1
|
Koufaris C, Berger M, Aqeilan R. Causes and consequences of T cell DNA damage. Trends Immunol 2025:S1471-4906(25)00119-X. [PMID: 40382245 DOI: 10.1016/j.it.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Although DNA damage is a common cellular event, T cells experience significant genotoxic stresses because of rapid antigen-stimulated expansion and their presence in various nonlymphoid microenvironments. In addition to the well-established link between genomic instability and malignancy, recent genomic studies have uncovered a substantial mutational burden in nonmalignant T cells in both normal aging and disease contexts. Furthermore, genomic damage in T cells is accelerated in autoimmune diseases and in older individuals because of both intrinsic and extrinsic factors. This review highlights the different genotoxic stressors affecting T cells and the detrimental effects of persistent DNA damage and identifies the most critical knowledge gaps.
Collapse
Affiliation(s)
| | - Michael Berger
- The Concern Foundation Laboratories, Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami Aqeilan
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus; The Concern Foundation Laboratories, Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Wang Y, Zhang H, Miao C. Unraveling immunosenescence in sepsis: from cellular mechanisms to therapeutics. Cell Death Dis 2025; 16:393. [PMID: 40379629 DOI: 10.1038/s41419-025-07714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Sepsis is a life-threatening multiple organ dysfunction resulting from a dysregulated host response to infection, and patients with sepsis always exhibit a state of immune disorder characterized by both overwhelming inflammation and immunosuppression. The aging of immune system, namely "immunosenescence", has been reported to be correlated with high morbidity and mortality in elderly patients with sepsis. Initially, immunosenescence was considered as a range of age-related alterations in the immune system. However, increasing evidence has proven that persistent inflammation or even a short-term inflammatory challenge during sepsis could trigger accelerated aging of immune cells, which might further exacerbate inflammatory cytokine storm and promote the shift towards immunosuppression. Thus, premature immunosenescence is found in young sepsis individuals, which further aggravates immune disorders and induces the progression of sepsis. Furthermore, in old sepsis patients, the synergistic effects of both sepsis and aging may cause immunosenescence-associated alterations more significantly, resulting in more severe immune dysfunction and a worse prognosis. Therefore, it is necessary to explore the potential therapeutic strategies targeting immunosenescence during sepsis.
Collapse
Affiliation(s)
- Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
McKenney CD, Regot S. Cell cycle regulation by the ribotoxic stress response. Trends Cell Biol 2025:S0962-8924(25)00106-0. [PMID: 40379527 DOI: 10.1016/j.tcb.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells must sense and respond to numerous stimuli to maintain their function. Stress-activated protein kinases (SAPKs) are part of an integrated network that responds to these stimuli and have critical roles in determining cell behavior. Over the past 5 years, ribosomes and the ribotoxic stress response (RSR) have unexpectedly emerged as critical regulators of the SAPK network and drivers of global cell fate changes. In particular, RSR-SAPK signaling has potent effects on cellular proliferation, with important implications for senescence and cancer. In this review, we discuss cell cycle regulation by the SAPK p38, with a particular focus on how ribotoxic stress affects key cell cycle transitions.
