1
|
Kinman AI, Merryweather DN, Erwin SR, Campbell RE, Sullivan KE, Kraus L, Kapustina M, Bristow BN, Zhang MY, Elder MW, Wood SC, Tarik A, Kim E, Tindall J, Daniels W, Anwer M, Guo C, Cembrowski MS. Atypical hippocampal excitatory neurons express and govern object memory. Nat Commun 2025; 16:1195. [PMID: 39939601 PMCID: PMC11822006 DOI: 10.1038/s41467-025-56260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025] Open
Abstract
Classically, pyramidal cells of the hippocampus are viewed as flexibly representing spatial and non-spatial information. Recent work has illustrated distinct types of hippocampal excitatory neurons, suggesting that hippocampal representations and functions may be constrained and interpreted by these underlying cell-type identities. In mice, here we reveal a non-pyramidal excitatory neuron type - the "ovoid" neuron - that is spatially adjacent to subiculum pyramidal cells but differs in gene expression, electrophysiology, morphology, and connectivity. Functionally, novel object encounters drive sustained ovoid neuron activity, whereas familiar objects fail to drive activity even months after single-trial learning. Silencing ovoid neurons prevents non-spatial object learning but leaves spatial learning intact, and activating ovoid neurons toggles novel-object seeking to familiar-object seeking. Such function is doubly dissociable from pyramidal neurons, wherein manipulation of pyramidal cells affects spatial assays but not non-spatial learning. Ovoid neurons of the subiculum thus illustrate selective cell-type-specific control of non-spatial memory and behavioral preference.
Collapse
Affiliation(s)
- Adrienne I Kinman
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Derek N Merryweather
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Sarah R Erwin
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Regan E Campbell
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Kaitlin E Sullivan
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Larissa Kraus
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Margarita Kapustina
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Brianna N Bristow
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mingjia Y Zhang
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Madeline W Elder
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Sydney C Wood
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ali Tarik
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Esther Kim
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Joshua Tindall
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - William Daniels
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mehwish Anwer
- Dept. of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 1Z7, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, USA
| | - Mark S Cembrowski
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, USA.
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada.
| |
Collapse
|
2
|
Nau M, Schmid AC, Kaplan SM, Baker CI, Kravitz DJ. Centering cognitive neuroscience on task demands and generalization. Nat Neurosci 2024; 27:1656-1667. [PMID: 39075326 DOI: 10.1038/s41593-024-01711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Cognitive neuroscience seeks generalizable theories explaining the relationship between behavioral, physiological and mental states. In pursuit of such theories, we propose a theoretical and empirical framework that centers on understanding task demands and the mutual constraints they impose on behavior and neural activity. Task demands emerge from the interaction between an agent's sensory impressions, goals and behavior, which jointly shape the activity and structure of the nervous system on multiple spatiotemporal scales. Understanding this interaction requires multitask studies that vary more than one experimental component (for example, stimuli and instructions) combined with dense behavioral and neural sampling and explicit testing for generalization across tasks and data modalities. By centering task demands rather than mental processes that tasks are assumed to engage, this framework paves the way for the discovery of new generalizable concepts unconstrained by existing taxonomies, and moves cognitive neuroscience toward an action-oriented, dynamic and integrated view of the brain.
Collapse
Affiliation(s)
- Matthias Nau
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA.
| | - Alexandra C Schmid
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA
| | - Simon M Kaplan
- Department of Psychological & Brain Sciences, The George Washington University, Washington, DC, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA.
| | - Dwight J Kravitz
- Department of Psychological & Brain Sciences, The George Washington University, Washington, DC, USA.
- Division of Behavioral and Cognitive Sciences, Directorate for Social, Behavioral, and Economic Sciences, US National Science Foundation, Arlington, VA, USA.
| |
Collapse
|
3
|
Nitzan N, Buzsáki G. Physiological characteristics of neurons in the mammillary bodies align with topographical organization of subicular inputs. Cell Rep 2024; 43:114539. [PMID: 39052483 PMCID: PMC11475818 DOI: 10.1016/j.celrep.2024.114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
The mammillary bodies (MBOs), a group of hypothalamic nuclei, play a pivotal role in memory formation and spatial navigation. They receive extensive inputs from the hippocampus through the fornix, but the physiological significance of these connections remains poorly understood. Damage to the MBOs is associated with various forms of anterograde amnesia. However, information about the physiological characteristics of the MBO is limited, primarily due to the limited number of studies that have directly monitored MBO activity along with population patterns of its upstream partners. Employing large-scale silicon probe recording in mice, we characterize MBO activity and its interaction with the subiculum across various brain states. We find that MBO cells are highly diverse in their relationship to theta, ripple, and slow oscillations. Several of the physiological features are inherited by the topographically organized inputs to MBO cells. Our study provides insights into the functional organization of the MBOs.
