1
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2025; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Sun J, Rojo-Cortes F, Ulian-Benitez S, Forero MG, Li G, Singh DND, Wang X, Cachero S, Moreira M, Kavanagh D, Jefferis GSXE, Croset V, Hidalgo A. A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. eLife 2024; 13:RP102222. [PMID: 39704728 DOI: 10.7554/elife.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
Collapse
Affiliation(s)
- Jun Sun
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Francisca Rojo-Cortes
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Suzana Ulian-Benitez
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Manuel G Forero
- Semillero Lún, Grupo D+Tec, Universidad de Ibagué, Ibagué, Colombia
| | - Guiyi Li
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Deepanshu N D Singh
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Marta Moreira
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean Kavanagh
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Vincent Croset
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Alicia Hidalgo
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Rosa ME, Oliveira RS, de Faria Barbosa R, Hyslop S, Dal Belo CA. Recent advances on the influence of fipronil on insect behavior. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101251. [PMID: 39147324 DOI: 10.1016/j.cois.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Fipronil, a pesticide widely used to control agricultural and household insect pests, blocks insect GABAA and glutamate (GluCl) ionotropic receptors, resulting in uncontrolled hyperexcitation and paralysis that eventually leads to death. The use of fipronil is controversial because unintentional exposure to this compound may contribute to the ongoing global decline of insect pollinator populations. Although the sublethal effects of fipronil have been linked to aberrant behavior and impaired olfactory learning in insects, the precise mechanisms involved in these responses remain unclear. In this article, we highlight recent studies that have investigated the interaction among different pathways involved in the ability of fipronil to modulate insect behavior, with particular emphasis on the role of GABAergic neurotransmission in fine-tuning the integration of sensorial responses and insect behavior. Recent findings suggest that fipronil can also cause functional alterations that affect synaptic organization and the availability of metal ions in the brain.
Collapse
Affiliation(s)
- Maria E Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Centro Interdisciplinar de Pesquisas em Biotecnologia (CIPBiotec), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, Rua Aluízio Barros Macedo, S/N, BR 290, Km 423, 97307-020, São Gabriel, RS, Brazil
| | - Raquel S Oliveira
- Departamento de Medicina Translacional (Área de Farmacologia), Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Renata de Faria Barbosa
- Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua General Newton Estilac Leal, 932, Pestana, 06190-170, Osasco, SP, Brazil
| | - Stephen Hyslop
- Departamento de Medicina Translacional (Área de Farmacologia), Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Cháriston A Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Centro Interdisciplinar de Pesquisas em Biotecnologia (CIPBiotec), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, Rua Aluízio Barros Macedo, S/N, BR 290, Km 423, 97307-020, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBtox), Universidade Federal de Santa Maria (UFSM), Centro de Ciências Naturais e Exatas, Prédio 18, Cidade Universitária, Bairro Camobi, 97105-900, Santa Maria, RS, Brazil; Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua General Newton Estilac Leal, 932, Pestana, 06190-170, Osasco, SP, Brazil.
| |
Collapse
|
4
|
Gil-Martí B, Isidro-Mézcua J, Poza-Rodriguez A, Asti Tello GS, Treves G, Turiégano E, Beckwith EJ, Martin FA. Socialization causes long-lasting behavioral changes. Sci Rep 2024; 14:22302. [PMID: 39333212 PMCID: PMC11436997 DOI: 10.1038/s41598-024-73218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
In modern human societies, social isolation acts as a negative factor for health and life quality. On the other hand, social interaction also has profound effects on animal and human, impacting aggressiveness, feeding and sleep, among many other behaviors. Here, we observe that in the fly Drosophila melanogaster these behavioral changes long-last even after social interaction has ceased, suggesting that the socialization experience triggers behavioral plasticity. These modified behaviors maintain similar levels for 24 h and persist up to 72 h, although showing a progressive decay. We also find that impairing long-term memory mechanisms either genetically or by anesthesia abolishes the expected behavioral changes in response to social interaction. Furthermore, we show that socialization increases CREB-dependent neuronal activity and synaptic plasticity in the mushroom body, the main insect memory center analogous to mammalian hippocampus. We propose that social interaction triggers socialization awareness, understood as long-lasting changes in behavior caused by experience with mechanistic similarities to long-term memory formation.