Collapse
Affiliation(s)
- Connor D McKenney
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wang Z, Li M, Li W, He L, Wang L, Cai K, Zhao X, Chen Y, Li D. Hybrid Outer Membrane Vesicles with Genetically Engineering for Treatment of Implant-Associated Infections and Relapse Prevention Through Host Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415379. [PMID: 39950746 PMCID: PMC11984893 DOI: 10.1002/advs.202415379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/01/2025] [Indexed: 04/12/2025]
Abstract
Implant-associated infections (IAIs) are refractory to elimination, and the local immunosuppressive microenvironment (IME) exacerbates therapeutic difficulties, ultimately causing persistence and relapse. Therefore, exploring immunostrengthening treatments holds great promise for reversing IME and thoroughly eradicating chronic or repetitive infections. Bacterial outer membrane vesicles (OMVs) have emerged as potential immunostimulatory candidates; however, they lack active targeting capabilities and cause non-specific inflammatory side effects. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress CXCR4 and isolated cell membranes (mBMSCCXCR4) for hybridization with OMVs derived from Escherichia coli (E. coli) to produce nanovesicles (mBMSCCXCR4@OMV). The resulting mBMSCCXCR4@OMV nanovesicles demonstrate excellent bone marrow targeting capability and are effectively taken up by bone marrow-derived macrophages, triggering the efficient transition to pro-inflammatory M1 status through TLR/NF-κB pathway. This alteration promotes innate bactericidal capacity and antigen presentation. Subsequent activation of T and B cells and inhibition of myeloid-derived suppressor cells (MDSCs) facilitated in vivo adaptive immunity in mouse models. Additionally, mBMSCCXCR4@OMV boosted memory B cell and bacteria-specific antibody responses. Together, these data highlight the potential of mBMSCCXCR4@OMV to eradicate complicated IAIs and provide whole-stage protection against postsurgical relapse, thus marking a significant immunotherapeutic advancement in the post-antibiotic era.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Mingfei Li
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Medical 3D Printing CenterThe First Affiliated Hospital of Zhengzhou UniversityHenan Institute of Advanced Technology of Zhengzhou UniversityZhengzhou450052China
| | - Wenshuai Li
- Medical 3D Printing CenterThe First Affiliated Hospital of Zhengzhou UniversityHenan Institute of Advanced Technology of Zhengzhou UniversityZhengzhou450052China
| | - Liuliang He
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Long Wang
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Kehan Cai
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Yazhou Chen
- Medical 3D Printing CenterThe First Affiliated Hospital of Zhengzhou UniversityHenan Institute of Advanced Technology of Zhengzhou UniversityZhengzhou450052China
| | - Daifeng Li
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| |
Collapse
|
5
|
Abavisani M, Faraji S, Ebadpour N, Karav S, Sahebkar A. Beyond the Hayflick limit: How microbes influence cellular aging. Ageing Res Rev 2025; 104:102657. [PMID: 39788433 DOI: 10.1016/j.arr.2025.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP). The causes of senescence are multifaceted, including telomere attrition, oxidative stress, and genotoxic damage, and they extend to influences from microbial sources. Research increasingly emphasizes the role of the microbiome, especially gut microbiota (GM), in modulating host senescence processes. Beneficial microbial metabolites, such as short-chain fatty acids (SCFAs), support host health by maintaining antioxidant defenses and reducing inflammation, potentially mitigating senescence onset. Conversely, pathogenic bacteria like Pseudomonas aeruginosa and Helicobacter pylori introduce factors that damage host DNA or increase ROS, accelerating senescence via pathways such as NF-κB and p53-p21. This review explores the impact of bacterial factors on cellular senescence, highlighting the role of specific bacterial toxins in promoting senescence. Additionally, it discusses how dysbiosis and the loss of beneficial microbial species further contribute to age-related cellular deterioration. Modulating the gut microbiome to delay cellular senescence opens a path toward targeted anti-aging strategies. This work underscores the need for deeper investigation into microbial influence on aging, supporting innovative interventions to manage and potentially reverse cellular senescence.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Zhang X, Liu L. Senescent T Cells: The Silent Culprit in Acute Myeloid Leukemia Progression? Int J Mol Sci 2024; 25:12550. [PMID: 39684260 DOI: 10.3390/ijms252312550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors can evade immune surveillance and elimination through multiple mechanisms, with the induction of immune cell dysfunction serving as a crucial strategy. Mounting evidence indicates that T cell senescence constitutes the primary mechanism underlying T cell dysfunction in acute myeloid leukemia (AML) and represents one of the potential causes of immunotherapy failure. AML usually progresses rapidly and is highly susceptible to drug resistance, thereby resulting in recurrence and patient mortality. Hence, disrupting the immune interface within the bone marrow microenvironment of AML has emerged as a critical objective for synergistically enhancing tumor immunotherapy. In this review, we summarize the general characteristics, distinctive phenotypes, and regulatory signaling networks of senescent T cells and highlight their potential clinical significance in the bone marrow microenvironment of AML. Additionally, we discuss potential therapeutic strategies for alleviating and reversing T cell senescence.