1
|
Zhou P, Tang T, Zhao P, Wang Q, Hu X, Si J, Yang T, Zhou S, An W, Jiang Y. Unveiling the hidden dance: SPP1 + macrophages identified in ulcerative colitis reveal crosstalk with CHI3L1 + fibroblasts. J Transl Med 2025; 23:567. [PMID: 40399882 PMCID: PMC12093798 DOI: 10.1186/s12967-025-06565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/30/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon. The specific cause of UC is still not fully understood, but this condition is believed to arise from a combination of environmental, genetic, microbial, and immune factors. This study aimed to explore the specific roles of macrophages and fibroblasts in UC pathogenesis, focusing on their interactions and contributions to disease progression. METHODS We utilized single-cell RNA sequencing (scRNA-seq) to analyze macrophages and fibroblasts in peripheral blood and colon biopsy samples from UC patients. Bulk RNA sequencing and spatial transcriptomic data from the Gene Expression Omnibus (GEO) database and flow cytometry and multiplex immunohistochemistry (mIHC) data were used for validation. Statistical analyses were performed to assess the correlation between cell abundance and disease severity. RESULTS Macrophages and fibroblasts were identified as key communication hubs in UC; specifically, SPP1 + macrophages and CHI3L1 + fibroblasts were significantly enriched at the sites of inflammation. These cells are strongly correlated with disease severity and orchestrate inflammatory responses within the intestinal immune microenvironment, contributing to UC-associated colorectal cancer. CONCLUSIONS Our study identified SPP1 + macrophages and CHI3L1 + fibroblasts as key contributors to UC pathogenesis. These cells are enriched in inflammatory sites, are correlated with disease severity, and play a role in UC-associated colorectal cancer, providing new insights into UC mechanisms.
Collapse
Affiliation(s)
- Peiwen Zhou
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Pingwei Zhao
- Department of Gastrointestinal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xintong Hu
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Junzhuo Si
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Tianshi Yang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shuai Zhou
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenyan An
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Ou Z, Li L, Ren P, Zhou T, He F, Chen J, Cai H, Han X, Wu Y, Li J, Li X, Tan Q, Li W, Chen Q, Zhang N, He X, Chen W, Zhao Y, Sun J, Zhang Q, Wu Y, Liang Y, You J, Hu G, Tian X, Liao S, Fu B, Chen A, Cai X, Yang H, Wang J, Jin X, Xu X, Jia W, Li J, Yan H. Spatiotemporal Transcriptomic Profiling Reveals the Dynamic Immunological Landscape of Alveolar Echinococcosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405914. [PMID: 39985260 PMCID: PMC12079354 DOI: 10.1002/advs.202405914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/03/2024] [Indexed: 02/24/2025]
Abstract
Alveolar echinococcosis (AE) is caused by the chronic infection of E. multilocularis, whose tumor-like growth can lead to high fatality if improperly treated. The early diagnosis of infection and the treatment of advanced AE remain challenging. Herein, bulk RNA-seq, scRNA-seq, and spatial transcriptomics technologies are integrated, to reveal the host immune response mechanism against E. multilocularis both spatially and chronologically, collecting mouse liver samples at multiple timepoints up to 15 months post infection. These results unveil an unprecedented high-resolution spatial atlas of the E. multilocularis infection foci and the functional roles of neutrophils, Spp1+ macrophages, and fibroblasts during disease progression. The heterogeneity of neutrophil and macrophage subpopulations are critical in both parasite-killing and the occurrence of immunosuppression during AE progression. These findings indicate the transition of parasite control strategy from "active killing" to "negative segregation" by the host, providing instructive insights into the treatment strategy for echinococcosis.
Collapse
Affiliation(s)
- Zhihua Ou
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
| | - Li Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Peidi Ren
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
| | - Ting‐Ting Zhou
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Fan He
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jialing Chen
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huimin Cai
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Xiumin Han
- Qinghai Provincial People's HospitalClinical Research Institute of Hydatid DiseaseXining810007China
| | - Yao‐Dong Wu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Jiandong Li
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Xiu‐Rong Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Qiming Tan
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 7Kraków30‐387Poland
| | - Wenhui Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Qi Chen
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Nian‐Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Xiuju He
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Wei‐Gang Chen
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Yanping Zhao
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Jiwen Sun
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Qian Zhang
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yan‐Tao Wu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Yingan Liang
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- Department of Immunology and MicrobiologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jie You
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Guohai Hu
- China National GeneBankBGI ResearchShenzhen518120China
| | - Xue‐Qi Tian
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | | | - Bao‐Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Ao Chen
- BGI ResearchChongqing401329China
- JFL‐BGI STOmics CenterJinfeng LaboratoryChongqing401329China
| | - Xue‐Peng Cai
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | | | - Jian Wang
- BGI ResearchShenzhen518083China
- China National GeneBankBGI ResearchShenzhen518120China
| | - Xin Jin
- BGI ResearchShenzhen518083China
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Shenzhen Key Laboratory of Transomics BiotechnologiesBGI ResearchShenzhen518083China
| | - Xun Xu
- BGI ResearchShenzhen518083China
- Guangdong Provincial Key Laboratory of Genome Read and WriteBGI ResearchShenzhen518083China
| | - Wan‐Zhong Jia
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchBelgrade11000Serbia
| | - Hong‐Bin Yan
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| |
Collapse
|
3
|
Chen DW, Schrey JM, Wafula EK, Fan JM, Adams SE, Taylor DM, Kurre P. Leukemia confers a durable imprint on healthy hematopoietic stem and progenitor cells. Cancer Lett 2025; 616:217590. [PMID: 40021043 DOI: 10.1016/j.canlet.2025.217590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Recent models of infection and experimental inflammation reveal that hematopoietic stem and progenitor cells (HSPCs) can generate a memory of the exposure. While the acute inflammatory activity rapidly resolves, cells acquire a heightened capacity to respond to subsequent stimulation. Inflammation is also a constitutive feature of cancer, including hematologic malignancies. Here, we adapt a translationally relevant model of acute myeloid leukemia (AML) to determine if inflammation in the bone marrow (BM) niche durably reprograms resident healthy HSPCs. To simulate the onset of malignancy and the subsequent remission, we generated hematopoietic chimera composed of healthy HSPCs and HSPCs bearing an inducible oncogenic human MLL-AF9 translocation expression cassette, a validated model of AML. Results show that the exposure to AML blasts in the BM leaves healthy HSPCs with transcriptomic changes and a shift to glycolytic metabolism during experimental remission. A secondary challenge of AML-experienced animals results in gene expression changes in inflammatory and metabolic pathways. These modified responses coincide with altered chromatin accessibility in AML-experienced HSPCs. Altogether, our observations provide first evidence for the durable inflammatory reprogramming of healthy HSPCs in the cancer microenvironment.