Collapse
Affiliation(s)
- Noam Nitzan
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
4
|
Tye KM, Miller EK, Taschbach FH, Benna MK, Rigotti M, Fusi S. Mixed selectivity: Cellular computations for complexity. Neuron 2024; 112:2289-2303. [PMID: 38729151 PMCID: PMC11257803 DOI: 10.1016/j.neuron.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.
Collapse
Affiliation(s)
- Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, La Jolla, CA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, San Diego, CA, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Felix H Taschbach
- Salk Institute for Biological Studies, La Jolla, CA, USA; Biological Science Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Marcus K Benna
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Blanchard DC, Canteras NS. Uncertainty and anxiety: Evolution and neurobiology. Neurosci Biobehav Rev 2024; 162:105732. [PMID: 38797459 DOI: 10.1016/j.neubiorev.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Anxiety is a complex phenomenon: Its eliciting stimuli and circumstances, component behaviors, and functional consequences are only slowly coming to be understood. Here, we examine defense systems from field studies; laboratory studies focusing on experimental analyses of behavior; and, the fear conditioning literature, with a focus on the role of uncertainty in promoting an anxiety pattern that involves high rates of stimulus generalization and resistance to extinction. Respectively, these different areas provide information on evolved elicitors of defense (field studies); outline a defense system focused on obtaining information about uncertain threat (ethoexperimental analyses); and, provide a simple, well-researched, easily measured paradigm for analysis of nonassociative stress-enhanced fear conditioning (the SEFL). Results suggest that all of these-each of which is responsive to uncertainty-play multiple and interactive roles in anxiety. Brain system findings for some relevant models are reviewed, with suggestions that further analyses of current models may be capable of providing a great deal of additional information about these complex interactions and their underlying biology.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Bioscience Research Institute, University of Hawaii, Manoa, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
6
|
Viellard JMA, Melleu FF, Tamais AM, de Almeida AP, Zerbini C, Ikebara JM, Domingues K, de Lima MAX, Oliveira FA, Motta SC, Canteras NS. A subiculum-hypothalamic pathway functions in dynamic threat detection and memory updating. Curr Biol 2024; 34:2657-2671.e7. [PMID: 38810639 DOI: 10.1016/j.cub.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Animals need to detect threats, initiate defensive responses, and, in parallel, remember where the threat occurred to avoid the possibility of re-encountering it. By probing animals capable of detecting and avoiding a shock-related threatening location, we were able to reveal a septo-hippocampal-hypothalamic circuit that is also engaged in ethological threats, including predatory and social threats. Photometry analysis focusing on the dorsal premammillary nucleus (PMd), a critical interface of this circuit, showed that in freely tested animals, the nucleus appears ideal to work as a threat detector to sense dynamic changes under threatening conditions as the animal approaches and avoids the threatening source. We also found that PMd chemogenetic silencing impaired defensive responses by causing a failure of threat detection rather than a direct influence on any behavioral responses and, at the same time, updated fear memory to a low-threat condition. Optogenetic silencing of the main PMd targets, namely the periaqueductal gray and anterior medial thalamus, showed that the projection to the periaqueductal gray influences both defensive responses and, to a lesser degree, contextual memory, whereas the projection to the anterior medial thalamus has a stronger influence on memory processes. Our results are important for understanding how animals deal with the threat imminence continuum, revealing a circuit that is engaged in threat detection and that, at the same time, serves to update the memory process to accommodate changes under threatening conditions.