Collapse
Affiliation(s)
- Beatriz Gil-Martí
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Julia Isidro-Mézcua
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
| | - Adriana Poza-Rodriguez
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
| | - Gerson S Asti Tello
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina
| | - Gaia Treves
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
| | - Enrique Turiégano
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Esteban J Beckwith
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina.
| | - Francisco A Martin
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
5
|
Zhao Q. Thermodynamic model for memory. Biosystems 2024; 242:105247. [PMID: 38866100 DOI: 10.1016/j.biosystems.2024.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
A thermodynamic model for memory formation is proposed. Key points include: 1) Any thought or consciousness corresponds to a thermodynamic system of nerve cells. 2) The system concept of nerve cells can only be described by thermodynamics of condensed matter. 3) The memory structure is logically associated with the system structure or the normal structure of biology. 4) The development of our thoughts is processed irreversibly, and numerous states or thoughts can be generated. 5) Memory formation results from the reorganization and change of cellular structures (or memory structures), which are related to nerve cell skeleton and membrane. Their alteration can change the excitability of nerve cells and the pathway of neural impulse conduction. 6) Amnesia results from the loss of thermodynamic stability of the memory structure, which can be achieved by different ways. Some related phenomena and facts are discussed. The analysis shows that thermodynamics can account for the basic properties of memory.
Collapse
Affiliation(s)
- Qinyi Zhao
- Medical Institute, CRRC, Beijing, China.
| |
Collapse
|
6
|
Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila. Learn Mem 2024; 31:a053997. [PMID: 38862177 PMCID: PMC11199950 DOI: 10.1101/lm.053997.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
Collapse
Affiliation(s)
- Büşra Çoban
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bart Geurten
- Department of Zoology, Otago University, Dunedin 9016, New Zealand
| | - David Vasmer
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Yogesh Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Idan Alyagor
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | | - Annekathrin Widmann
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
8
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
9
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
10
|
Srinivasan S, Daste S, Modi MN, Turner GC, Fleischmann A, Navlakha S. Effects of stochastic coding on olfactory discrimination in flies and mice. PLoS Biol 2023; 21:e3002206. [PMID: 37906721 PMCID: PMC10618007 DOI: 10.1371/journal.pbio.3002206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Kavli Institute for Brain and Mind, University of California, San Diego, California, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Simon Daste
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Mehrab N. Modi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Glenn C. Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Saket Navlakha
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
11
|
Kraft N, Muenz TS, Reinhard S, Werner C, Sauer M, Groh C, Rössler W. Expansion microscopy in honeybee brains for high-resolution neuroanatomical analyses in social insects. Cell Tissue Res 2023; 393:489-506. [PMID: 37421435 PMCID: PMC10484815 DOI: 10.1007/s00441-023-03803-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
The diffraction limit of light microscopy poses a problem that is frequently faced in structural analyses of social insect brains. With the introduction of expansion microscopy (ExM), a tool became available to overcome this limitation by isotropic physical expansion of preserved specimens. Our analyses focus on synaptic microcircuits (microglomeruli, MG) in the mushroom body (MB) of social insects, high-order brain centers for sensory integration, learning, and memory. MG undergo significant structural reorganizations with age, sensory experience, and during long-term memory formation. However, the changes in subcellular architecture involved in this plasticity have only partially been accessed yet. Using the western honeybee Apis mellifera as an experimental model, we established ExM for the first time in a social insect species and applied it to investigate plasticity in synaptic microcircuits within MG of the MB calyces. Using combinations of antibody staining and neuronal tracing, we demonstrate that this technique enables quantitative and qualitative analyses of structural neuronal plasticity at high resolution in a social insect brain.
Collapse
Affiliation(s)
- Nadine Kraft
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany.
