1
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Guimarães JB, Pacheco TCF, Bortolucci J, Zaramela LS, Bonato VLD, Silva JS, Martins FS, Alves-Filho JC, Gardinassi LG, Reginatto V, Carlos D. Akkermansia muciniphila restrains type 1 diabetes onset by eliciting cDC2 and Treg cell differentiation in NOD and STZ-induced experimental models. Life Sci 2025; 372:123624. [PMID: 40204069 DOI: 10.1016/j.lfs.2025.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
AIMS Akkermansia muciniphila (A. muciniphila), a Gram-negative anaerobic mucus-layer-degrading bacterium found in the intestinal mucosa, exhibits potential as a probiotic, showing promise in mitigating autoimmune and chronic inflammatory diseases. This study aims to investigate whether A. muciniphila supplementation might confer protection against type 1 diabetes (T1D) and to elucidate the immunological pathways through which it exerts its beneficial effects. MATERIALS AND METHODS Non-obese diabetic (NOD) mice and streptozotocin (STZ)-induced type 1 diabetes (T1D) models were used to evaluate the protective effects of A. muciniphila during T1D course. Body weight, blood glucose levels, and T1D incidence were monitored. Immune responses in the pancreas, pancreatic (PLN) and cecal lymph nodes (CLN) and bone marrow-derived dendritic cells (BMDC) were evaluated by flow cytometry and ELISA. KEY FINDINGS Viable A. muciniphila supplementation conferred protection against T1D onset in STZ-induced T1D and NOD mouse models. T1D modulation by A. muciniphila in the STZ model was independent of the gut microbiota, and it was associated with increased tolerogenic type-2 dendritic cells (SIRP-α+CD11b+CD103+) and regulatory T (Treg) cells in PLN and pancreas. BMDC differentiated in the presence of A. muciniphila exhibited a tolerogenic profile and induced Treg cell generation in vitro. A. muciniphila-induced protection in T1D outcome was abrogated in FOXP3-DTR mice depleted of Treg cells, indicating that its mechanism of action is dependent on the CD4+Foxp3+ Treg cells. SIGNIFICANCE A. muciniphila supplementation attenuates T1D development in mice by modulating the tolerogenic immune response and is a promising new therapeutic tool for this autoimmune disease.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jefferson Elias-Oliveira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Sousa Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Assis Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sara Cândida Barbosa
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa Santana Gonsalez Machado
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhefferson Barbosa Guimarães
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaílla Cristina Faria Pacheco
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jonatã Bortolucci
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Laboratory of Immunology and Pulmonary Inflammation, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flaviano Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Valeria Reginatto
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Zhang J, Shen M. The Role of IL-17 in Systemic Autoinflammatory Diseases: Mechanisms and Therapeutic Perspectives. Clin Rev Allergy Immunol 2025; 68:27. [PMID: 40074883 DOI: 10.1007/s12016-025-09042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Interleukin (IL)-17, a pro-inflammatory cytokine, plays a pivotal role in immune regulation by bridging innate and adaptive responses. Beyond its canonical involvement in T helper-17 cells-mediated immunity, IL-17 contributes significantly to the pathogenesis of systemic autoinflammatory diseases (SAIDs) including Familial Mediterranean Fever (FMF), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-associated autoinflammatory diseases, and synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. Dysregulated IL-17 signaling drives inflammasome activation, neutrophil recruitment, and chronic tissue inflammation. IL-17 inhibitors have demonstrated efficacy in refractory SAIDs, though challenges such as increased infection risks, paradoxical inflammatory reactions, and uncertainties regarding long-term safety persist. Currently, there is insufficient data to support the use of IL-17 inhibitors as first-line treatments, and their role in managing SAIDs is yet to be fully defined. This review highlights the mechanistic role of IL-17 in SAIDs and emerging therapeutic strategies, including IL-17-targeted monotherapies and combination approaches with IL-1 or tumor necrosis factor (TNF) inhibitors. Future research should focus on biomarker development, combination therapies, and long-term studies to optimize the safety and efficacy of IL-17-targeted therapies in SAIDs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Min Shen