Collapse
Affiliation(s)
- Ding-Wen Chen
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie M Schrey
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric K Wafula
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jian-Meng Fan
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Adams
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang M, Ma J, Mulati S, Chang J, Zhang W. Melezitose inhibited glycolytic pathway and enhances anti-Crohn's disease activity via binding to PGK1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119443. [PMID: 39920914 DOI: 10.1016/j.jep.2025.119443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Alhagi honey is a light yellow sugar granule formed by concentrating the liquid secreted by Alhagi branches and leaves. It is a traditional Uygur medicine often used to treat abdominal pain, diarrhea, dysentery, and other conditions. Modern research has indicated that the main active components of Alhagi honey are oligosaccharides and polysaccharides. Our previous research had identified that the extract of Alhagi honey exhibits good anti-inflammatory pharmacological activity, however, its efficacy against Crohn's disease (CD) remains to be elucidated. AIM OF THE STUDY To determine the efficacy of the extract of Alhagi honey in CD and to explore its potential targets and mechanisms. MATERIALS AND METHODS Mel (melitriose) is extracted from dried Alhagi honey. In vivo, 2.5% 2,4,6-trinitrobenzenesulfonic acid (TNBS, At a dosage of 100 mg/kg) is used as an enema to induce CD-like changes in the rat colon. Over the subsequent fortnight, the modeled rats were treated with Mel via gavage. The histopathological alterations and repair ability of colonic injury in the colon tissue were evaluated using hematoxylin and eosin (H&E), Masson's trichrome, and immunofluorescence staining. Additionally, the amelioration of inflammatory responses in the colon was assessed using enzyme-linked immunosorbent assay (ELISA). The reparative capacity of Mel on inflammation was evaluated by inducing inflammation in RAW264.7 cells with lipopolysaccharide (LPS). The Drug Affinity Responsive Target Stability (DARTS) experiment was used to explore the relevant targets of action. Furthermore, network pharmacology was used to investigate the mechanism of action of Mel, to further validate its effects at the cellular level. RESULTS In the CD rat model, treatment with Mel significantly improved colonic mucosal damage and inflammatory infiltration. It also demonstrated a reduced collagen fiber deposition, thereby ameliorating fibrotic changes in colonic tissue. Furthermore, Mel decreased the expression of pro-inflammatory factors and increased the expression of anti-inflammatory factors in colonic tissue and cell supernatants. Further research confirmed that Mel influences the glycolytic pathway by binding to phosphoglycerate kinase 1 (PGK1) and suppressing its activity, leading to reduced production of adenosine triphosphate (ATP) and its metabolites, 2-phosphoglycerate (2-PG), 3-phosphoglycerate (3-PG); thus, playing a role in anti-inflammation and promotion of repair. This mechanism was further validated using the PGK1 inhibitor NG52, which also demonstrated a reduction in the production of ATP, 2-PG, and 3-PG. CONCLUSIONS This study revealed that Mel exerts its anti-inflammatory and reparative capabilities in vitro and in vivo by inhibiting the activity of the key glycolytic enzyme PGK1, leading to reduced production of ATP and its products 2-PG and 3-PG, thereby ameliorating the symptoms of CD. It can emerge as a promising candidate for CD treatment.
Collapse
Affiliation(s)
- Miaomiao Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi, 830017, China.
| | - Jianing Ma
- School of Pharmacy, Xinjiang Medical University, Urumchi, 830017, China.
| | - Shulipan Mulati
- School of Pharmacy, Xinjiang Medical University, Urumchi, 830017, China.
| | - Junmin Chang
- School of Pharmacy, Xinjiang Medical University, Urumchi, 830017, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, 830017, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, 830017, China; Engi-pneering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, 830017, China.
| | - Weiyi Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi, 830017, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, 830017, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, 830017, China; Engi-pneering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, 830017, China.
| |
Collapse
|
6
|
Sun M, Garnier L, Chevalier R, Roumain M, Wang C, Angelillo J, Montorfani J, Pick R, Brighouse D, Fournier N, Tarussio D, Tissot S, Lobaccaro JM, Petrova TV, Jandus C, Speiser DE, Kopf M, Pot C, Scheiermann C, Homicsko K, Muccioli GG, Garg AD, Hugues S. Lymphatic-derived oxysterols promote anti-tumor immunity and response to immunotherapy in melanoma. Nat Commun 2025; 16:1217. [PMID: 39890772 PMCID: PMC11893137 DOI: 10.1038/s41467-025-55969-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2025] [Indexed: 02/03/2025] Open
Abstract
In melanoma, lymphangiogenesis correlates with metastasis and poor prognosis and promotes immunosuppression. However, it also potentiates immunotherapy by supporting immune cell trafficking. We show in a lymphangiogenic murine melanoma that lymphatic endothelial cells (LECs) upregulate the enzyme Ch25h, which catalyzes the formation of 25-hydroxycholesterol (25-HC) from cholesterol and plays important roles in lipid metabolism, gene regulation, and immune activation. We identify a role for LECs as a source of extracellular 25-HC in tumors inhibiting PPAR-γ in intra-tumoral macrophages and monocytes, preventing their immunosuppressive function and instead promoting their conversion into proinflammatory myeloid cells that support effector T cell functions. In human melanoma, LECs also upregulate Ch25h, and its expression correlates with the lymphatic vessel signature, infiltration of pro-inflammatory macrophages, better patient survival, and better response to immunotherapy. We identify here in mechanistic detail an important LEC function that supports anti-tumor immunity, which can be therapeutically exploited in combination with immunotherapy.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Romane Chevalier
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Chen Wang
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Julien Angelillo
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Julien Montorfani
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Nadine Fournier
- Translational Data Science (TDS), Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David Tarussio
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Oncology, Center for Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Stéphanie Tissot
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Oncology, Center for Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Jean-Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Tatiana V Petrova
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Oncohaematology, Geneva, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Oncohaematology, Geneva, Switzerland
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | | | - Giulio G Muccioli
- Metabolism and Nutrition Research Group, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine (CMM), KU Leuven, Belgium
| | - Stéphanie Hugues
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
- Translational Research Centre in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
7
|
Zheng DC, Hu JQ, Mai CT, Huang L, Zhou H, Yu LL, Xie Y. Liver X receptor inverse agonist SR9243 attenuates rheumatoid arthritis via modulating glycolytic metabolism of macrophages. Acta Pharmacol Sin 2024; 45:2354-2365. [PMID: 38987388 PMCID: PMC11489696 DOI: 10.1038/s41401-024-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Liver X receptors (LXRs) which link lipid metabolism and inflammation, were overexpressed in experimental rheumatoid arthritis (RA) rats as observed in our previous studies, while suppression of LXRα by silybin ameliorates arthritis and abnormal lipid metabolism. However, the role of LXRs in RA remains undefined. In this study, we investigated the inhibition role of LXRs in the polarization and activation of M1 macrophage by using a special LXRs inverse agonist SR9243, which led to ameliorating the progression of adjuvant-induced arthritis (AIA) in rats. Mechanistically, SR9243 disrupted the LPS/IFN-γ-induced Warburg effect in M1 macrophages, while glycolysis inhibitor 2-DG attenuated the inhibition effect of SR9243 on M1 polarization and the cytokines expression of M1 macrophages including iNOS, TNF-α, and IL-6 in vitro. Furthermore, SR9243 downregulated key glycolytic enzymes, including LDH-A, HK2, G6PD, GLUT1, and HIF-1α in M1 macrophages, which is mediated by increased phosphorylation of AMPK (Thr172) and reduced downstream phosphorylation of mTOR (Ser2448). Importantly, gene silencing of LXRs compromises the inhibition effect of SR9243 on M1 macrophage polarization and activation. Collectively, for the first time, our findings suggest that the LXR inverse agonist SR9243 mitigates adjuvant-induced rheumatoid arthritis and protects against bone erosion by inhibiting M1 macrophage polarization and activation through modulation of glycolytic metabolism via the AMPK/mTOR/HIF-1α pathway.