| | - Thomas S Muenz
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| |
Collapse
|
12
|
Sha MFR, Koga Y, Murata Y, Taniguchi M, Yamaguchi M. Learning-dependent structural plasticity of intracortical and sensory connections to functional domains of the olfactory tubercle. Front Neurosci 2023; 17:1247375. [PMID: 37680965 PMCID: PMC10480507 DOI: 10.3389/fnins.2023.1247375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
The olfactory tubercle (OT), which is a component of the olfactory cortex and ventral striatum, has functional domains that play a role in odor-guided motivated behaviors. Learning odor-guided attractive and aversive behavior activates the anteromedial (am) and lateral (l) domains of the OT, respectively. However, the mechanism driving learning-dependent activation of specific OT domains remains unknown. We hypothesized that the neuronal connectivity of OT domains is plastically altered through olfactory experience. To examine the plastic potential of synaptic connections to OT domains, we optogenetically stimulated intracortical inputs from the piriform cortex or sensory inputs from the olfactory bulb to the OT in mice in association with a food reward for attractive learning and electrical foot shock for aversive learning. For both intracortical and sensory connections, axon boutons that terminated in the OT domains were larger in the amOT than in the lOT for mice exhibiting attractive learning and larger in the lOT than in the amOT for mice exhibiting aversive learning. These results indicate that both intracortical and sensory connections to the OT domains have learning-dependent plastic potential, suggesting that this plasticity underlies learning-dependent activation of specific OT domains and the acquisition of appropriate motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
13
|
Davis RL. Learning and memory using Drosophila melanogaster: a focus on advances made in the fifth decade of research. Genetics 2023; 224:iyad085. [PMID: 37212449 PMCID: PMC10411608 DOI: 10.1093/genetics/iyad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
In the last decade, researchers using Drosophila melanogaster have made extraordinary progress in uncovering the mysteries underlying learning and memory. This progress has been propelled by the amazing toolkit available that affords combined behavioral, molecular, electrophysiological, and systems neuroscience approaches. The arduous reconstruction of electron microscopic images resulted in a first-generation connectome of the adult and larval brain, revealing complex structural interconnections between memory-related neurons. This serves as substrate for future investigations on these connections and for building complete circuits from sensory cue detection to changes in motor behavior. Mushroom body output neurons (MBOn) were discovered, which individually forward information from discrete and non-overlapping compartments of the axons of mushroom body neurons (MBn). These neurons mirror the previously discovered tiling of mushroom body axons by inputs from dopamine neurons and have led to a model that ascribes the valence of the learning event, either appetitive or aversive, to the activity of different populations of dopamine neurons and the balance of MBOn activity in promoting avoidance or approach behavior. Studies of the calyx, which houses the MBn dendrites, have revealed a beautiful microglomeruluar organization and structural changes of synapses that occur with long-term memory (LTM) formation. Larval learning has advanced, positioning it to possibly lead in producing new conceptual insights due to its markedly simpler structure over the adult brain. Advances were made in how cAMP response element-binding protein interacts with protein kinases and other transcription factors to promote the formation of LTM. New insights were made on Orb2, a prion-like protein that forms oligomers to enhance synaptic protein synthesis required for LTM formation. Finally, Drosophila research has pioneered our understanding of the mechanisms that mediate permanent and transient active forgetting, an important function of the brain along with acquisition, consolidation, and retrieval. This was catalyzed partly by the identification of memory suppressor genes-genes whose normal function is to limit memory formation.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Rössler W. Multisensory navigation and neuronal plasticity in desert ants. Trends Neurosci 2023; 46:415-417. [PMID: 37019813 DOI: 10.1016/j.tins.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Cataglyphis desert ants are skilled visual navigators. Here, I present a brief overview of multisensory learning and neuronal plasticity in ants, with a particular focus on the transition from the dark nest interior to performing first foraging trips. This highlights desert ants as experimental models for studying neuronal mechanisms underlying behavioral development into successful navigators.
Collapse
Affiliation(s)
- Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
15
|
Hafez OA, Escribano B, Ziegler RL, Hirtz JJ, Niebur E, Pielage J. The cellular architecture of memory modules in Drosophila supports stochastic input integration. eLife 2023; 12:e77578. [PMID: 36916672 PMCID: PMC10069864 DOI: 10.7554/elife.77578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.
