1
|
An L, Geng B, An L, Wang Y, Zhang Z, Fu X, Chen J, Ma J. Low molecular weight protein tyrosine phosphatase: A driver of lipid metabolic remodeling in Caenorhabditis elegans. Int J Biol Macromol 2025; 306:141332. [PMID: 39988157 DOI: 10.1016/j.ijbiomac.2025.141332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
As a member of the class II cysteine-based protein tyrosine phosphatases, low molecular weight protein tyrosine phosphatase (LMWPTP) plays a pivotal role in animal physiology, particularly in signaling transduction, but its specific function in lipid metabolism remains poorly understood. Herein, the structure and metabolic functions of LMWPTP were investigated using the Caenorhabditis elegans (C. elegans) as a convenient model. The nematode LMWPTP was found to be highly conserved in sequence, functional domains, and tertiary structure compared to its mammalian homologs. Through RNA interference (RNAi) targeting lmwptp, we observed a modest increase in lipid accumulation in nematodes, evidenced by higher triglyceride levels, enlarged lipid droplets, and an increase in total fatty acid content, despite no changes in body size. Mechanistically, lmwptp RNAi promoted adipogenesis by modulating the insulin-like growth factor 1 signaling pathway, facilitating the nuclear translocation of DAF-16, which in turn upregulated fat-7 expression. Furthermore, increased ROS levels were associated with enhanced lipogenesis. The knockdown of lmwptp also attenuated lipolysis and lipophagy via modulation of the AMPK pathway. Despite these alterations, key physiological functions related to energy metabolism were preserved, and lifespan was extended with delayed aging markers. These findings highlight LMWPTP's significant role in lipid regulation, offering new insights and potential therapeutic targets for human lipid metabolism disorders.
Collapse
Affiliation(s)
- Lu An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bingyu Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lin An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhixia Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jing Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Park WY, Montufar C, Zaganjor E. Mitochondrial substrate oxidation regulates distinct cell differentiation outcomes. Trends Cell Biol 2025; 35:274-277. [PMID: 40011089 PMCID: PMC11972143 DOI: 10.1016/j.tcb.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Mitochondrial metabolism, signaling, and dynamics are key regulators of cell fate. While glycolysis supports stemness, mitochondrial expansion and oxidative phosphorylation (OXPHOS) facilitate differentiation. This forum presents emerging evidence that the type of substrate, whether amino acids, carbohydrates, or fatty acids, oxidized by mitochondria significantly influences differentiation outcomes.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Kim YR, Choi TR, Jo SH, Song WS, Kim T, Kim MG, Baek JH, Kwon SY, Choi BG, Seo SW, Jang CS, Yang YH, Kim YG. Deciphering the anti-obesity mechanisms of pharmabiotic probiotics through advanced multiomics analysis. iScience 2025; 28:111890. [PMID: 40017507 PMCID: PMC11867264 DOI: 10.1016/j.isci.2025.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Probiotics with "pharmabiotic" properties are increasingly recognized as effective tools for combating obesity by altering gut microbiota and reducing body fat. However, the molecular mechanisms underlying their anti-obesity effects remain largely unexplored due to the absence of a universal methodology. Herein, we developed a multiomics-based strategy to elucidate how probiotics reduce lipid production in adipocytes. Our initial investigation assessed the impact of probiotics at defined adipocyte differentiation stages. Leveraging these insights, we performed comprehensive multiomics analyses at key intervals to identify the suppression mechanisms of lipid formation. Lactobacillus reuteri, specifically, targets early differentiation stages, inhibits branched-chain amino acid catabolism, and reduces lipid accumulation in adipocytes by suppressing Krüppel-like factor 5. Concurrently, enhanced hypoxia-inducible factor 1 expression impedes adipogenesis by downregulating lipin-1 expression. This study not only demonstrates the effectiveness of our approach in revealing complex host-microbe interactions but also significantly advances probiotic therapeutic development, offering promising avenues for obesity management.