Collapse
Affiliation(s)
- De-Chong Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Li Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Hu Z, Luo Y, Lin W, Wu X. IRF4 Suppresses Osteogenic Differentiation of Periodontal Ligament Stem Cells by Activating IL-18 Signaling Pathway in Periodontitis. Adv Biol (Weinh) 2024; 8:e2400099. [PMID: 39078121 DOI: 10.1002/adbi.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/30/2024] [Indexed: 07/31/2024]
Abstract
The present study aims to investigate the role of interferon regulatory factor 4 (IRF4) in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and analyze the underlying signaling of these processes. In this study, IRF4 is upregulated in periodontitis periodontal ligament tissues, as compared to healthy periodontal ligament tissues. IRF4 knockdown increases cell proliferation, decreases levels of tumor necrosis factor-alpha, interleukin-6, and interleukin-8, enhances osteogenic activity, and increases the expression of RUNX family transcription factor 2, Collagen I, and Osteocalcin in PDLSCs. The opposite results are observed in IRF4 overexpressed PDLSCs. Additionally, GSEA shows that IRF4 activates the interleukin-18 (IL-18) signaling pathway. The expressions of IL-18, B-cell translocation gene 2, interleukin-1beta, and caspase-3 are decreased by IRF4 knockdown, while increased by IRF4 overexpression. IL-18 overexpression eliminates the promoting effect of IRF4 knockdown on osteogenic differentiation of PDLSCs. In conclusion, IRF4 suppresses osteogenic differentiation of PDLSCs by activating the IL-18 signaling pathway.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Stomatology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Hangzhou), Hangzhou, Zhejiang, 310024, China
| | - Yongjie Luo
- Department of Outpatient & Emergency, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Hangzhou), Hangzhou, Zhejiang, 310024, China
| | - Wei Lin
- Department of Stomatology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Hangzhou), Hangzhou, Zhejiang, 310024, China
| | - Xiaolian Wu
- Zhongtai Street Health Service Center, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
9
|
Jacobs MME, Maas RJF, Jonkman I, Negishi Y, Tielemans Zamora W, Yanginlar C, van Heck J, Matzaraki V, Martens JHA, Baltissen M, Vermeulen M, Morla-Folch J, Ranzenigo A, Wang W, Umali M, Ochando J, van der Vlag J, Hilbrands LB, Joosten LAB, Netea MG, Mulder WJM, van Leent MMT, Mhlanga MM, Teunissen AJP, Rother N, Duivenvoorden R. Trained immunity is regulated by T cell-induced CD40-TRAF6 signaling. Cell Rep 2024; 43:114664. [PMID: 39178113 PMCID: PMC11536040 DOI: 10.1016/j.celrep.2024.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Maaike M E Jacobs
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne J F Maas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem Tielemans Zamora
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cansu Yanginlar
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julia van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ranzenigo
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Umali
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Ran L, Chen M, Ye J, Zhang S, Luo Z, Bai T, Qian C, Zhou Q, Shan M, Chu Y, Herrmann J, Li Q, Wang F. UK5099 Inhibits the NLRP3 Inflammasome Independently of its Long-Established Target Mitochondrial Pyruvate Carrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307224. [PMID: 38946607 PMCID: PMC11434118 DOI: 10.1002/advs.202307224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Targeting NLRP3 inflammasome has been recognized as a promising therapeutic strategy for the treatment of numerous common diseases. UK5099, a long-established inhibitor of mitochondrial pyruvate carrier (MPC), is previously found to inhibit macrophage inflammatory responses independent of MPC expression. However, the mechanisms by which UK5099 inhibit inflammatory responses remain unclear. Here, it is shown that UK5099 is a potent inhibitor of the NLRP3 inflammasome in both mouse and human primary macrophages. UK5099 selectively suppresses the activation of the NLRP3 but not the NLRC4 or AIM2 inflammasomes. Of note, UK5099 retains activities on NLRP3 in macrophages devoid of MPC expression, indicating this inhibitory effect is MPC-independent. Mechanistically, UK5099 abrogates mitochondria-NLRP3 interaction and in turn inhibits the assembly of the NLRP3 inflammasome. Further, a single dose of UK5099 persistently reduces IL-1β production in an endotoxemia mouse model. Importantly, structure modification reveals that the inhibitory activities of UK5099 on NLRP3 are unrelated to the existence of the activated double bond within the UK5099 molecule. Thus, this study uncovers a previously unknown molecular target for UK5099, which not only offers a new candidate for the treatment of NLRP3-driven diseases but also confounds its use as an MPC inhibitor in immunometabolism studies.
Collapse
Affiliation(s)
- Linyu Ran
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Miao Chen
- Department of EmergencyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainan570102China
| | - Jihui Ye
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Song Zhang
- Department of Cardiovascular MedicineMayo ClinicRochesterMN55902USA
- Center for Regenerative MedicineMayo ClinicRochesterMN55902USA
| | - Zhibing Luo
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Tengfei Bai
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RdShanghai201203China
| | - Chenchen Qian
- Division of Hospital Internal MedicineMayo ClinicPhoenixAZ85054USA
| | - Quan Zhou
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Mengtian Shan
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
- Medical CollegeTongji UniversityShanghai200092China
| | - Yong Chu
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RdShanghai201203China
| | - Joerg Herrmann
- Department of Cardiovascular MedicineMayo ClinicRochesterMN55902USA
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
| | - Feilong Wang
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji UniversityShanghai200120China
| |
Collapse
|
11
|
Pannetta M, Smal M, Ferravante C, Eletto D, Di Rosa D, Alexandrova E, Rizzo F, Voli A, Tosco A, Weisz A, Porta A. Transcriptome analysis of macrophages during Brucella abortus infection clarifies the survival mechanisms of the bacteria. Diagn Microbiol Infect Dis 2024; 110:116401. [PMID: 38878343 DOI: 10.1016/j.diagmicrobio.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Brucellosis is a critical zoonotic disease impacting humans and animals globally, causing symptoms like fever and arthritis in humans and reproductive issues in animals. The disease stems from the Brucella genus, adept at evading the immune system and proliferating within host cells. This study explores how Brucella abortus manipulates host cellular mechanisms to sustain infection, focusing on the interaction with murine macrophages over 24 h. Initial host defenses involve innate immune responses, while Brucella's survival strategies include evading lysosomal degradation and modulating host cell functions through various pathways. The research identified significant transcriptional changes in macrophages post-infection, highlighting pathways such as cytokine storm, pyroptosis signaling, Toll-like receptor pathways, and LXRs/RXRs signaling. The findings shed light on Brucella's complex mechanisms to undermine host defenses and underscore the need for further investigation into therapeutic targets to combat brucellosis.