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Zheng J, Meng W, Chen S, Cui Z, Xian X, Tian J, Krysko DV, Li B, Zhang W. A near-infrared broad-spectrum antimicrobial nanoplatform powered by bacterial metabolic activity for enhanced antimicrobial photodynamic-immune therapy. Acta Biomater 2024; 184:335-351. [PMID: 38936751 DOI: 10.1016/j.actbio.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The emergence of antimicrobial-resistant bacterial infections poses a significant threat to public health, necessitating the development of innovative and effective alternatives to antibiotics. Photodynamic therapy (PDT) and immunotherapy show promise in combating bacteria. However, PDT's effectiveness is hindered by its low specificity to bacteria, while immunotherapy struggles to eliminate bacteria in immunosuppressive environments. In this work, we introduce an innovative near-infrared antimicrobial nanoplatform (ZFC) driven by bacterial metabolism. ZFC, comprising d-cysteine-functionalized pentafluorophenyl bacteriochlorin (FBC-Cy) coordinated with Zn2+, is designed for antimicrobial photodynamic-immune therapy (aPIT) against systemic bacterial infections. By specifically targeting bacteria via d-amino acid incorporation into bacterial surface peptidoglycans during metabolism, ZFC achieves precise bacterial clearance in wound and pulmonary infections, exhibiting an antimicrobial efficacy of up to 90 % with minimal damage to normal cells under 750 nm light. Additionally, ZFC enhances the activation of antigen-presenting cells by 3.2-fold compared to control groups. Furthermore, aPIT induced by ZFC triggers systemic immune responses and establishes immune memory, resulting in a 1.84-fold increase in antibody expression against bacterial infections throughout the body of mice. In conclusion, aPIT prompted by ZFC presents a approach to treating bacterial infections, offering a broad-spectrum solution for systemic bacterial infections. STATEMENT OF SIGNIFICANCE: The new concept demonstrated focuses on an innovative near-infrared antimicrobial nanoplatform (ZFC) for antimicrobial photodynamic-immune therapy (aPIT), highlighting its reliance on bacterial metabolism and its non-damaging effect on normal tissues. ZFC efficiently targets deep-tissue bacterial infections by harnessing bacterial metabolism, thereby enhancing therapeutic efficacy while sparing normal tissues from harm. This approach not only clears bacterial infections effectively but also induces potent adaptive immune responses, leading to the eradication of distant bacterial infections. By emphasizing ZFC's unique mechanism driven by bacterial metabolism and its tissue-sparing properties, this work underscores the potential for groundbreaking advancements in antimicrobial therapy. Such advancements hold promise for minimizing collateral damage to healthy tissues, thereby improving treatment outcomes and mitigating the threat of antimicrobial resistance. This integrated approach represents a significant progress forward in the development of next-generation antimicrobial therapies with enhanced precision and efficacy.
Collapse
Affiliation(s)
- Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xueying Xian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Azzi-Martin L, Touffait-Calvez V, Everaert M, Jia R, Sifré E, Seeneevassen L, Varon C, Dubus P, Ménard A. Cytolethal Distending Toxin Modulates Cell Differentiation and Elicits Epithelial to Mesenchymal Transition. J Infect Dis 2024; 229:1688-1701. [PMID: 38416880 DOI: 10.1093/infdis/jiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The bacterial genotoxin, cytolethal distending toxin (CDT), causes DNA damage in host cells, a risk factor for carcinogenesis. Previous studies have shown that CDT induces phenotypes reminiscent of epithelial to mesenchymal transition (EMT), a process involved in cancer initiation and progression. METHODS We investigated different steps of EMT in response to Helicobacter hepaticus CDT and its active CdtB subunit using in vivo and in vitro models. RESULTS Most of the steps of the EMT process were induced by CDT/CdtB and observed throughout the study in murine and epithelial cell culture models. CdtB induced cell-cell junction disassembly, causing individualization of cells and acquisition of a spindle-like morphology. The key transcriptional regulators of EMT (SNAIL and ZEB1) and some EMT markers were upregulated at both RNA and protein levels in response to CDT/CdtB. CdtB increased the expression and proteolytic activity of matrix metalloproteinases, as well as cell migration. A range of these results were confirmed in Helicobacter hepaticus-infected and xenograft murine models. In addition, colibactin, a genotoxic metabolite produced by Escherichia coli, induced EMT-like effects in cell culture. CONCLUSIONS Overall, these data show that infection with genotoxin-producing bacteria elicits EMT process activation, supporting their role in tumorigenesis.