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
3
|
Leal VNC, Roa MEGV, Cantoni JS, Reis ECD, Lara AN, Pontillo A. Integrated Genetic and Cellular Analysis Reveals NLRP1 Activation in CD4+ T Lymphocytes During Chronic HIV Infection. Immunol Invest 2025; 54:147-166. [PMID: 39495019 DOI: 10.1080/08820139.2024.2419940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Most of the investigations related to inflammasome activation during HIV infection have focused on the receptor NLRP3 and innate immune cells such as monocytes/macrophages. However, during the past years, inflammasome activation has also been explored in lymphocytes, and novel sensors, other than the NLRP3, have been shown to play a role in the biology of these cells. Here, we hypothesized that NLRP1 may be involved in CD4+ T cell dysregulation in people living with HIV (PLWH), therefore contributing to chronic inflammation and to the pathogenesis of non-HIV-associated diseases. METHODS The activation of NLRP1 in CD4+ T cells was assessed ex-vivo and in-vitro by the meaning of anti-CD3/anti-CD28 and Talabostat/Val-boroPro (VbP) response. RESULTS Our results showed that the NLRP1 inflammasome was activated in PLWH CD4+ T cells, and that the stimulation of CD4+ T cells resulted in increased response to anti-CD3/anti-CD28 and VbP. Functional variants in NLRP1 significantly affected the level of inflammatory dysregulation of CD4+ T cells, therefore explaining at least in part the association with CD4+ T-mediated diseases. CONCLUSION PLWH CD4+ T cells are more prone to IL-1β release and pyroptosis, therefore contributing to chronic inflammation.
Collapse
Affiliation(s)
- Vinicius Nunes Cordeiro Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela Estefany Gislane Vera Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Julia Silva Cantoni
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Edione Cristina Dos Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Amanda Nazareth Lara
- Departamento de Moléstias Infecciosas e Parasitárias da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
4
|
Wang D, Wei T, Cui X, Xia L, Jiang Y, Yin D, Liao X, Li F, Li J, Wu Q, Lin X, Lang S, Le Y, Yang J, Yang J, Wei R, Hong T. Fam3a-mediated prohormone convertase switch in α-cells regulates pancreatic GLP-1 production in an Nr4a2-Foxa2-dependent manner. Metabolism 2025; 162:156042. [PMID: 39362520 DOI: 10.1016/j.metabol.2024.156042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Fam3a has been demonstrated to regulate pancreatic β-cell function and glucose homeostasis. However, the role and mechanism of Fam3a in regulating α-cell function remain unexplored. METHODS Glucagon and glucagon-like peptide-1 (GLP-1) levels in pancreas and plasma were measured in global Fam3a knockout (Fam3a-/-) mice. Human islet single-cell RNA sequencing (scRNA-seq) datasets were utilized to analyze gene expression correlations between FAM3A and PCSK1 (encoding PC1/3, which processes proglucagon into GLP-1). Mouse pancreatic α-cell line αTC1.9 cells were transfected with Fam3a siRNA or plasmid for Fam3a knockdown or overexpression to explore the effects of Fam3a on PC1/3 expression and GLP-1 production. The downstream mediator (including Nr4a2) was identified by transcriptomic analysis, and its role was confirmed by Fam3a knockdown or overexpression in αTC1.9 cells. Based on the interacted protein of Nr4a2 and the direct binding to Pcsk1 promoter, the transcription factor Foxa2 was selected for further verification. Nuclear translocation assay and dual-luciferase reporter assay were used to clarify the involvement of Fam3a-Nr4a2-Foxa2 pathway in PC1/3 expression and GLP-1 production. Moreover, α-cell-specific Fam3a knockout (Fam3aα-/-) mice were constructed to evaluate the metabolic variables and hormone levels under normoglycemic, high-fat diet (HFD)-fed and streptozotocin (STZ)-induced diabetic conditions. Exendin 9-39 (Ex9), a GLP-1 receptor antagonist, was used to investigate GLP-1 paracrine effects in