Collapse
Affiliation(s)
- Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - TaeHyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Bo-Gyeong Choi
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chol-Soon Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
5
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
6
|
Green CR, Alaeddine LM, Wessendorf-Rodriguez KA, Turner R, Elmastas M, Hover JD, Murphy AN, Ryden M, Mejhert N, Metallo CM, Wallace M. Impaired branched-chain amino acid (BCAA) catabolism during adipocyte differentiation decreases glycolytic flux. J Biol Chem 2024; 300:108004. [PMID: 39551140 DOI: 10.1016/j.jbc.2024.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Dysregulated branched-chain amino acid (BCAA) metabolism has emerged as a key metabolic feature associated with the obese insulin-resistant state, and adipose BCAA catabolism is decreased in this context. BCAA catabolism is upregulated early in adipogenesis, but the impact of suppressing this pathway on the broader metabolic functions of the resultant adipocyte remains unclear. Here, we use CRISPR/Cas9 to decrease BCKDHA in 3T3-L1 and human pre-adipocytes, and ACAD8 in 3T3-L1 pre-adipocytes to induce a deficiency in BCAA catabolism through differentiation. We characterize the transcriptional and metabolic phenotype of 3T1-L1 cells using RNAseq and 13C metabolic flux analysis within a network spanning glycolysis, tricarboxylic acid (TCA) metabolism, BCAA catabolism, and fatty acid synthesis. While lipid droplet accumulation is maintained in Bckdha-deficient adipocytes, they display a more fibroblast-like transcriptional signature. In contrast, Acad8 deficiency minimally impacts gene expression. Decreased glycolytic flux emerges as the most distinct metabolic feature of 3T3-L1 Bckdha-deficient cells, accompanied by a ∼40% decrease in lactate secretion, yet pyruvate oxidation and utilization for de novo lipogenesis is increased to compensate for the loss of BCAA carbon. Deletion of BCKDHA in human adipocyte progenitors also led to a decrease in glucose uptake and lactate secretion; however, these cells did not upregulate pyruvate utilization, and lipid droplet accumulation and expression of adipocyte differentiation markers was decreased in BCKDH knockout cells. Overall our data suggest that human adipocyte differentiation may be more sensitive to the impact of decreased BCKDH activity than 3T3-L1 cells and that both metabolic and regulatory cross-talk exist between BCAA catabolism and glycolysis in adipocytes. Suppression of BCAA catabolism associated with metabolic syndrome may result in a metabolically compromised adipocyte.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Lynn M Alaeddine
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Karl A Wessendorf-Rodriguez
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rory Turner
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Merve Elmastas
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Justin D Hover
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Mikael Ryden
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Niklas Mejhert
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| |
Collapse
|
7
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Cai X, Li W, Wang L, Shi Y, Gao J, Wang H, Lei T, Lu J. BCAA was more closely associated with visceral fat area than subcutaneous fat area in patients of type 2 diabetes mellitus: a cross-sectional study. BMC Endocr Disord 2024; 24:236. [PMID: 39501211 PMCID: PMC11539729 DOI: 10.1186/s12902-024-01768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) has been reported to be associated with obesity, the association of BCAA with visceral fat area (VFA) and subcutaneous fat area (SFA) remained unclear in patients with type 2 diabetes. METHODS This cross-sectional study was conducted in 284 patients with type 2 diabetes mellitus. Enzyme-linked immunospecific assay was used to measure levels of serum BCAA and branched-chain keto acid (BCKA). VFA and SFA were measured with bio-impedance analysis method. The association between BCAA and VFA was calculated using Pearson correlation and multivariable linear regression analysis. RESULTS There were significant differences in the means of body mass index, waist circumstance, SFA and VFA among the three groups divided by total BCAA tertiles (all p < 0.05). Compared to patients with lower levels of serum BCAA (the lower tertile group), the means of VFA and SFA were significantly larger in the middle and upper tertile groups (all p < 0.05). However, the differences in above obesity parameters were nonsignificant according to various BCKA tertiles. Pearson correlation analysis also demonstrated that BCAA levels were positive associated with each obesity parameter (p < 0.05). Nevertheless, multivariable linear regression analysis showed that levels of serum BCAA were correlated with VFA, BMI and WC (all p < 0.05) rather than SFA after adjusted for other confounders. CONCLUSIONS levels of serum BCAA were more closely correlated with VFA than SFA, prospective studies should be warranted to further explore the mechanism mediating BCAA and visceral fat accumulation in Human beings. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xinghua Cai