Collapse
Affiliation(s)
- Lamia Azzi-Martin
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | | | - Maude Everaert
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Ruxue Jia
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Elodie Sifré
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Lornella Seeneevassen
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Christine Varon
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | - Pierre Dubus
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
- Institut de Pathologie et de Biologie du Cancer, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Armelle Ménard
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Xu D, Hu J, Mei J, Zhou J, Wang Z, Zhang X, Liu Q, Su Z, Zhu W, Liu H, Zhu C. Nanoadjuvant-triggered STING activation evokes systemic immunotherapy for repetitive implant-related infections. Bioact Mater 2024; 35:82-98. [PMID: 38283386 PMCID: PMC10818060 DOI: 10.1016/j.bioactmat.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Repetitive implant-related infections (IRIs) are devastating complications in orthopedic surgery, threatening implant survival and even the life of the host. Biofilms conceal bacterial-associated antigens (BAAs) and result in a "cold tumor"-like immune silent microenvironment, allowing the persistence of IRIs. To address this challenge, an iron-based covalent organic framed nanoadjuvant doped with curcumin and platinum (CFCP) was designed in the present study to achieve efficient treatment of IRIs by inducing a systemic immune response. Specifically, enhanced sonodynamic therapy (SDT) from CFCP combined with iron ion metabolic interference increased the release of bacterial-associated double-stranded DNA (dsDNA). Immunogenic dsDNA promoted dendritic cell (DC) maturation through activation of the stimulator of interferon gene (STING) and amplified the immune stimulation of neutrophils via interferon-β (IFN-β). At the same time, enhanced BAA presentation aroused humoral immunity in B and T cells, creating long-term resistance to repetitive infections. Encouragingly, CFCP served as neoadjuvant immunotherapy for sustained antibacterial protection on implants and was expected to guide clinical IRI treatment and relapse prevention.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Jun Hu
- Department of Laboratory Medicine, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jun Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, PR China
| | - Zhengxi Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Xudong Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Quan Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, PR China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| |
Collapse
|
12
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
13
|
Chen HY, Hsieh WC, Liu YC, Li HY, Liu PY, Hsu YT, Hsu SC, Luo AC, Kuo WC, Huang YJ, Liou GG, Lin MY, Ko CJ, Tsai HC, Chang SJ. Mitochondrial injury induced by a Salmonella genotoxin triggers the proinflammatory senescence-associated secretory phenotype. Nat Commun 2024; 15:2778. [PMID: 38555361 PMCID: PMC10981749 DOI: 10.1038/s41467-024-47190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.
Collapse
Affiliation(s)
- Han-Yi Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chieh Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yo Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Hsu
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Chi Luo
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jhen Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gan-Guang Liou
- Cryo-EM Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yun Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Jung Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
15
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
16
|
ElGhazaly M, Collins MO, Ibler AEM, Humphreys D. Typhoid toxin hijacks Wnt5a to establish host senescence and Salmonella infection. Cell Rep 2023; 42:113181. [PMID: 37792529 DOI: 10.1016/j.celrep.2023.113181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.