Collapse
Affiliation(s)
- Juliette M A Viellard
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Bordeaux, France
| | - Fernando F Melleu
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia M Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alisson P de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliane M Ikebara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Karolina Domingues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Miguel A X de Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC)-Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Simone C Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
7
|
Barnstedt O, Mocellin P, Remy S. A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat Commun 2024; 15:3196. [PMID: 38609363 PMCID: PMC11015045 DOI: 10.1038/s41467-024-47361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal hippocampus (dHPC) is a key brain region for the expression of spatial memories, such as navigating towards a learned reward location. The nucleus accumbens (NAc) is a prominent projection target of dHPC and implicated in value-based action selection. Yet, the contents of the dHPC→NAc information stream and their acute role in behavior remain largely unknown. Here, we found that optogenetic stimulation of the dHPC→NAc pathway while mice navigated towards a learned reward location was both necessary and sufficient for spatial memory-related appetitive behaviors. To understand the task-relevant coding properties of individual NAc-projecting hippocampal neurons (dHPC→NAc), we used in vivo dual-color two-photon imaging. In contrast to other dHPC neurons, the dHPC→NAc subpopulation contained more place cells, with enriched spatial tuning properties. This subpopulation also showed enhanced coding of non-spatial task-relevant behaviors such as deceleration and appetitive licking. A generalized linear model revealed enhanced conjunctive coding in dHPC→NAc neurons which improved the identification of the reward zone. We propose that dHPC routes specific reward-related spatial and behavioral state information to guide NAc action selection.
Collapse
Affiliation(s)
- Oliver Barnstedt
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke University, 39120, Magdeburg, Germany.
| | - Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- International Max Planck Research, School for Brain & Behavior (IMPRS), 53175, Bonn, Germany
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720-3370, USA
| | - Stefan Remy
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
- German Center for Mental Health (DZGP), partner site Halle-Jena-Magdeburg, 39118, Magdeburg, Germany.
| |
Collapse
|
8
|
Karami B, Schwiedrzik CM. Visual perceptual learning of feature conjunctions leverages non-linear mixed selectivity. NPJ SCIENCE OF LEARNING 2024; 9:13. [PMID: 38429339 PMCID: PMC10907723 DOI: 10.1038/s41539-024-00226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Visual objects are often defined by multiple features. Therefore, learning novel objects entails learning feature conjunctions. Visual cortex is organized into distinct anatomical compartments, each of which is devoted to processing a single feature. A prime example are neurons purely selective to color and orientation, respectively. However, neurons that jointly encode multiple features (mixed selectivity) also exist across the brain and play critical roles in a multitude of tasks. Here, we sought to uncover the optimal policy that our brain adapts to achieve conjunction learning using these available resources. 59 human subjects practiced orientation-color conjunction learning in four psychophysical experiments designed to nudge the visual system towards using one or the other resource. We find that conjunction learning is possible by linear mixing of pure color and orientation information, but that more and faster learning takes place when both pure and mixed selectivity representations are involved. We also find that learning with mixed selectivity confers advantages in performing an untrained "exclusive or" (XOR) task several months after learning the original conjunction task. This study sheds light on possible mechanisms underlying conjunction learning and highlights the importance of learning by mixed selectivity.
Collapse
Affiliation(s)
- Behnam Karami
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany.
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
9
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
10
|
Nakai S, Kitanishi T, Mizuseki K. Distinct manifold encoding of navigational information in the subiculum and hippocampus. SCIENCE ADVANCES 2024; 10:eadi4471. [PMID: 38295173 PMCID: PMC10830115 DOI: 10.1126/sciadv.adi4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
The subiculum (SUB) plays a crucial role in spatial navigation and encodes navigational information differently from the hippocampal CA1 area. However, the representation of subicular population activity remains unknown. Here, we investigated the neuronal population activity recorded extracellularly from the CA1 and SUB of rats performing T-maze and open-field tasks. The trajectory of population activity in both areas was confined to low-dimensional neural manifolds homoeomorphic to external space. The manifolds conveyed position, speed, and future path information with higher decoding accuracy in the SUB than in the CA1. The manifolds exhibited common geometry across rats and regions for the CA1 and SUB and between tasks in the SUB. During post-task ripples in slow-wave sleep, population activity represented reward locations/events more frequently in the SUB than in CA1. Thus, the CA1 and SUB encode information distinctly into the neural manifolds that underlie navigational information processing during wakefulness and sleep.