Fam3aα-/- mice and in their primary islets. RESULTS Compared with wild-type mice, pancreatic and plasma active GLP-1 levels were increased in Fam3a-/- mice. Analysis of human islet scRNA-seq datasets showed a significant negative correction between FAM3A and PCSK1 in α-cells. Fam3a knockdown upregulated PC1/3 expression and GLP-1 production in αTC1.9 cells, while Fam3a overexpression displayed inverse effects. Transcriptomic analysis identified Nr4a2 as a key downstream mediator of Fam3a, and Nr4a2 expression in αTC1.9 cells was downregulated and upregulated by Fam3a knockdown and overexpression, respectively. Nr4a2 silencing increased PC1/3 expression, albeit Nr4a2 did not directly bind to Pcsk1 promoter. Instead, Nr4a2 formed a complex with Foxa2 to facilitate Fam3a-mediated Foxa2 nuclear translocation. Foxa2 negatively regulated PC1/3 expression and GLP-1 production. Besides, Foxa2 inhibited the transcriptional activity of Pcsk1 promoter at specific binding sites 10 and 6, and this inhibition was intensified by Nr4a2 in αTC1.9 cells. Compared with Flox/cre littermates, improved glucose tolerance, increased active GLP-1 level in pancreas and plasma, upregulated plasma insulin level in response to glucose, and decreased plasma glucagon level were observed in Fam3aα-/- mice. Primary islets isolated from Fam3aα-/- mice also showed an increase in active GLP-1 and insulin release. In addition, the insulinotropic effect of intra-islet GLP-1 was blocked by Ex9 in Fam3aα-/- mice and in their primary islets. Similarly, HFD-fed Fam3aα-/- mice also exhibited an improved glucose tolerance. Both HFD-fed and STZ-induced diabetic Fam3aα-/- mice showed an increased pancreatic active GLP-1 level, an elevated plasma insulin level and a reduced plasma glucagon level. CONCLUSIONS Fam3a deficiency in α-cells enhances pancreatic GLP-1 production to improve β-cell function via paracrine signaling in an Nr4a2-Foxa2-PC1/3-dependent manner. Our study unveils a novel strategy for reprogramming α-cell proglucagon processing output from glucagon to GLP-1 and deepen the understanding of crosstalk between α-cells and β-cells.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Yafei Jiang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xinyue Liao
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Jian Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xiafang Lin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
5
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
6
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Gayatri V, Krishna Prasad M, Mohandas S, Nagarajan S, Kumaran K, Ramkumar KM. Crosstalk between inflammasomes, inflammation, and Nrf2: Implications for gestational diabetes mellitus pathogenesis and therapeutics. Eur J Pharmacol 2024; 963:176241. [PMID: 38043778 DOI: 10.1016/j.ejphar.2023.176241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The role of inflammasomes in gestational diabetes mellitus (GDM) has emerged as a critical area of research in recent years. Inflammasomes, key components of the innate immune system, are now recognized for their involvement in the pathogenesis of GDM. Activation of inflammasomes in response to various triggers during pregnancy can produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), contributing to systemic inflammation and insulin resistance. This dysregulation not only impacts maternal health but also poses significant risks to fetal development and long-term health outcomes. Understanding the intricate interplay between inflammasomes and GDM holds promise for developing novel therapeutic strategies and interventions to mitigate the adverse effects of this condition on both mothers and their offspring. Researchers have elucidated that targeting inflammasomes using anti-inflammatory drugs and compounds can effectively reduce inflammation in GDM. Furthermore, the addition of nuclear factor erythroid 2-related factor 2 (Nrf2) to this complex mechanism opens novel avenues for therapeutics. The antioxidant properties of Nrf2 may potentially suppress inflammasome activation in GDM. This comprehensive review investigates the intricate relationship between inflammasomes and GDM, emphasizing the pivotal role of inflammation in its pathogenesis. It also sheds light on potential therapeutic strategies targeting inflammasome activation and explores the role of Nrf2 in mitigating inflammation in GDM.