Collapse
Affiliation(s)
- Mohamed ElGhazaly
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Angela E M Ibler
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Daniel Humphreys
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| |
Collapse
|
17
|
Jiang J, Peng Z, Wang J, Chen M, Wan Y, Huang H, Liu Z, Wang J, Hou J. C-reactive protein impairs immune response of CD8 + T cells via FcγRIIb-p38MAPK-ROS axis in multiple myeloma. J Immunother Cancer 2023; 11:e007593. [PMID: 37844994 PMCID: PMC10582887 DOI: 10.1136/jitc-2023-007593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND C-reactive protein (CRP) is a prototypical acute phase protein in humans with the function of regulating immune cells. Serum CRP levels are elevated in multiple myeloma (MM), associated with MM cell proliferation and bone destruction. However, its direct effects on T lymphocytes in MM have not been elucidated. METHODS Public data sets were used to explore the correlation of CRP levels with immune cell infiltration and cytotoxicity score of CD8+ T cells in MM. In vitro, repeated freeze-thaw myeloma cell lines were taken as tumor antigens to load dendritic cells (DCs) derived from HLA-A*0201-positive healthy donors. MM-specific cytotoxic T cells (MM-CTL) were obtained from T lymphocytes of the corresponding donors pulsed with these DCs. B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T cells were manipulated by transfecting with lentivirus encoding an anti-BCMA single-chain variable fragment. Then T cells from healthy controls, MM-CTLs and BCMA CAR-T cells were exposed to CRP and analyzed for cell proliferation, cytotoxicity, immunophenotypes. CRP binding capacity to T cells before and after Fc gamma receptors IIb (FcγRIIb) blockage, p38 mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were also detected. In vivo, both normal C57BL/6J mice and the Vk*MYC myeloma mouse models were applied to confirm the impact of CRP on T cells. RESULTS CRP levels were negatively correlated with cell-infiltration and cytotoxicity score of CD8+ T cells in MM. In vitro experiments showed that CRP inhibited T-cell proliferation in a dose-dependent manner, impaired the cytotoxic activity and upregulated expression of senescent markers in CD8+ T cells. In vivo results validated the suppressive role of CRP in CD8+ T cells. CRP could bind to CD8+ T cells, mainly to the naïve T subset, while the binding was dramatically decreased by FcγRIIb blockage. Furthermore, CRP resulted in increased phosphorylation of p38 MAPK, elevated levels of reactive oxygen species and oxidized glutathione in CD8+ T cells. CONCLUSIONS We found that CRP impaired immune response of CD8+ T cells via FcγRIIb-p38MAPK-ROS signaling pathway. The study casted new insights into the role of CRP in anti-myeloma immunity, providing implications for future immunotherapy in MM.
Collapse
Affiliation(s)
- Jinxing Jiang
- Department of Hematology, Renji Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Peng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Junying Wang
- Department of Hematology, Renji Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengping Chen
- Department of Hematology, Renji Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yike Wan
- Department of Hematology, Renji Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghui Huang
- Department of Hematology, Renji Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jian Hou
- Department of Hematology, Renji Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Evangelou K, Belogiannis K, Papaspyropoulos A, Petty R, Gorgoulis VG. Escape from senescence: molecular basis and therapeutic ramifications. J Pathol 2023; 260:649-665. [PMID: 37550877 DOI: 10.1002/path.6164] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
Cellular senescence constitutes a stress response mechanism in reaction to a plethora of stimuli. Senescent cells exhibit cell-cycle arrest and altered function. While cell-cycle withdrawal has been perceived as permanent, recent evidence in cancer research introduced the so-called escape-from-senescence concept. In particular, under certain conditions, senescent cells may resume proliferation, acquiring highly aggressive features. As such, they have been associated with tumour relapse, rendering senescence less effective in inhibiting cancer progression. Thus, conventional cancer treatments, incapable of eliminating senescence, may benefit if revisited to include senolytic agents. To this end, it is anticipated that the assessment of the senescence burden in everyday clinical material by pathologists will play a crucial role in the near future, laying the foundation for more personalised approaches. Here, we provide an overview of the investigations that introduced the escape-from-senescence phenomenon, the identified mechanisms, as well as the major implications for pathology and therapy. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
19
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Fettucciari K, Fruganti A, Stracci F, Spaterna A, Marconi P, Bassotti G. Clostridioides difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int J Mol Sci 2023; 24:8155. [PMID: 37175861 PMCID: PMC10179142 DOI: 10.3390/ijms24098155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
21
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
22
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
23
|
Markelova NN, Semenova EF, Sineva ON, Sadykova VS. The Role of Cyclomodulins and Some Microbial Metabolites in Bacterial Microecology and Macroorganism Carcinogenesis. Int J Mol Sci 2022; 23:ijms231911706. [PMID: 36233008 PMCID: PMC9570213 DOI: 10.3390/ijms231911706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
A number of bacteria that colonize the human body produce toxins and effectors that cause changes in the eukaryotic cell cycle—cyclomodulins and low-molecular-weight compounds such as butyrate, lactic acid, and secondary bile acids. Cyclomodulins and metabolites are necessary for bacteria as adaptation factors—which are influenced by direct selection—to the ecological niches of the host. In the process of establishing two-way communication with the macroorganism, these compounds cause limited damage to the host, despite their ability to disrupt key processes in eukaryotic cells, which can lead to pathological changes. Possible negative consequences of cyclomodulin and metabolite actions include their potential role in carcinogenesis, in particular, with the ability to cause DNA damage, increase genome instability, and interfere with cancer-associated regulatory pathways. In this review, we aim to examine cyclomodulins and bacterial metabolites as important factors in bacterial survival and interaction with the host organism to show their heterogeneous effect on oncogenesis depending on the surrounding microenvironment, pathological conditions, and host genetic background.