Collapse
Affiliation(s)
- Shinya Nakai
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Takuma Kitanishi
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
11
|
Muessig L, Ribeiro Rodrigues F, Bjerknes TL, Towse BW, Barry C, Burgess N, Moser EI, Moser MB, Cacucci F, Wills TJ. Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development. Nat Commun 2024; 15:982. [PMID: 38302455 PMCID: PMC10834499 DOI: 10.1038/s41467-024-45098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Boundaries to movement form a specific class of landmark information used for navigation: Boundary Vector Cells (BVCs) are neurons which encode an animal's location as a vector displacement from boundaries. Here we characterise the prevalence and spatial tuning of subiculum BVCs in adult and developing male rats, and investigate the relationship between BVC spatial firing and boundary geometry. BVC directional tunings align with environment walls in squares, but are uniformly distributed in circles, demonstrating that environmental geometry alters BVC receptive fields. Inserted barriers uncover both excitatory and inhibitory components to BVC receptive fields, demonstrating that inhibitory inputs contribute to BVC field formation. During post-natal development, subiculum BVCs mature slowly, contrasting with the earlier maturation of boundary-responsive cells in upstream Entorhinal Cortex. However, Subiculum and Entorhinal BVC receptive fields are altered by boundary geometry as early as tested, suggesting this is an inherent feature of the hippocampal representation of space.
Collapse
Affiliation(s)
- Laurenz Muessig
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | - Tale L Bjerknes
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Benjamin W Towse
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, UK
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, UK
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology; University College London, London, WC1E 6BT, UK
| | - Thomas J Wills
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
de Melo MB, Daldegan-Bueno D, Favaro VM, Oliveira MGM. The subiculum role on learning and memory tasks using rats and mice: A scoping review. Neurosci Biobehav Rev 2023; 155:105460. [PMID: 37939978 DOI: 10.1016/j.neubiorev.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
This scoping review aimed to systematically identify and summarize data related to subiculum involvement in learning and memory behavioral tasks in rats and mice. Following a systematic strategy based on PICO and PRISMA guidelines, we searched five indexed databases (PubMed, Web of Science, EMBASE, Scopus, and PsycInfo) using a standardized search strategy to identify peer-reviewed articles published in English (pre-registration: osf.io/hm5ea). We identified 31 articles investigating the role of the subiculum in spatial, working, and recognition memories (n = 11), memories related to addiction models (n = 9), aversive memories (n = 7), and memories related to appetitive learning (n = 5). We highlight a dissociation in the dorsoventral axis of the subiculum with many studies exploring the ventral subiculum (n = 21) but only a few exploring the dorsal one (n = 10). We also observe the necessity of more data including mice, female animals, genetic tools, and better statistical approaches for replication purposes and research refinement. These findings provide a broad framework of the subiculum involvement in learning and memory, showing essential questions that can be explored by further studies.
Collapse
Affiliation(s)
- Márcio Braga de Melo
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Dimitri Daldegan-Bueno
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa Manchim Favaro
- Setor de Investigação de Doenças Neuromusculares, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
13
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
14
|
Maisson DJN, Cervera RL, Voloh B, Conover I, Zambre M, Zimmermann J, Hayden BY. Widespread coding of navigational variables in prefrontal cortex. Curr Biol 2023; 33:3478-3488.e3. [PMID: 37541250 PMCID: PMC10984098 DOI: 10.1016/j.cub.2023.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
To navigate effectively, we must represent information about our location in the environment. Traditional research highlights the role of the hippocampal complex in this process. Spurred by recent research highlighting the widespread cortical encoding of cognitive and motor variables previously thought to have localized function, we hypothesized that navigational variables would be likewise encoded widely, especially in the prefrontal cortex, which is associated with volitional behavior. We recorded neural activity from six prefrontal regions while macaques performed a foraging task in an open enclosure. In all regions, we found strong encoding of allocentric position, allocentric head direction, boundary distance, and linear and angular velocity. These encodings were not accounted for by distance, time to reward, or motor factors. The strength of coding of all variables increased along a ventral-to-dorsal gradient. Together, these results argue that encoding of navigational variables is not localized to the hippocampus and support the hypothesis that navigation is continuous with other forms of flexible cognition in the service of action.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberto Lopez Cervera
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Voloh
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Indirah Conover
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mrunal Zambre
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Zimmermann
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Stangl M, Maoz SL, Suthana N. Mobile cognition: imaging the human brain in the 'real world'. Nat Rev Neurosci 2023; 24:347-362. [PMID: 37046077 PMCID: PMC10642288 DOI: 10.1038/s41583-023-00692-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/14/2023]
Abstract
Cognitive neuroscience studies in humans have enabled decades of impactful discoveries but have primarily been limited to recording the brain activity of immobile participants in a laboratory setting. In recent years, advances in neuroimaging technologies have enabled recordings of human brain activity to be obtained during freely moving behaviours in the real world. Here, we propose that these mobile neuroimaging methods can provide unique insights into the neural mechanisms of human cognition and contribute to the development of novel treatments for neurological and psychiatric disorders. We further discuss the challenges associated with studying naturalistic human behaviours in complex real-world settings as well as strategies for overcoming them. We conclude that mobile neuroimaging methods have the potential to bring about a new era of cognitive neuroscience in which neural mechanisms can be studied with increased ecological validity and with the ability to address questions about natural behaviour and cognitive processes in humans engaged in dynamic real-world experiences.