Collapse
Affiliation(s)
- Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Marharyta Smal
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy
| | - Carlo Ferravante
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy; Medical Genomics Program and Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Domenico Di Rosa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy; Medical Genomics Program and Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy; Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, SA, Italy
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy; Medical Genomics Program and Division of Oncology, AOU "S. Giovanni di Dio e Ruggi d'Aragona", University of Salerno, Salerno, Italy; Genome Research Center for Health-CRGS, Campus of Medicine of the University of Salerno, Baronissi, SA, Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
12
|
Bourner LA, Chung LA, Long H, McGettrick AF, Xiao J, Roth K, Bailey JD, Strickland M, Tan B, Cunningham J, Lutzke B, McGee J, Otero FJ, Gemperline DC, Zhang L, Wang YC, Chalmers MJ, Yang CW, Gutierrez JA, O'Neill LAJ, Dorsey FC. Endogenously produced itaconate negatively regulates innate-driven cytokine production and drives global ubiquitination in human macrophages. Cell Rep 2024; 43:114570. [PMID: 39093697 DOI: 10.1016/j.celrep.2024.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
A wide variety of electrophilic derivatives of itaconate, the Kreb's cycle-derived metabolite, are immunomodulatory, yet these derivatives have overlapping and sometimes contradictory activities. Therefore, we generated a genetic system to interrogate the immunomodulatory functions of endogenously produced itaconate in human macrophages. Endogenous itaconate is driven by multiple innate signals restraining inflammatory cytokine production. Endogenous itaconate directly targets cysteine 13 in IRAK4 (disrupting IRAK4 autophosphorylation and activation), drives the degradation of nuclear factor κB, and modulates global ubiquitination patterns. As a result, cells unable to make itaconate overproduce inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and IL-1β in response to these innate activators. In contrast, the production of interferon (IFN)β, downstream of LPS, requires the production of itaconate. These data demonstrate that itaconate is a critical arbiter of inflammatory cytokine production downstream of multiple innate signaling pathways, laying the groundwork for the development of itaconate mimetics for the treatment of autoimmunity.
Collapse
Affiliation(s)
- Luke A Bourner
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Linda A Chung
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Haiyan Long
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Junpeng Xiao
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Kenneth Roth
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jade D Bailey
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Marie Strickland
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Bo Tan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jason Cunningham
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Barry Lutzke
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James McGee
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Francella J Otero
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - David C Gemperline
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lin Zhang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ying C Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michael J Chalmers
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Chiao-Wen Yang
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jesus A Gutierrez
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Frank C Dorsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
13
|
Bahiraii S, Braunböck-Müller B, Heiss EH. Increased Glycolytic Activity Is Part of Impeded M1(LPS) Macrophage Polarization in the Presence of Urolithin A. PLANTA MEDICA 2024; 90:546-553. [PMID: 38843794 PMCID: PMC11156499 DOI: 10.1055/a-2240-7462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 06/10/2024]
Abstract
Urolithin A is a gut metabolite of ellagitannins and reported to confer health benefits, e.g., by increased clearance of damaged mitochondria by macroautophagy or curbed inflammation. One targeted cell type are macrophages, which are plastic and able to adopt pro- or anti-inflammatory polarization states, usually assigned as M1 and M2 macrophages, respectively. This flexibility is tightly coupled to characteristic shifts in metabolism, such as increased glycolysis in M1 macrophages, and protein expression upon appropriate stimulation. This study aimed at investigating whether the anti-inflammatory properties of U: rolithin A may be driven by metabolic alterations in cultivated murine M1(lipopolysaccharide) macrophages. Expression and extracellular flux analyses showed that urolithin A led to reduced il1β, il6, and nos2 expression and boosted glycolytic activity in M1(lipopolysaccharide) macrophages. The pro-glycolytic feature of UROLITHIN A: occurred in order to causally contribute to its anti-inflammatory potential, based on experiments in cells with impeded glycolysis. Mdivi, an inhibitor of mitochondrial fission, blunted increased glycolytic activity and reduced M1 marker expression in M1(lipopolysaccharide/UROLITHIN A: ), indicating that segregation of mitochondria was a prerequisite for both actions of UROLITHIN A: . Overall, we uncovered a so far unappreciated metabolic facet within the anti-inflammatory activity of UROLITHIN A: and call for caution about the simplified notion of increased aerobic glycolysis as an inevitably proinflammatory feature in macrophages upon exposure to natural products.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | | | - Elke H. Heiss
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
15
|
Wang J, Wu Z, Huang Y, Jin L, Xu J, Yao Z, Ouyang X, Zhou Z, Mao S, Cao J, Lai B, Shen W. IRF4 induces M1 macrophage polarization and aggravates ulcerative colitis progression by the Bcl6-dependent STAT3 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2390-2404. [PMID: 38164749 DOI: 10.1002/tox.24106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic chronic intestinal inflammation. An increasing body of evidence shows that macrophages play an important role in the pathogenesis of UC. Interferon regulatory factor 4 (IRF4) is crucial for the development of autoimmune diseases via regulating immune cells. This research was designed to explore the function of IRF4 in UC and its association with macrophage polarization. The in vitro model of UC was established by stimulating colonic epithelial cells with tumor necrosis factor α (TNF-α). A mouse model of UC was constructed by injecting C57BL/6 mice with dextran sulfate sodium salt. Flow cytometry was used to assess percentage of CD11b+ CD86+ and CD11b+ CD206+ cells in bone marrow macrophages. Occult blood tests were used to detect hematochezia. Hematoxylin and eosin staining assay was used to assess colon pathological changes. Enzyme-linked immunosorbent assay (ELISA) was used to detect concentrations of inflammatory cytokines. The interaction of IRF4 and B-cell lymphoma 6 (Bcl6) was confirmed using GST pull-down and coimmunoprecipitation assays. Our findings revealed that IRF4 promoted cell apoptosis and stimulated M1 macrophage polarization in vitro. Furthermore, IRF4 aggravated symptoms of the mouse model of UC and aggravated M1 macrophage polarization in vivo. IRF4 negatively regulated Bcl6 expression. Downregulation of Bcl6 promoted apoptosis and M1 macrophage polarization in the presence of IRF4 in vitro and in vivo. Moreover, Bcl6 positively mediated the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. In conclusion, IRF4 aggravated UC progression through promoting M1 macrophage polarization via Bcl6/JAK2/STAT3 pathway. These findings suggested that IRF4 might be a good target to competitively inhibit or to treat with UC.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhao Wu
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulin Huang
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Jin
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinyi Xu
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyi Yao
- Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyong Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Lai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
17
|
Tansey MG, Boles J, Holt J, Cole C, Neighbarger N, Urs N, Uriarte-Huarte O. Locus coeruleus injury modulates ventral midbrain neuroinflammation during DSS-induced colitis. RESEARCH SQUARE 2024:rs.3.rs-3952442. [PMID: 38559083 PMCID: PMC10980147 DOI: 10.21203/rs.3.rs-3952442/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.
Collapse
|
18
|
Vittori C, Faia C, Wyczechowska D, Trauth A, Plaisance-Bonstaff K, Meyaski-Schluter M, Reiss K, Peruzzi F. IKAROS expression drives the aberrant metabolic phenotype of macrophages in chronic HIV infection. Clin Immunol 2024; 260:109915. [PMID: 38286172 PMCID: PMC10922842 DOI: 10.1016/j.clim.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The increased risk for acquiring secondary illnesses in people living with HIV (PLWH) has been associated with immune dysfunction. We have previously found that circulating monocytes from PLWH display a trained phenotype. Here, we evaluated the metabolic profile of these cells and found increased mitochondrial respiration and glycolysis of monocyte-derived macrophages (MDMs) from PLWH. We additionally found that cART shifted the energy metabolism of MDMs from controls toward increased utilization of mitochondrial respiration. Importantly, both downregulation of IKAROS expression and inhibition of the mTOR pathway reversed the metabolic profile of MDMs from PLWH and cART-treated control-MDMs. Altogether, this study reveals a very specific metabolic adaptation of MDMs from PLWH, which involves an IKAROS/mTOR-dependent increase of mitochondrial respiration and glycolysis. We propose that this metabolic adaptation decreases the ability of these cells to respond to environmental cues by "locking" PLWH monocytes in a pro-inflammatory and activated phenotype.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Amber Trauth
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Karlie Plaisance-Bonstaff
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA 70112, USA; Louisiana State University Health Sciences Center, Department of Medicine, Louisiana Cancer Research Center; New Orleans, LA 70112, USA.