Collapse
Affiliation(s)
- Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sanjushree Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Leal VNC, Paulino LM, Cambui RAG, Zupelli TG, Yamada SM, Oliveira LAT, Dutra VDF, Bub CB, Sakashita AM, Yokoyama APH, Kutner JM, Vieira CA, Santiago WMDS, Andrade MMS, Teixeira FME, Alberca RW, Gozzi-Silva SC, Yendo TM, Netto LC, Duarte AJS, Sato MN, Venturini J, Pontillo A. A common variant close to the "tripwire" linker region of NLRP1 contributes to severe COVID-19. Inflamm Res 2023; 72:1933-1940. [PMID: 36416944 PMCID: PMC9684769 DOI: 10.1007/s00011-022-01670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The heterogeneity of response to SARS-CoV-2 infection is directly linked to the individual genetic background. Genetic variants of inflammasome-related genes have been pointed as risk factors for several inflammatory sterile and infectious disease. In the group of inflammasome receptors, NLRP1 stands out as a good novel candidate as severity factor for COVID-19 disease. METHODS To address this question, we performed an association study of NLRP1, DPP9, CARD8, IL1B, and IL18 single nucleotide variants (SNVs) in a cohort of 945 COVID-19 patients. RESULTS The NLRP1 p.Leu155His in the linker region, target of viral protease, was significantly associated to COVID-19 severity, which could contribute to the excessive cytokine release reported in severe cases. CONCLUSION Inflammasome genetic background contributes to individual response to SARS-CoV-2.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Leandro M Paulino
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Raylane A G Cambui
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Thiago G Zupelli
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Suemy M Yamada
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Leonardo A T Oliveira
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Valéria de F Dutra
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Carolina B Bub
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Araci M Sakashita
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Ana Paula H Yokoyama
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - José M Kutner
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Camila A Vieira
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Wellyngton M de S Santiago
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Milena M S Andrade
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Franciane M E Teixeira
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Ricardo W Alberca
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Sarah C Gozzi-Silva
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Tatiana M Yendo
- Departamento de Dermatologia, Faculdade de Medicina, Instituto de Medicina Tropical, Universidade de São Paulo/FMUSP, São Paulo, Brasil
| | - Lucas C Netto
- Unidade Terapia Intensiva, Hospital das Clínicas/FMUSP, São Paulo, Brasil
| | - Alberto J S Duarte
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo/FMUSP, São Paulo, Brasil
| | - Maria N Sato
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - James Venturini
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil.
| |
Collapse
|
9
|
Liang K, Ke Z, Huang J, Zhang X. Expression and clinical value of NLRP1 and NLRC4 inflammasomes in prostate cancer. Oncol Lett 2023; 26:385. [PMID: 37559581 PMCID: PMC10407840 DOI: 10.3892/ol.2023.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