Collapse
Affiliation(s)
- Omar A Hafez
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Benjamin Escribano
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Rouven L Ziegler
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Jan J Hirtz
- Physiology of Neuronal Networks Group, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Jan Pielage
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| |
Collapse
|
16
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
17
|
Marquand K, Roselli C, Cervantes-Sandoval I, Boto T. Sleep benefits different stages of memory in Drosophila. Front Physiol 2023; 14:1087025. [PMID: 36744027 PMCID: PMC9892949 DOI: 10.3389/fphys.2023.1087025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Understanding the physiological mechanisms that modulate memory acquisition and consolidation remains among the most ambitious questions in neuroscience. Massive efforts have been dedicated to deciphering how experience affects behavior, and how different physiological and sensory phenomena modulate memory. Our ability to encode, consolidate and retrieve memories depends on internal drives, and sleep stands out among the physiological processes that affect memory: one of the most relatable benefits of sleep is the aiding of memory that occurs in order to both prepare the brain to learn new information, and after a learning task, to consolidate those new memories. Drosophila lends itself to the study of the interactions between memory and sleep. The fruit fly provides incomparable genetic resources, a mapped connectome, and an existing framework of knowledge on the molecular, cellular, and circuit mechanisms of memory and sleep, making the fruit fly a remarkable model to decipher the sophisticated regulation of learning and memory by the quantity and quality of sleep. Research in Drosophila has stablished not only that sleep facilitates learning in wild-type and memory-impaired animals, but that sleep deprivation interferes with the acquisition of new memories. In addition, it is well-accepted that sleep is paramount in memory consolidation processes. Finally, studies in Drosophila have shown that that learning itself can promote sleep drive. Nevertheless, the molecular and network mechanisms underlying this intertwined relationship are still evasive. Recent remarkable work has shed light on the neural substrates that mediate sleep-dependent memory consolidation. In a similar way, the mechanistic insights of the neural switch control between sleep-dependent and sleep-independent consolidation strategies were recently described. This review will discuss the regulation of memory by sleep in Drosophila, focusing on the most recent advances in the field and pointing out questions awaiting to be investigated.
Collapse
Affiliation(s)
- Katie Marquand
- Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Tamara Boto
- Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Qiao J, Yang S, Geng H, Yung WH, Ke Y. Input-timing-dependent plasticity at incoming synapses of the mushroom body facilitates olfactory learning in Drosophila. Curr Biol 2022; 32:4869-4880.e4. [PMID: 36265490 DOI: 10.1016/j.cub.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Aversive olfactory conditioning in Drosophila is a valuable model for elucidating the mechanism of associative learning. Much effort has centered around the role of neuroplasticity at the mushroom body (MB)-mushroom body output neuron (MBON) synapses in mapping odors to specific behaviors. By electrophysiological recordings from MB neurons, we discovered a form of input-timing-dependent plasticity at the incoming synapses from projection neurons that controls the efficacy of aversive olfactory memory formation. Importantly, this plasticity is facilitated by the neural activity of PPL1, the neuronal cluster that also modulates MB-MBON connections at the output stage of MB. Unlike the MB-MBON synapses that probably utilize dopamine D1-like receptors, this neuroplasticity is dependent on D2-like receptors that are expressed mainly by γ Kenyon cells noticeably in their somato-dendritic region. The D2-like receptors recruit voltage-gated calcium channels, leading to calcium influx in the soma and dendrites of γ neurons. Together, our results reveal a previously unrecognized synaptic component of the MB circuit architecture that not only could increase the salience of a conditioning odor but also couples the process of memory encoding and valency mapping to drive-associative learning.
Collapse
Affiliation(s)
- Jingda Qiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Shengxi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hongyan Geng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
19
|
Hayashi TT, MacKenzie AJ, Ganguly I, Ellis KE, Smihula HM, Jacob MS, Litwin-Kumar A, Caron SJC. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster. Curr Biol 2022; 32:4000-4012.e5. [PMID: 35977547 PMCID: PMC9533768 DOI: 10.1016/j.cub.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Associative brain centers, such as the insect mushroom body, need to represent sensory information in an efficient manner. In Drosophila melanogaster, the Kenyon cells of the mushroom body integrate inputs from a random set of olfactory projection neurons, but some projection neurons-namely those activated by a few ethologically meaningful odors-connect to Kenyon cells more frequently than others. This biased and random connectivity pattern is conceivably advantageous, as it enables the mushroom body to represent a large number of odors as unique activity patterns while prioritizing the representation of a few specific odors. How this connectivity pattern is established remains largely unknown. Here, we test whether the mechanisms patterning the connections between Kenyon cells and projection neurons depend on sensory activity or whether they are hardwired. We mapped a large number of mushroom body input connections in partially anosmic flies-flies lacking the obligate odorant co-receptor Orco-and in wild-type flies. Statistical analyses of these datasets reveal that the random and biased connectivity pattern observed between Kenyon cells and projection neurons forms normally in the absence of most olfactory sensory activity. This finding supports the idea that even comparatively subtle, population-level patterns of neuronal connectivity can be encoded by fixed genetic programs and are likely to be the result of evolved prioritization of ecologically and ethologically salient stimuli.