| |
Collapse
|
19
|
Boles JS, Holt J, Cole CL, Neighbarger NK, Urs NM, Huarte OU, Tansey MG. Locus coeruleus injury modulates ventral midbrain neuroinflammation during DSS-induced colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580010. [PMID: 38405709 PMCID: PMC10888767 DOI: 10.1101/2024.02.12.580010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jenny Holt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra L. Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K. Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nikhil M. Urs
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
20
|
Lomovskaya YV, Krasnov KS, Kobyakova MI, Kolotova AA, Ermakov AM, Senotov AS, Fadeeva IS, Fetisova EI, Lomovsky AI, Zvyagina AI, Akatov VS, Fadeev RS. Studying Signaling Pathway Activation in TRAIL-Resistant Macrophage-Like Acute Myeloid Leukemia Cells. Acta Naturae 2024; 16:48-58. [PMID: 38698963 PMCID: PMC11062100 DOI: 10.32607/actanaturae.27317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 05/05/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant neoplasm characterized by extremely low curability and survival. The inflammatory microenvironment and maturation (differentiation) of AML cells induced by it contribute to the evasion of these cells from effectors of antitumor immunity. One of the key molecular effectors of immune surveillance, the cytokine TRAIL, is considered a promising platform for developing selective anticancer drugs. Previously, under in vitro conditions of the inflammatory microenvironment (a three-dimensional high-density culture of THP-1 AML cells), we demonstrated the emergence of differentiated macrophage-like THP-1ad clones resistant to TRAIL-induced death. In the present study, constitutive activation of proinflammatory signaling pathways, associated transcription factors, and increased expression of the anti-apoptotic BIRC3 gene were observed in TRAIL-resistant macrophage-like THP-1ad AML cells. For the first time, a bioinformatic analysis of the transcriptome revealed the main regulator, the IL1B gene, which triggers proinflammatory activation and induces resistance to TRAIL in THP-1ad macrophage-like cells.
Collapse
Affiliation(s)
- Y. V. Lomovskaya
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - K. S. Krasnov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - M. I. Kobyakova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
- Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics SB RAS, Novosibirsk, 630060 Russian Federation
| | - A. A. Kolotova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. M. Ermakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. S. Senotov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - I. S. Fadeeva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - E. I. Fetisova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. I. Lomovsky
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - A. I. Zvyagina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - V. S. Akatov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| | - R. S. Fadeev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russian Federation
| |
Collapse
|
21
|
Gauthier T, Yao C, Dowdy T, Jin W, Lim YJ, Patiño LC, Liu N, Ohlemacher SI, Bynum A, Kazmi R, Bewley CA, Mitrovic M, Martin D, Morell RJ, Eckhaus M, Larion M, Tussiwand R, O’Shea J, Chen W. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal 2023; 16:eade0385. [PMID: 37552767 PMCID: PMC11145950 DOI: 10.1126/scisignal.ade0385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-β (transforming growth factor-β) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-β increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-β-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-β receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-β is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Chen Yao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Wenwen Jin
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Na Liu
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Andrew Bynum
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Rida Kazmi
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mladen Mitrovic
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Michael Eckhaus
- Division of Veterinary Resources, Pathology Service, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Roxane Tussiwand
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - John O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| |
Collapse
|
22
|
Ran L, Zhang S, Wang G, Zhao P, Sun J, Zhou J, Gan H, Jeon R, Li Q, Herrmann J, Wang F. Mitochondrial pyruvate carrier-mediated metabolism is dispensable for the classical activation of macrophages. Nat Metab 2023; 5:804-820. [PMID: 37188821 DOI: 10.1038/s42255-023-00800-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Glycolysis is essential for the classical activation of macrophages (M1), but how glycolytic pathway metabolites engage in this process remains to be elucidated. Glycolysis leads to production of pyruvate, which can be transported into the mitochondria by the mitochondrial pyruvate carrier (MPC) followed by utilization in the tricarboxylic acid cycle. Based on studies that used the MPC inhibitor UK5099, the mitochondrial route has been considered to be of significance for M1 activation. Using genetic approaches, here we show that the MPC is dispensable for metabolic reprogramming and activation of M1 macrophages. In addition, MPC depletion in myeloid cells has no impact on inflammatory responses and macrophage polarization toward the M1 phenotype in a mouse model of endotoxemia. While UK5099 reaches maximal MPC inhibitory capacity at approximately 2-5 μM, higher concentrations are required to inhibit inflammatory cytokine production in M1 and this is independent of MPC expression. Taken together, MPC-mediated metabolism is dispensable for the classical activation of macrophages and UK5099 inhibits inflammatory responses in M1 macrophages due to effects other than MPC inhibition.
Collapse
Affiliation(s)
- Linyu Ran
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Medical College, Tongji University, Shanghai, China
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Medical College, Tongji University, Shanghai, China
| | - Jiaxing Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
23
|
Yvan-Charvet L, Thorp EB. Inflamed macrophages sans mitochondrial pyruvate carrier? Nat Metab 2023; 5:724-726. [PMID: 37188820 PMCID: PMC10410471 DOI: 10.1038/s42255-023-00789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glycolysis provides building blocks for the proinflammatory activation of macrophages and simultaneously generates pyruvate. In this issue of Nature Metabolism , Ran et al. provide evidence that the transport of pyruvate to fuel the Krebs cycle in the mitochondria is not required in the inflammatory response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.
| | - Edward Benjamin Thorp
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Chen K, Tang L, Nong X. Artesunate targets cellular metabolism to regulate the Th17/Treg cell balance. Inflamm Res 2023; 72:1037-1050. [PMID: 37024544 DOI: 10.1007/s00011-023-01729-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Metabolic reprogramming is one of the important mechanisms of cell differentiation, and different cells have different preferences for energy sources. During the differentiation of naive CD4 + T cells into Th17 and Treg cells, these cells show specific energy metabolism characteristics. Th17 cells depend on enhanced glycolysis, fatty acid synthesis, and glutaminolysis. In contrast, Treg cells are dependent on oxidative phosphorylation, fatty acid oxidation, and amino acid depletion. As a potent antimalarial drug, artesunate has been shown to modulate the Th17/Treg imbalance and regulate cell metabolism. METHODOLOGY Relevant literatures on ART, cellular metabolism, glycolysis, lipid metabolism, amino acid metabolism, CD4 + T cells, Th17 cells, and Treg cells published from January 1, 2010 to now were searched in PubMed database. CONCLUSION In this review, we will highlight recent advances in which artesunate can restore the Th17/Treg imbalance in disease states by altering T-cell metabolism to influence differentiation and lineage selection. Data from the current study show that few studies have focused on the effect of ART on cellular metabolism. ART can affect the metabolic characteristics of T cells (glycolysis, lipid metabolism, and amino acid metabolism) and interfere with their differentiation lineage, thereby regulating the balance of Th17/Treg and alleviating the symptoms of the disease.