The present study explored the clinical value of the protein expression levels of nucleotide binding oligomerization-like receptor family pyrin domain containing 1 (NLRP1) and nucleotide-binding oligomerization domain leucine-rich repeat and caspase recruitment domain-containing 4 (NLRC4) inflammasomes in the diagnosis and treatment of prostate cancer. A total of 54 patients with prostatic hyperplasia and 58 patients with prostate cancer were recruited at The First People's Hospital of Pinghu between January and May 2022. Immunohistochemical staining was used to determine the protein expression levels of the NLRP1 and NLRC4 inflammasomes in addition to the proinflammatory cytokines IL-18 and IL-1β in the two groups of patients. The protein expression levels of NLRP1 and NLRC4 inflammasome were significantly increased in patients with prostate cancer compared with patients with prostate hyperplasia. The differences in expression of NLRP1 and NLRC4 inflammatory vesicles in prostate cancer of different stages were also compared based on data from The Cancer Genome Atlas. The protein expression level of NLRP1 demonstrated a significant positive correlation with IL-1β and IL-18 expression, and the protein expression level of the NLRC4 inflammasome was significantly positively correlated with IL-18 expression. The protein expression levels of both NLRP1 and NLRC4 demonstrated a significant positive correlation with the Gleason score of prostate cancer. The expression of NLRP1 in tumor (T)3/T4 was significantly higher compared with T1 and expression of the NLRC4 inflammasome in T2 and T3/T4 was significantly higher compared with T1. Expression of the NLRP1 and NLRC4 inflammasomes was significantly higher in patients with prostate cancer, compared with patients with prostatic hyperplasia. Therefore, expression of NLRP1 and NLRC4 may promote tumorigenesis by promoting the maturation and release of proinflammatory cytokines IL-1β and IL-18. Expression of the NLRP1 and NLRC4 inflammasomes demonstrated a significant positive correlation with the risk of prostate cancer. Expression of the NLRP1 and NLRC4 inflammasomes in middle- and advanced-stage tumors was higher compared with early-stage tumors. These results suggested that inflammasome expression may serve a significant role in the progression of tumors and could provide a fixed value for the risk assessment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Ke Liang
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Zunjin Ke
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Jianhong Huang
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Xijiong Zhang
- Department of Pathology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| |
Collapse
|
10
|
Somersalo E, Kuuliala K, Kuuliala A, Wasenius NS, Klemetti MM, Kivimäki AS, Kautiainen H, Eriksson JG, Laine MK. Circulating Cytokine Levels and Cardiovascular Disease Risk Profile in Young Adult Offspring of Women with Type 1 Diabetes. Diabetes Ther 2023:10.1007/s13300-023-01428-y. [PMID: 37286850 PMCID: PMC10299958 DOI: 10.1007/s13300-023-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Cytokines are key players in the development of both type 1 diabetes (T1D) and cardiovascular disease (CVD). Offspring of women with T1D are known to have an increased risk of early-onset CVD. We studied whether an increased risk of CVD can be observed in the cytokine profile among young adult offspring of women with T1D. METHODS This cross-sectional case-control study included 67 offspring of women with T1D (cases) and 79 control participants (controls). At an age of 18-23 years, they participated in a clinical assessment including laboratory tests and questionnaires. Cytokine levels were analyzed from venous blood samples after 10 h fasting using Quansys biosciences Q-Plex™ High Sensitivity Human Cytokine Array. RESULTS Circulating cytokine levels were in general similar between the groups. The circulating levels of interferon-γ (1.78 [IQR 1.20, 2.36] pg/mL versus 2.57 [IQR 1.50, 3.89] pg/mL) (p = 0.006) were lower in cases than controls. CONCLUSION The findings did not support our hypothesis that serum cytokine profile, determined in early adulthood, was associated with a more adverse CVD risk profile in offspring of women with T1D. Further studies are warranted to find out whether cytokines could serve as early biomarkers of CVD development or whether changes in the cytokine levels over years could be used to monitor CVD progression in offspring of women with T1D.