Collapse
Affiliation(s)
- Tatsuya Tatz Hayashi
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander John MacKenzie
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishani Ganguly
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Kaitlyn Elizabeth Ellis
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Hayley Marie Smihula
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Miles Solomon Jacob
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Sophie Jeanne Cécile Caron
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
20
|
Zheng Z, Li F, Fisher C, Ali IJ, Sharifi N, Calle-Schuler S, Hsu J, Masoodpanah N, Kmecova L, Kazimiers T, Perlman E, Nichols M, Li PH, Jain V, Bock DD. Structured sampling of olfactory input by the fly mushroom body. Curr Biol 2022; 32:3334-3349.e6. [PMID: 35797998 PMCID: PMC9413950 DOI: 10.1016/j.cub.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially co-arborize and connect with dendrites of αβ and α'β' KC subtypes. Computational simulation of the observed network showed degraded discrimination performance compared with a random network, except when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory and experiment will be needed to fully characterize the impact of the observed non-random network structure on associative memory formation and recall.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Corey Fisher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Iqbal J Ali
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nadiya Sharifi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Steven Calle-Schuler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joseph Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Najla Masoodpanah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lucia Kmecova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Kazmos GmbH, Dresden, Germany
| | - Eric Perlman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Yikes LLC, Baltimore, MD, USA
| | - Matthew Nichols
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
21
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Rihani K, Sachse S. Shedding Light on Inter-Individual Variability of Olfactory Circuits in Drosophila. Front Behav Neurosci 2022; 16:835680. [PMID: 35548690 PMCID: PMC9084309 DOI: 10.3389/fnbeh.2022.835680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/25/2022] Open
Abstract
Inter-individual differences in behavioral responses, anatomy or functional properties of neuronal populations of animals having the same genotype were for a long time disregarded. The majority of behavioral studies were conducted at a group level, and usually the mean behavior of all individuals was considered. Similarly, in neurophysiological studies, data were pooled and normalized from several individuals. This approach is mostly suited to map and characterize stereotyped neuronal properties between individuals, but lacks the ability to depict inter-individual variability regarding neuronal wiring or physiological characteristics. Recent studies have shown that behavioral biases and preferences to olfactory stimuli can vary significantly among individuals of the same genotype. The origin and the benefit of these diverse "personalities" is still unclear and needs to be further investigated. A perspective taken into account the inter-individual differences is needed to explore the cellular mechanisms underlying this phenomenon. This review focuses on olfaction in the vinegar fly Drosophila melanogaster and summarizes previous and recent studies on odor-guided behavior and the underlying olfactory circuits in the light of inter-individual variability. We address the morphological and physiological variabilities present at each layer of the olfactory circuitry and attempt to link them to individual olfactory behavior. Additionally, we discuss the factors that might influence individuality with regard to olfactory perception.
Collapse
Affiliation(s)
- Karen Rihani
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| |
Collapse
|
23
|
Endo K, Kazama H. Central organization of a high-dimensional odor space. Curr Opin Neurobiol 2022; 73:102528. [DOI: 10.1016/j.conb.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
|
24
|
Yang K, Liu T, Wang Z, Liu J, Shen Y, Pan X, Wen R, Xie H, Ruan Z, Tan Z, Chen Y, Guo A, Liu H, Han H, Di Z, Zhang K. Classifying Drosophila Olfactory Projection Neuron Boutons by Quantitative Analysis of Electron Microscopic Reconstruction. iScience 2022; 25:104180. [PMID: 35494235 PMCID: PMC9038572 DOI: 10.1016/j.isci.2022.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Kai Yang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- BNU-BUCM Hengqin Innovation Institute of Science and Technology, Zhuhai, Guangdong 518057, China
| | - Tong Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Ze Wang
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Jing Liu
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxinyao Shen
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Xinyi Pan
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Ruyi Wen
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Haotian Xie
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhaoxuan Ruan
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zixiao Tan
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Yingying Chen
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Aike Guo
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
- Huitong College, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - He Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Hua Han
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zengru Di
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Ke Zhang
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
- Corresponding author
| |
Collapse
|
25
|
Prisco L, Deimel SH, Yeliseyeva H, Fiala A, Tavosanis G. The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. eLife 2021; 10:e74172. [PMID: 34964714 PMCID: PMC8741211 DOI: 10.7554/elife.74172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.