Collapse
Affiliation(s)
- Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sabrina L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Yao R, Yamada K, Kito T, Aizu N, Iwata D, Izawa S, Nishii K, Sawada H, Chihara T. Novel shaking exercises for hippocampal and medial prefrontal cortex functioning maintain spatial working memory. Exp Gerontol 2023; 171:112024. [PMID: 36372283 DOI: 10.1016/j.exger.2022.112024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The decline in spatial working memory is one of the earliest signs of normal brain aging. OBJECTIVE We developed a novel physical exercise method, termed the "shaking exercise," to slow down this process. METHODS The experimental protocol included administering the shaking exercise for 8-32 weeks in male senescence-accelerated mouse prone 10 (SAMP-10). They were subjected to the T-maze test, followed by immunohistochemical analysis, to assess the influence of the shaking exercise on the M1 muscarinic acetylcholine receptor (CHRM1) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) of the dorsal hippocampus and medial prefrontal cortex (dHC-mPFC). RESULTS The T-maze test demonstrated that the shaking group had less hesitation in the face of selecting direction at week 24. In the immunohistochemical analysis, more CHRM1s were in the CA3 subregion and more AMPARs were in the subiculum. CHRM1s and AMPARs were maintained in the CA1 region and the mPFC. The CHRM1s seem to have a positive effect on the AMPAR in the dentate gyrus (DG) region and the CA3 region. In the CA1 region, CHRM1s were negatively correlated with AMPARs. In addition, high-density neurons were expressed in the shaking group in the upstream DG, the middle part and the distal part of CA3, the distal part of CA1, and the mPFC. CONCLUSIONS Our results raise the possibility that maintenance of the spatial working memory effect observed with the shaking exercise is driven in part by the uneven affection of CHRM1s and AMPARs in the dHC-mPFC circuit system and significantly maintains the neuronal expression in the dHC-mPFC.
Collapse
Affiliation(s)
- Runhong Yao
- Department of Physical Therapy, School of Health Sciences, Japan University of Health Sciences, Satte, Saitama 340-0145, Japan; Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Kouji Yamada
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Takumi Kito
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Department of Physical Therapy, Faculty of Health Sciences, Kinjo University, Hakusan, Ishikawa 924-8511, Japan
| | - Naoki Aizu
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Daiki Iwata
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Sho Izawa
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Kazuhiro Nishii
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Hirohide Sawada
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Mie 512-8045, Japan.
| | - Takeshi Chihara
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Mie 512-8045, Japan.
| |
Collapse
|
17
|
Sun Y, Giocomo LM. Neural circuit dynamics of drug-context associative learning in the mouse hippocampus. Nat Commun 2022; 13:6721. [PMID: 36344498 PMCID: PMC9640587 DOI: 10.1038/s41467-022-34114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The environmental context associated with previous drug consumption is a potent trigger for drug relapse. However, the mechanism by which neural representations of context are modified to incorporate information associated with drugs of abuse remains unknown. Using longitudinal calcium imaging in freely behaving mice, we find that unlike the associative learning of natural reward, drug-context associations for psychostimulants and opioids are encoded in a specific subset of hippocampal neurons. After drug conditioning, these neurons weakened their spatial coding for the non-drug paired context, resulting in an orthogonal representation for the drug versus non-drug context that was predictive of drug-seeking behavior. Furthermore, these neurons were selected based on drug-spatial experience and were exclusively tuned to animals' allocentric position. Together, this work reveals how drugs of abuse alter the hippocampal circuit to encode drug-context associations and points to the possibility of targeting drug-associated memory in the hippocampus.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Mao D. Neural Correlates of Spatial Navigation in Primate Hippocampus. Neurosci Bull 2022; 39:315-327. [PMID: 36319893 PMCID: PMC9905402 DOI: 10.1007/s12264-022-00968-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022] Open
Abstract
The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.