Collapse
Affiliation(s)
- Erik Somersalo
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niko S Wasenius
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Miira M Klemetti
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Anne S Kivimäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hannu Kautiainen
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Human Potential Translational Research Programme and Department of Obstetrics and Gynecology, National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences (SICS), Singapore, Singapore
| | - Merja K Laine
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
11
|
Wu J, Fang S, Feng P, Cai C, Zhang L, Yang L. Changes in expression levels of Nod-like receptors in the spleen of ewes. Anim Reprod 2023; 20:e20220093. [PMID: 37228386 PMCID: PMC10205055 DOI: 10.1590/1984-3143-ar2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/07/2023] [Indexed: 05/27/2023] Open
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) have critical effects on interfaces of the immune and reproductive systems, and the spleen plays a key role in both innate and adaptive immune functions. It is hypothesized that NLR family participates in maternal splenic immune regulation during early pregnancy in sheep. In this study, maternal spleens were collected on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation (n = 6 for each group) in ewes. Expression of NLR family, including NOD1, NOD2, class II transactivator (CIITA), NLR family apoptosis inhibitory protein (NAIP), nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing 1 (NLRP1), NLRP3 and NLRP7, was analyzed using quantitative real-time PCR, Western blot and immunohistochemistry analysis. The results revealed that expression levels of NOD1, NOD2, CIITA and NLRP3 were downregulated at days 13 and 16 of pregnancy, but expression of NLRP3 was increased at day 25 of pregnancy. In addition, expression values of NAIP and NLRP7 mRNA and proteins were improved at days 16 and 25 of pregnancy, and NLRP1 was peaked at days 13 and 16 of pregnancy in the maternal spleen. Furthermore, NOD2 and NLRP7 proteins were limited to the capsule, trabeculae and splenic cords. In summary, early pregnancy changes expression of NLR family in the maternal spleen, which may be related with the maternal splenic immunomodulation during early pregnancy in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Shengya Fang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Chunjiang Cai
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
12
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
13
|
Shen YW, Cheng YA, Li Y, Li Z, Yang BY, Li X. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154607. [PMID: 36610352 DOI: 10.1016/j.phymed.2022.154607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China; Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yang-Ang Cheng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China
| | - Yi Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zuo Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bing-You Yang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Li
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
14
|
Leal VNC, Pontillo A. Canonical Inflammasomes. Methods Mol Biol 2023; 2696:1-27. [PMID: 37578712 DOI: 10.1007/978-1-0716-3350-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell's ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called "canonical" inflammasomes.
Collapse
Affiliation(s)
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
15
|
Wang P, Gu Y, Yang J, Qiu J, Xu Y, Xu Z, Gao J, Wan C. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY) 2022; 14:9980-10008. [PMID: 36541912 PMCID: PMC9831740 DOI: 10.18632/aging.204438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammasomes are related to tumorigenesis and immune-regulation. Here, we investigated the prognostic value of the NLR family pyrin domain containing (NLRP) 1/NLRP3 inflammasome and its potential mechanisms in immune-regulation in gastric cancer (GC). METHODS We analyzed the differential expression of NLRP1/NLRP3 between tumor and normal tissues using the Oncomine and Tumor Immune Estimate Resource (TIMER) databases. Immunohistochemistry and western blotting were used to detect NLRP1/NLRP3 protein expression in GC tissues. Correlations between NLRP1/NLRP3 expression levels and patient survival were analyzed using Kaplan-Meier survival curves. The relationships of NLRP1/NLRP3 expression and tumor-infiltrating immune cells/marker genes were assessed using the TIMER database. NLRP1/NLRP3 and immune checkpoint gene correlations were verified by single-gene co-expression analyses, and tumor immune-related pathways involving NLRP1/NLRP3 were analyzed using gene set enrichment analysis (GSEA). RESULTS Elevated NLRP1/NLRP3 expression was significantly correlated with lymph node metastasis, poor survival, immune-infiltrating cell abundances, and immune cell markers. NLRP3 showed stronger correlations with immune infiltration and the prognosis of gastric cancer. NLRP1 and NLRP3 might be involved in the same tumor immune-related pathways. Thus, high NLRP1/NLRP3 expression promotes immune cell infiltration and poor prognosis in GC. NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC. CONCLUSIONS NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Yulan Gu
- Department of Oncology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiamin Qiu
- Department of Pathology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Yeqiong Xu
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| | - Zengxiang Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiguang Gao
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Chuandan Wan
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| |
Collapse
|
16
|
Wu J, Hu J, Zhang F, Jin Q, Sun X. High glucose promotes IL-17A-induced gene expression through histone acetylation in retinal pigment epithelium cells. Int Immunopharmacol 2022; 110:108893. [DOI: 10.1016/j.intimp.2022.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
17
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|