Collapse
Affiliation(s)
- Kun Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Tang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
25
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Namgaladze D, Brüne B. Rapid glycolytic activation accompanying innate immune responses: mechanisms and function. Front Immunol 2023; 14:1180488. [PMID: 37153593 PMCID: PMC10158531 DOI: 10.3389/fimmu.2023.1180488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Innate immune responses to pathogens, mediated by activation of pattern recognition receptors and downstream signal transduction cascades, trigger rapid transcriptional and epigenetic changes to support increased expression of pro-inflammatory cytokines and other effector molecules. Innate immune cells also rapidly rewire their metabolism. The most prominent metabolic alteration following innate immune activation is rapid up-regulation of glycolysis. In this mini-review, we summarize recent advances regarding the mechanisms of rapid glycolytic activation in innate immune cells, highlighting the relevant signaling components. We also discuss the impact of glycolytic activation on inflammatory responses, including the recently elucidated links of metabolism and epigenetics. Finally, we highlight unresolved mechanistic details of glycolytic activation and possible avenues of future research in this area.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- *Correspondence: Dmitry Namgaladze,
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
27
|
Liu L, Zhou Y, Liu Z, Li J, Hu L, He L, Gao G, Kidd B, Walsh A, Jiang R, Wu C, Zhang K, Xie L. Osr1 Regulates Macrophage-mediated Liver Inflammation in Nonalcoholic Fatty Liver Disease Progression. Cell Mol Gastroenterol Hepatol 2022; 15:1117-1133. [PMID: 36581078 PMCID: PMC10036739 DOI: 10.1016/j.jcmgh.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Liver macrophage-mediated inflammation contributes to the pathogenesis of the nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Odd skipped-related 1 (Osr1) is a putative transcription factor previously reported to be involved in NASH progression; however, the underlying mechanisms remain unknown. The current study focused on the role of Osr1 in macrophage polarization and metabolism and its associated functions in the inflammation-induced pathogenesis of NASH. METHODS OSR1/Osr1 expression patterns were compared in normal and NASH patients and mouse livers. NASH was established and compared between hepatocyte-specific Osr1 knockout (Osr1ΔHep), macrophage-specific Osr1 knockout (Osr1ΔMφ), and wild-type (Osr1F) mice fed with 3 different chronic obesogenic diets and methionine choline-deficient diet. Using genetic and therapeutic strategies in vitro and in vivo, the downstream targets of Osr1 and the associated mechanisms in inflammation-induced NASH were established. RESULTS Osr1 was expressed in both hepatocytes and macrophages and exhibited different expression patterns in NASH. In NAFLD and NASH murine models, deleting Osr1 in myeloid cells (Osr1ΔMφ), but not hepatocytes, aggravated steatohepatitis with pronounced liver inflammation. Myeloid Osr1 deletion resulted in a polarization switch toward a pro-inflammatory phenotype associated with reduced oxidative phosphorylation activity. These inflamed Osr1ΔMφ macrophages promoted steatosis and inflammation in hepatocytes via cytokine secretion. We identified 2 downstream transcriptional targets of Osr1, c-Myc, and PPARγ and established the Osr1-PPARγ cascade in macrophage polarization and liver inflammation by genetic study and rosiglitazone treatment in vivo. We tested a promising intervention strategy targeting Osr1-PPARγ by AAV8L-delivered Osr1 expression or rosiglitazone that significantly repressed NAFLD/NASH progression in Osr1F and Osr1ΔMφ mice. CONCLUSIONS Myeloid Osr1 mediates liver immune homeostasis and disrupting Osr1 aggravates the progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Lin Liu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Yi Zhou
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Jiangyuan Li
- Department of Statistics, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Linghao Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Guannan Gao
- Department of Statistics, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Brian Kidd
- Department of Statistics, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Alexandra Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, Texas; Institute of Biosciences & Technology, Texas A&M University, Houston, Texas
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas.
| |
Collapse
|
28
|
Su K, Katebi A, Kohar V, Clauss B, Gordin D, Qin ZS, Karuturi RKM, Li S, Lu M. NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity. Genome Biol 2022; 23:270. [PMID: 36575445 PMCID: PMC9793520 DOI: 10.1186/s13059-022-02835-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
A major question in systems biology is how to identify the core gene regulatory circuit that governs the decision-making of a biological process. Here, we develop a computational platform, named NetAct, for constructing core transcription factor regulatory networks using both transcriptomics data and literature-based transcription factor-target databases. NetAct robustly infers regulators' activity using target expression, constructs networks based on transcriptional activity, and integrates mathematical modeling for validation. Our in silico benchmark test shows that NetAct outperforms existing algorithms in inferring transcriptional activity and gene networks. We illustrate the application of NetAct to model networks driving TGF-β-induced epithelial-mesenchymal transition and macrophage polarization.
Collapse
Affiliation(s)
- Kenong Su
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA
| | - Ataur Katebi
- Department of Bioengineering|, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Vivek Kohar
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Benjamin Clauss
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
- Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Danya Gordin
- Department of Bioengineering|, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - R Krishna M Karuturi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
- Graduate School of Biological Sciences & Eng., University of Maine, Orono, ME, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Mingyang Lu
- Department of Bioengineering|, Northeastern University, Boston, MA, 02115, USA.
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA.
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
- Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
29
|
Morrow RJ, Allam AH, Konecnik J, Baloyan D, Dijkstra C, Eissmann MF, Jacob SP, O’Brien M, Poh AR, Ernst M. Tumor Growth Remains Refractory to Myc Ablation in Host Macrophages. Cells 2022; 11:cells11244104. [PMID: 36552868 PMCID: PMC9777527 DOI: 10.3390/cells11244104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression of the oncoprotein c-Myc (Myc) is frequently observed in solid tumors and is associated with reduced overall survival. In addition to well-recognized cancer cell-intrinsic roles of Myc, studies have also suggested tumor-promoting roles for Myc in cells of the tumor microenvironment, including macrophages and other myeloid cells. Here, we benchmark Myc inactivation in tumor cells against the contribution of its expression in myeloid cells of murine hosts that harbor endogenous or allograft tumors. Surprisingly, we observe that LysMCre-mediated Myc ablation in host macrophages does not attenuate tumor growth regardless of immunogenicity, the cellular origin of the tumor, the site it develops, or the stage along the tumor progression cascade. Likewise, we find no evidence for Myc ablation to revert or antagonize the polarization of alternatively activated immunosuppressive macrophages. Thus, we surmise that systemic targeting of Myc activity may confer therapeutic benefits primarily through limiting Myc activity in tumor cells rather than reinvigorating the anti-tumor activity of macrophages.