Collapse
Affiliation(s)
- Dun Mao
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Mizuseki K, Kitanishi T. Oscillation-coordinated, noise-resistant information distribution via the subiculum. Curr Opin Neurobiol 2022; 75:102556. [DOI: 10.1016/j.conb.2022.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
20
|
Spalla D, Treves A, Boccara CN. Angular and linear speed cells in the parahippocampal circuits. Nat Commun 2022; 13:1907. [PMID: 35393433 PMCID: PMC8991198 DOI: 10.1038/s41467-022-29583-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates – such as position and direction – receive inputs from cells conjunctively coding for position, direction, and self-motion. As yet, very little data exist on such conjunctive coding in the hippocampal region. Here, we report neurons coding for angular and linear velocity, uniformly distributed across the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation. These results offer insights as to how linear/angular speed – derivative in time of position/direction – may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation. It remains unclear how the hippocampal region integrates position and self-motion information to update spatial representations. Here, the authors report grid and head direction cells as well as cells encoding self-motion parameters such as angular head velocity and speed, and find conjunctive representations of these different parameters.
Collapse
Affiliation(s)
| | | | - Charlotte N Boccara
- University of Oslo, Faculty of Medicine, IMB, Sognsvannsveien 9 Domus Medica, 0372, Oslo, Norway.
| |
Collapse
|
21
|
Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser MB, Moser EI. Toroidal topology of population activity in grid cells. Nature 2022; 602:123-128. [PMID: 35022611 PMCID: PMC8810387 DOI: 10.1038/s41586-021-04268-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023]
Abstract
The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal's allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8-11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.
Collapse
Affiliation(s)
- Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Erik Hermansen
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nils A Baas
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Benjamin A Dunn
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
22
|
Lee SM, Seol JM, Lee I. Subicular neurons represent multiple variables of a hippocampal-dependent task by using theta rhythm. PLoS Biol 2022; 20:e3001546. [PMID: 35100261 PMCID: PMC8830791 DOI: 10.1371/journal.pbio.3001546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023] Open
Abstract
The subiculum is positioned at a critical juncture at the interface of the hippocampus with the rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent memory tasks remain largely unknown. One obstacle to make comparisons of neural firing patterns between the subiculum and hippocampus is the broad firing fields of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the broad firing field of a subicular neuron into multiple subfields to find the unique functional contribution of the subiculum while male rats performed a hippocampal-dependent visual scene memory task. Some of the broad firing fields of the subicular neurons were successfully divided into multiple subfields similar to those in the CA1 by using the theta phase precession cycle. The new paradigm significantly improved the detection of task-relevant information in subicular cells without affecting the information content represented by CA1 cells. Notably, we found that multiple fields of a single subicular neuron, unlike those in the CA1, carried heterogeneous task-related information such as visual context and choice response. Our findings suggest that the subicular cells integrate multiple task-related factors by using theta rhythm to associate environmental context with action.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Jae-Min Seol
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Mao D, Avila E, Caziot B, Laurens J, Dickman JD, Angelaki DE. Spatial modulation of hippocampal activity in freely moving macaques. Neuron 2021; 109:3521-3534.e6. [PMID: 34644546 DOI: 10.1016/j.neuron.2021.09.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
The hippocampal formation is linked to spatial navigation, but there is little corroboration from freely moving primates with concurrent monitoring of head and gaze stances. We recorded neural activity across hippocampal regions in rhesus macaques during free foraging in an open environment while tracking their head and eye. Theta activity was intermittently present at movement onset and modulated by saccades. Many neurons were phase-locked to theta, with few showing phase precession. Most neurons encoded a mixture of spatial variables beyond place and grid tuning. Spatial representations were dominated by facing location and allocentric direction, mostly in head, rather than gaze, coordinates. Importantly, eye movements strongly modulated neural activity in all regions. These findings reveal that the macaque hippocampal formation represents three-dimensional (3D) space using a multiplexed code, with head orientation and eye movement properties being dominant during free exploration.
Collapse
Affiliation(s)
- Dun Mao
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Eric Avila
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Baptiste Caziot
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jean Laurens
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Tandon School of Engineering, New York University, New York, NY 11201, USA.
| |
Collapse
|