Collapse
Affiliation(s)
- Natalia N. Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence: (N.N.M.); (V.S.S.)
| | - Elena F. Semenova
- Institute of Biochemical Technology, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | - Olga N. Sineva
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
| | - Vera S. Sadykova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence: (N.N.M.); (V.S.S.)
| |
Collapse
|
24
|
Yang C, Luo Y, Shen H, Ge M, Tang J, Wang Q, Lin H, Shi J, Zhang X. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat Commun 2022; 13:4866. [PMID: 35982036 PMCID: PMC9388665 DOI: 10.1038/s41467-022-32405-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Strategies to manipulate immune cell co-inhibitory or co-activating signals have revolutionized immunotherapy. However, certain immunologically cold diseases, such as bacterial biofilm infections of medical implants are hard to target due to the complexity of the immune co-stimulatory pathways involved. Here we show that two-dimensional manganese chalcogenophosphates MnPSe3 (MPS) nanosheets modified with polyvinylpyrrolidone (PVP) are capable of triggering a strong anti-bacterial biofilm humoral immunity in a mouse model of surgical implant infection via modulating antigen presentation and costimulatory molecule expression in the infectious microenvironment (IME). Mechanistically, the PVP-modified MPS (MPS-PVP) damages the structure of the biofilm which results in antigen exposure by generating reactive oxidative species, while changing the balance of immune-inhibitory (IL4I1 and CD206) and co-activator signals (CD40, CD80 and CD69). This leads to amplified APC priming and antigen presentation, resulting in biofilm-specific humoral immune and memory responses. In our work, we demonstrate that pre-surgical neoadjuvant immunotherapy utilizing MPS-PVP successfully mitigates residual and recurrent infections following removal of the infected implants. This study thus offers an alternative to replace antibiotics against hard-to-treat biofilm infections.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China.
| |
Collapse
|
25
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
26
|
Gu J, Lin Y, Wang Z, Pan Q, Cai G, He Q, Xu X, Cai X. Campylobacter jejuni Cytolethal Distending Toxin Induces GSDME-Dependent Pyroptosis in Colonic Epithelial Cells. Front Cell Infect Microbiol 2022; 12:853204. [PMID: 35573789 PMCID: PMC9093597 DOI: 10.3389/fcimb.2022.853204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 01/02/2023] Open
Abstract
Background Cytolethal distending toxin (CDT) is a critical virulence factor of Campylobacter jejuni, and it induces cell death and regulates inflammation response in human epithelial cells. Pyroptosis is an inflammatory form of programmed cell death (PCD), but whether it is involved in CDT-mediated cytotoxicity remains elusive. Aims This study explores the role and mechanism of pyroptosis in CDT-mediated cytotoxicity. Methods HCT116 and FHC cell lines were treated with CDT. Cell Counting Kit-8 (CCK-8) assay was used to detect cell viability. Western blotting was used to measure the expression of related proteins in the pathway, and cell morphology observation, annexin V/propidium iodide (PI) staining and lactate dehydrogenase (LDH) release assay were performed to evaluate the occurrence of pyroptosis. Result Our results show that C. jejuni CDT effectively induces pyroptosis in a dose- and time- dependent manner in human colonic epithelial cells owing to its DNase activity. Specific pyroptotic features including large bubbles emerging from plasma membrane and LDH release were observed upon CDT treatment. Moreover, CDT-induced pyroptosis involves the caspase-9/caspase-3 axis, which is followed by gasdermin E (GSDME) cleavage rather than gasdermin D (GSDMD). N-acetyl cysteine (NAC), a reactive oxygen species (ROS) inhibitor, attenuates the activation of caspase-9/3, the cleavage of GSDME and pyroptotic characteristic, therefore demonstrating ROS initiates pyroptotic signaling. Conclusions We first clarify a molecular mechanism that CDT induces pyroptosis via ROS/caspase-9/caspase-3/GSDME signaling. These findings provide a new insight on understanding of CDT-induced pathogenesis at the molecular level.