Collapse
Affiliation(s)
- Luigi Prisco
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Hanna Yeliseyeva
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, University of GöttingenGöttingenGermany
| | - Gaia Tavosanis
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- LIMES, Rheinische Friedrich Wilhelms Universität BonnBonnGermany
| |
Collapse
|
26
|
Harzsch S, Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101100. [PMID: 34488068 DOI: 10.1016/j.asd.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
According to all latest phylogenetic analyses, the taxon Pancrustacea embraces the crustaceans in the traditional sense and the hexapods. Members of the Pancrustacea for a long time have been known to display distinct similarities in the architecture of their brains. Here, we review recent progress and open questions concerning structural and functional communalities of selected higher integrative neuropils in the lateral protocerebrum of pancrustaceans, the mushroom bodies and hemiellipsoid bodies. We also discuss the projection neuron pathway which provides a distinct input channel to both mushroom and hemiellipsoid bodies from the primary chemosensory centers in the deutocerebrum. Neuronal characters are mapped on a current pancrustacean phylogeny in order to extract those characters that are part of the pancrustacean ground pattern. Furthermore, we summarize recent insights into the evolutionary transformation of mushroom body morphology across the Pancrustacea.
Collapse
Affiliation(s)
- S Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - J Krieger
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
27
|
CREBA and CREBB in two identified neurons gate long-term memory formation in Drosophila. Proc Natl Acad Sci U S A 2021; 118:2100624118. [PMID: 34507985 PMCID: PMC8449312 DOI: 10.1073/pnas.2100624118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 11/18/2022] Open
Abstract
Episodic events are frequently consolidated into labile memory but are not necessarily transferred to persistent long-term memory (LTM). Regulatory mechanisms leading to LTM formation are poorly understood, however, especially at the resolution of identified neurons. Here, we demonstrate enhanced LTM following aversive olfactory conditioning in Drosophila when the transcription factor cyclic AMP response element binding protein A (CREBA) is induced in just two dorsal-anterior-lateral (DAL) neurons. Our experiments show that this process is regulated by protein-gene interactions in DAL neurons: (1) crebA transcription is induced by training and repressed by crebB overexpression, (2) CREBA bidirectionally modulates LTM formation, (3) crebA overexpression enhances training-induced gene transcription, and (4) increasing membrane excitability enhances LTM formation and gene expression. These findings suggest that activity-dependent gene expression in DAL neurons during LTM formation is regulated by CREB proteins.
Collapse
|
28
|
Li G, Hidalgo A. The Toll Route to Structural Brain Plasticity. Front Physiol 2021; 12:679766. [PMID: 34290618 PMCID: PMC8287419 DOI: 10.3389/fphys.2021.679766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain can change throughout life as we learn, adapt and age. A balance between structural brain plasticity and homeostasis characterizes the healthy brain, and the breakdown of this balance accompanies brain tumors, psychiatric disorders, and neurodegenerative diseases. However, the link between circuit modifications, brain function, and behavior remains unclear. Importantly, the underlying molecular mechanisms are starting to be uncovered. The fruit-fly Drosophila is a very powerful model organism to discover molecular mechanisms and test them in vivo. There is abundant evidence that the Drosophila brain is plastic, and here we travel from the pioneering discoveries to recent findings and progress on molecular mechanisms. We pause on the recent discovery that, in the Drosophila central nervous system, Toll receptors—which bind neurotrophin ligands—regulate structural plasticity during development and in the adult brain. Through their topographic distribution across distinct brain modules and their ability to switch between alternative signaling outcomes, Tolls can enable the brain to translate experience into structural change. Intriguing similarities between Toll and mammalian Toll-like receptor function could reveal a further involvement in structural plasticity, degeneration, and disease in the human brain.
Collapse
Affiliation(s)
- Guiyi Li
- Plasticity and Regeneration Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Plasticity and Regeneration Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|