Collapse
|
30
|
Liu Z, Shi H, Xu J, Yang Q, Ma Q, Mao X, Xu Z, Zhou Y, Da Q, Cai Y, Fulton DJ, Dong Z, Sodhi A, Caldwell RB, Huo Y. Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight 2022; 7:160940. [PMID: 36264636 PMCID: PMC9746914 DOI: 10.1172/jci.insight.160940] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/18/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological angiogenesis is a major cause of irreversible blindness in individuals of all age groups with proliferative retinopathy (PR). Mononuclear phagocytes (MPs) within neovascular areas contribute to aberrant retinal angiogenesis. Due to their cellular heterogeneity, defining the roles of MP subsets in PR onset and progression has been challenging. Here, we aimed to investigate the heterogeneity of microglia associated with neovascularization and to characterize the transcriptional profiles and metabolic pathways of proangiogenic microglia in a mouse model of oxygen-induced PR (OIR). Using transcriptional single-cell sorting, we comprehensively mapped all microglia populations in retinas of room air (RA) and OIR mice. We have unveiled several unique types of PR-associated microglia (PRAM) and identified markers, signaling pathways, and regulons associated with these cells. Among these microglia subpopulations, we found a highly proliferative microglia subset with high self-renewal capacity and a hypermetabolic microglia subset that expresses high levels of activating microglia markers, glycolytic enzymes, and proangiogenic Igf1. IHC staining shows that these PRAM were spatially located within or around neovascular tufts. These unique types of microglia have the potential to promote retinal angiogenesis, which may have important implications for future treatment of PR and other pathological ocular angiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huidong Shi
- Georgia Cancer Center and,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xiaoxiao Mao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J.R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ruth B. Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
31
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
32
|
Filiberti S, Russo M, Lonardi S, Bugatti M, Vermi W, Tournier C, Giurisato E. Self-Renewal of Macrophages: Tumor-Released Factors and Signaling Pathways. Biomedicines 2022; 10:2709. [PMID: 36359228 PMCID: PMC9687165 DOI: 10.3390/biomedicines10112709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 04/11/2024] Open
Abstract
Macrophages are the most abundant immune cells of the tumor microenvironment (TME) and have multiple important functions in cancer. During tumor growth, both tissue-resident macrophages and newly recruited monocyte-derived macrophages can give rise to tumor-associated macrophages (TAMs), which have been associated with poor prognosis in most cancers. Compelling evidence indicate that the high degree of plasticity of macrophages and their ability to self-renew majorly impact tumor progression and resistance to therapy. In addition, the microenvironmental factors largely affect the metabolism of macrophages and may have a major influence on TAMs proliferation and subsets functions. Thus, understanding the signaling pathways regulating TAMs self-renewal capacity may help to identify promising targets for the development of novel anticancer agents. In this review, we focus on the environmental factors that promote the capacity of macrophages to self-renew and the molecular mechanisms that govern TAMs proliferation. We also highlight the impact of tumor-derived factors on macrophages metabolism and how distinct metabolic pathways affect macrophage self-renewal.
Collapse
Affiliation(s)
- Serena Filiberti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Mariapia Russo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
33
|
Floudas A, Smith CM, Tynan O, Neto N, Krishna V, Wade SM, Hanlon M, Cunningham C, Marzaioli V, Canavan M, Fletcher JM, Mullan RH, Cole S, Hao LY, Monaghan MG, Nagpal S, Veale DJ, Fearon U. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann Rheum Dis 2022; 81:1224-1242. [PMID: 35701153 DOI: 10.1136/annrheumdis-2021-221761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Immune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation. METHODS Single cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters. RESULTS Global transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor-ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-β and macrophage interleukin (IL)-1β synergy in driving the transcriptional profile of FAPα+THY1+ invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-β and IL-1β treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.
Collapse
Affiliation(s)
- Achilleas Floudas
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Conor M Smith
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Tynan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Vinod Krishna
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Sarah M Wade
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Megan Hanlon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Clare Cunningham
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan H Mullan
- Department of Rheumatology, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Suzanne Cole
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Ling-Yang Hao
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sunil Nagpal
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Douglas J Veale
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Bahiraii S, Brenner M, Yan F, Weckwerth W, Heiss EH. Sulforaphane diminishes moonlighting of pyruvate kinase M2 and interleukin 1β expression in M1 (LPS) macrophages. Front Immunol 2022; 13:935692. [PMID: 35983049 PMCID: PMC9380596 DOI: 10.3389/fimmu.2022.935692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Murine macrophages activated by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) polarize to the M1 type by inducing proinflammatory marker proteins and changing their energy metabolism to increased aerobic glycolysis and reduced respiration. We here show that the aliphatic isothiocyanate sulforaphane (Sfn) diminishes M1 marker expression (IL-1β, IL-6, TNF-α, iNOS, NO, and ROS) and leads to highly energetic cells characterized by both high glycolytic and high respiratory activity as assessed by extracellular flux analysis. Focusing on a potential connection between high glycolytic activity and low IL-1β expression in M1 (LPS/Sfn) macrophages, we reveal that Sfn impedes the moonlighting function of pyruvate kinase M2 (PKM2) in M1 macrophages. Sfn limits mono/dimerization and nuclear residence of PKM2 accompanied by reduced HIF-1α levels, Stat3 phosphorylation at tyrosine 705, and IL-1β expression while preserving high levels of cytosolic PKM2 tetramer with high glycolytic enzyme activity. Sfn prevents glutathionylation of PKM2 in LPS-stimulated macrophages which may account for the reduced loss of PKM2 tetramer. Overall, we uncover PKM2 as a novel affected hub within the anti-inflammatory activity profile of Sfn.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria
| | - Martin Brenner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Fangfang Yan
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Sun X, Li Y, Deng Q, Hu Y, Dong J, Wang W, Wang Y, Li C. Macrophage Polarization, Metabolic Reprogramming, and Inflammatory Effects in Ischemic Heart Disease. Front Immunol 2022; 13:934040. [PMID: 35924253 PMCID: PMC9339672 DOI: 10.3389/fimmu.2022.934040] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are highly plastic cells, and the polarization-activating actions that represent their functional focus are closely related to metabolic reprogramming. The metabolic reprogramming of macrophages manifests itself as a bias toward energy utilization, transforming their inflammatory phenotype by changing how they use energy. Metabolic reprogramming effects crosstalk with the biological processes of inflammatory action and are key to the inflammatory function of macrophages. In ischemic heart disease, phenotypic polarization and metabolic shifts in circulating recruitment and tissue-resident macrophages can influence the balance of inflammatory effects in the heart and determine disease regression and prognosis. In this review, we present the intrinsic link between macrophage polarization and metabolic reprogramming, discussing the factors that regulate macrophages in the inflammatory effects of ischemic heart disease. Our aim is to estabilsh reliable regulatory pathways that will allow us to better target the macrophage metabolic reprogramming process and improve the symptoms of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanqin Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wei Wang, ; Yong Wang, ; Chun Li,
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Wei Wang, ; Yong Wang, ; Chun Li,
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Wei Wang, ; Yong Wang, ; Chun Li,
| |
Collapse
|
36
|
Wang S, Liu G, Li Y, Pan Y. Metabolic Reprogramming Induces Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022; 13:840029. [PMID: 35874739 PMCID: PMC9302576 DOI: 10.3389/fimmu.2022.840029] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophages are one of the most important cells in the innate immune system, they are converted into two distinct subtypes with completely different molecular phenotypes and functional features under different stimuli of the microenvironment: M1 macrophages induced by IFN-γ/lipopolysaccharides(LPS) and M2 macrophages induced by IL-4/IL-10/IL-13. Tumor-associated macrophages (TAMs) differentiate from macrophages through various factors in the tumor microenvironment (TME). TAMs have the phenotype and function of M2 macrophages and are capable of secreting multiple cytokines to promote tumor progression. Both tumor cells and macrophages can meet the energy needs for rapid cell growth and proliferation through metabolic reprogramming, so a comprehensive understanding of pro-tumor and antitumor metabolic switches in TAM is essential to understanding immune escape mechanisms. This paper focuses on the functions of relevant signaling pathways and cytokines during macrophage polarization and metabolic reprogramming, and briefly discusses the effects of different microenvironments and macrophage pathogenicity, in addition to describing the research progress of inhibitory drugs for certain metabolic and polarized signaling pathways.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Mun SH, Oh B, Lee MJ, Bae S, Yang Y, Park-Min KH. THOC5 regulates human osteoclastogenesis. Eur J Cell Biol 2022; 101:151248. [PMID: 35688054 PMCID: PMC11058851 DOI: 10.1016/j.ejcb.2022.151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoclasts are bone resorbing cells that are responsible for physiological and pathological bone resorption. Macrophage colony stimulating factor (M-CSF) binds to the M-CSF receptor (c-FMS) and plays a key role in the differentiation and survival of macrophages and osteoclasts. THOC5, a member of the THO complex, has been shown to regulate hematopoiesis and M-CSF-induced macrophage differentiation. However, the role of THOC5 in osteoclasts remains unclear. Here, our study reveals a new role of THOC5 in osteoclast formation. We found that THOC5 shuttles between nucleus and cytoplasm in an M-CSF signaling dependent manner. THOC5 bound to FICD, a proteolytic cleavage product of c-FMS, and THOC5 facilitates the nuclear translocations of FICD. Decreased expression of THOC5 by siRNA-mediated knock down suppressed osteoclast differentiation, in part, by regulating RANK, a key receptor of osteoclasts. Mechanistically, knock down of THOC5 inhibited the expression of RANKL-induced FOS and NFATc1. Our findings highlight THOC5's function as a positive regulator of osteoclasts.