Collapse
Affiliation(s)
- Jiayun Gu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhichao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qicong Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guohua Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Xuwang Cai,
| |
Collapse
|
27
|
González-Osuna L, Sierra-Cristancho A, Cafferata EA, Melgar-Rodríguez S, Rojas C, Carvajal P, Cortez C, Vernal R. Senescent CD4 +CD28 - T Lymphocytes as a Potential Driver of Th17/Treg Imbalance and Alveolar Bone Resorption during Periodontitis. Int J Mol Sci 2022; 23:ijms23052543. [PMID: 35269683 PMCID: PMC8910032 DOI: 10.3390/ijms23052543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Senescent cells express a senescence-associated secretory phenotype (SASP) with a pro-inflammatory bias, which contributes to the chronicity of inflammation. During chronic inflammatory diseases, infiltrating CD4+ T lymphocytes can undergo cellular senescence and arrest the surface expression of CD28, have a response biased towards T-helper type-17 (Th17) of immunity, and show a remarkable ability to induce osteoclastogenesis. As a cellular counterpart, T regulatory lymphocytes (Tregs) can also undergo cellular senescence, and CD28− Tregs are able to express an SASP secretome, thus severely altering their immunosuppressive capacities. During periodontitis, the persistent microbial challenge and chronic inflammation favor the induction of cellular senescence. Therefore, senescence of Th17 and Treg lymphocytes could contribute to Th17/Treg imbalance and favor the tooth-supporting alveolar bone loss characteristic of the disease. In the present review, we describe the concept of cellular senescence; particularly, the one produced during chronic inflammation and persistent microbial antigen challenge. In addition, we detail the different markers used to identify senescent cells, proposing those specific to senescent T lymphocytes that can be used for periodontal research purposes. Finally, we discuss the existing literature that allows us to suggest the potential pathogenic role of senescent CD4+CD28− T lymphocytes in periodontitis.
Collapse
Affiliation(s)
- Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Correspondence: (L.G.-O.); (R.V.)
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370035, Chile
| | - Emilio A. Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima 15067, Peru
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile;
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (A.S.-C.); (E.A.C.); (S.M.-R.); (C.R.)
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile;
- Correspondence: (L.G.-O.); (R.V.)
| |
Collapse
|
28
|
Lai YR, Chang YF, Ma J, Chiu CH, Kuo ML, Lai CH. From DNA Damage to Cancer Progression: Potential Effects of Cytolethal Distending Toxin. Front Immunol 2021; 12:760451. [PMID: 34868002 PMCID: PMC8634426 DOI: 10.3389/fimmu.2021.760451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cytolethal distending toxin (CDT), one of the most important genotoxins, is produced by several gram-negative bacteria and is involved in bacterial pathogenesis. Recent studies have shown that bacteria producing this peculiar genotoxin target host DNA, which potentially contributes to development of cancer. In this review, we highlighted the recent studies focusing on the idea that CDT leads to DNA damage, and the cells with inappropriately repaired DNA continue cycling, resulting in cancer development. Understanding the detailed mechanisms of genotoxins that cause DNA damage might be useful for targeting potential markers that drive cancer progression and help to discover new therapeutic strategies to prevent diseases caused by pathogens.
Collapse
Affiliation(s)
- Yi-Ru Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Fang Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jason Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Ling Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
29
|
Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-dependent type I interferon response. Cell Mol Life Sci 2021; 78:6319-6335. [PMID: 34308492 PMCID: PMC8429409 DOI: 10.1007/s00018-021-03902-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Collapse
|