ in the ARC, favoring females, developed between birth and weaning and was due to programming effects of testosterone. Neonatal inhibition of DNA methylation decreased ERɑ in the ARC of females, and an inhibition of demethylation increased ERɑ in the ARC of males. The promoter region of Esr1 exhibited a small sex difference in percent of total methylation in the ARC (females > males) that was opposite to that in the VMH (males > females). CONCLUSION DNA methylation and demethylation regulate ERɑ cell number in the ARC, and methylation correlates with activation of Esr1 in this region.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferrreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | | | - Damian Mason
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Emma K Ramlall
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Onodera A, González-Avalos E, Lio CWJ, Georges RO, Bellacosa A, Nakayama T, Rao A. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biol 2021; 22:186. [PMID: 34158086 PMCID: PMC8218415 DOI: 10.1186/s13059-021-02384-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since these oxidized methylcytosines (oxi-mCs) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through "passive," replication-dependent dilution when cells divide. A distinct, replication-independent ("active") mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. RESULTS Here by analyzing inducible gene-disrupted mice, we show that DNA demethylation during primary T cell differentiation occurs mainly through passive replication-dependent dilution of all three oxi-mCs, with only a negligible contribution from TDG. In addition, by pyridine borane sequencing (PB-seq), a simple recently developed method that directly maps 5fC/5caC at single-base resolution, we detect the accumulation of 5fC/5caC in TDG-deleted T cells. We also quantify the occurrence of concordant demethylation within and near enhancer regions in the Il4 locus. In an independent system that does not involve cell division, macrophages treated with liposaccharide accumulate 5hmC at enhancers and show altered gene expression without DNA demethylation; loss of TET enzymes disrupts gene expression, but loss of TDG has no effect. We also observe that mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. CONCLUSIONS We have quantified the relative contributions of TET and TDG to cell differentiation and DNA demethylation at representative loci in proliferating T cells. We find that TET enzymes regulate T cell differentiation and DNA demethylation primarily through passive dilution of oxi-mCs. In contrast, while we observe a low level of active, replication-independent DNA demethylation mediated by TDG, this process does not appear to be essential for immune cell activation or differentiation.
Collapse
Affiliation(s)
- Atsushi Onodera
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Institute for Global Prominent Research, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chan-Wang Jerry Lio
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Present address: Department of Microbial Infection and Immunity, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Romain O Georges
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Alfonso Bellacosa
- Cancer Signaling and Epigenetics Program & Cancer Epigenetics Institute, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|