Collapse
Affiliation(s)
- Se Hwan Mun
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Min Joon Lee
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Young Yang
- Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; BCMB allied program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
38
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|
39
|
Seim GL, Fan J. A matter of time: temporal structure and functional relevance of macrophage metabolic rewiring. Trends Endocrinol Metab 2022; 33:345-358. [PMID: 35331615 PMCID: PMC9010376 DOI: 10.1016/j.tem.2022.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
The response of macrophages to stimulation is a dynamic process which coordinates the orderly adoption and resolution of various immune functions. Accumulating work over the past decade has demonstrated that during the immune response macrophage metabolism is substantially rewired to support important cellular processes, including the production of bioactive molecules, intercellular communication, and the regulation of intracellular signaling and transcriptional programming. In particular, we discuss an important concept emerging from recent studies - metabolic rewiring during the immune response is temporally structured. We review the regulatory mechanisms that drive the dynamic remodeling of metabolism, and examine the functional implications of these metabolic dynamics.
Collapse
Affiliation(s)
- Gretchen L Seim
- Morgridge Institute for Research, Madison, WI, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Fujii T, Wada S, Carballo C, Bell R, Morita W, Nakagawa Y, Liu Y, Chen D, Pannellini T, Sokhi U, Deng X, Park‐Min KH, Rodeo SA, Ivashkiv LB. Distinct inflammatory macrophage populations sequentially infiltrate bone‐to‐tendon interface tissue after
ACL
reconstruction surgery in mice. JBMR Plus 2022; 6:e10635. [PMID: 35866148 PMCID: PMC9289991 DOI: 10.1002/jbm4.10635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages are important for repair of injured tissues, but their role in healing after surgical repair of musculoskeletal tissues is not well understood. We used single‐cell RNA sequencing (RNA‐seq), flow cytometry, and transcriptomics to characterize functional phenotypes of macrophages in a mouse anterior cruciate ligament reconstruction (ACLR) model that involves bone injury followed by a healing phase of bone and fibrovascular interface tissue formation that results in bone‐to‐tendon attachment. We identified a novel “surgery‐induced” highly inflammatory CD9+ IL1+ macrophage population that expresses neutrophil‐related genes, peaks 1 day after surgery, and slowly resolves while transitioning to a more homeostatic phenotype. In contrast, CX3CR1+ CCR2+ macrophages accumulated more slowly and unexpectedly expressed an interferon signature, which can suppress bone formation. Deletion of Ccr2 resulted in an increased amount of bone in the surgical bone tunnel at the tendon interface, suggestive of improved healing. The “surgery‐induced macrophages” identify a new cell type in the early phase of inflammation related to bone injury, which in other tissues is dominated by blood‐derived neutrophils. The complex patterns of macrophage and inflammatory pathway activation after ACLR set the stage for developing therapeutic strategies to target specific cell populations and inflammatory pathways to improve surgical outcomes. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Takayuki Fujii
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
| | - Susumu Wada
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
| | - Camila Carballo
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
| | - Richard Bell
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
| | - Wataru Morita
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
| | - Yusuke Nakagawa
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
- Department of Orthopaedic Surgery Tokyo Medical and Dental University
| | - Yake Liu
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
| | - Daoyun Chen
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
| | - Tannia Pannellini
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
| | - Upneet Sokhi
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
| | - Xiang‐hua Deng
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
| | - Kyung Hyung Park‐Min
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
- Department of Medicine Weill Cornell Medicine New York New York
- BCMB allied program Weill Cornell Graduate School of Medical Sciences New York New York
| | - Scott A. Rodeo
- Orthopaedic Soft Tissue Research Program Hospital for Special Surgery New York New York
- Department of Medicine Weill Cornell Medicine New York New York
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center Hospital for Special Surgery New York New York
- Department of Medicine Weill Cornell Medicine New York New York
- Graduate Program in Immunology and Microbial Pathogenesis Weill Cornell Graduate School of Medical Sciences New York New York
| |
Collapse
|
41
|
Zhang X, Zhang Y, Yang L, Wu Y, Ma X, Tong G, Ban Z, Zhao H. IRF4 suppresses osteogenic differentiation of BM-MSCs by transcriptionally activating miR-636/DOCK9 axis. Clinics (Sao Paulo) 2022; 77:100019. [PMID: 35397366 PMCID: PMC8989710 DOI: 10.1016/j.clinsp.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Osteoblasts are derived from Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs), which play an indispensable role in bone formation. In this study, the authors aim to investigate the role of IRF4 in the osteogenic differentiation of BM-MSCs and its potential molecular mechanism. METHODS The authors used lentivirus infection to overexpress IRF4 in BM-MSCs. The expression of IRF4 and osteogenesis-related genes were detected by qRT-PCR and western blot analysis. The osteogenic differentiation of BM-MSCs was evaluated by Alkaline Phosphatase (ALP) activity, Alizarin red staining, and Alkaline Phosphatase (ALP) staining. Chromatin Immunoprecipitation (ChIP), Dual-Luciferase reporter assay and RNA Immunoprecipitation Assay were applied to confirm the regulatory mechanism between IRF4, miR-636 and DOCK9. RESULTS The authors found IRF4 was down-regulated during the osteogenic differentiation of BM-MSCs, and IRF4 overexpression could decrease the osteogenic differentiation of BM-MSCs by specifically promoting the reduction of Alkaline Phosphatase (ALP) activity and down-regulating osteogenic indicators, including OCN, OPN, Runx2 and CollA1. Mechanistically, IRF4 activated microRNA-636 (miR-636) expression via binding to its promoter region, and Dedicator of Cytokinesis 9 (DOCK9) was identified as the target of miR-636 in BM-MSCs. Moreover, the damage in the capacity of osteogenic differentiation of BM-MSCs induced by IRF4 overexpression could be rescued by miR-636 inhibition. CONCLUSIONS In summary, this paper proposed that IRF4/miR-636/DOCK9 may be considered as targets for the treatment of osteoporosis (OP).
Collapse
Affiliation(s)
- Xuepu Zhang
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Yue Zhang
- Dental Department, The Second Affiliated Hospital of Jinzhou Medical University, China
| | - Limin Yang
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Yuexin Wu
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Xiaohu Ma
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Gang Tong
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Zhaoliang Ban
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China
| | - Haosen Zhao
- Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, China.
| |
Collapse
|
42
|
Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, Deng J, Xu Z. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Front Microbiol 2021; 12:807737. [PMID: 34917069 PMCID: PMC8670088 DOI: 10.3389/fmicb.2021.807737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Life Since and Technology, Southwest Minzu University, Chengdu, China
| | - Dingyong Yang
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|