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Wenmin Li
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Liang Wang
- Department of Public Health, College of Health Professions, Marshall University, West Virginia, USA
| | - Yingying Shi
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Zhuang Y, Zhang Y, Liu C, Zhong Y. Interplay Between the Circadian Clock and Sirtuins. Int J Mol Sci 2024; 25:11469. [PMID: 39519022 PMCID: PMC11545976 DOI: 10.3390/ijms252111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is an autonomous timekeeping system evolved by organisms to adapt to external changes, regulating a variety of important physiological and behavioral processes. Recent studies have shown that the sirtuin family of histone deacetylases is involved in regulating the expression of clock genes and plays an important role in maintaining the normal rhythm of clock gene expression and behavior. Moreover, sirtuins are regulated directly or indirectly by the circadian clock system. The mutual regulation between the circadian clock and sirtuins is likely involved in a variety of signal transduction and metabolism processes. In this review, we discuss the molecular mechanisms and research progress on the intertwined relationship between the circadian clock and sirtuins, mainly in mammals, highlighting sirtuins as molecular links between metabolic control and circadian rhythms and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Yan Zhuang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yantong Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chao Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yingbin Zhong
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Pinette JA, Myers JW, Park WY, Bryant HG, Eddie AM, Wilson GA, Montufar C, Shaikh Z, Vue Z, Nunn ER, Bessho R, Cottam MA, Haase VH, Hinton AO, Spinelli JB, Cartailler JP, Zaganjor E. Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis. J Lipid Res 2024; 65:100641. [PMID: 39245323 PMCID: PMC11913791 DOI: 10.1016/j.jlr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather G Bryant
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alex M Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ryoichi Bessho
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew A Cottam
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Volker H Haase
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
12
|
Wadsworth BJ, Leiwe M, Minogue EA, Cunha PP, Engman V, Brombach C, Asvestis C, Sah-Teli SK, Marklund E, Karppinen P, Ruas JL, Rundqvist H, Lanner JT, Johnson RS. A 2-hydroxybutyrate-mediated feedback loop regulates muscular fatigue. eLife 2024; 12:RP92707. [PMID: 39226092 PMCID: PMC11371357 DOI: 10.7554/elife.92707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPβ-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.
Collapse
Affiliation(s)
- Brennan J Wadsworth
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Marina Leiwe
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Eleanor A Minogue
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Viktor Engman
- Department of Physiology and Pharmacology, Karolinska InstituteStockholmSweden
| | - Carolin Brombach
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Christos Asvestis
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Shiv K Sah-Teli
- Faculty of Medical Biochemistry and Molecular Biology, University of OuluOuluFinland
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Emilia Marklund
- Department of Cell and Molecular Biology, Karolinska InstituteStockholmSweden
| | - Peppi Karppinen
- Faculty of Medical Biochemistry and Molecular Biology, University of OuluOuluFinland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska InstituteStockholmSweden
| | - Helene Rundqvist
- Department of Laboratory Medicine, Karolinska InstitutetStockholmSweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska InstituteStockholmSweden
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
13
|
Lee YU, Fox BW, Guo R, Curtis BJ, Yu J, Kim S, Nanda S, Baumann V, Yilmaz LS, Haynes CM, Schroeder FC, Walhout AJM. Host-microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency. Nat Metab 2024; 6:1584-1600. [PMID: 39117959 PMCID: PMC11670331 DOI: 10.1038/s42255-024-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite. We also find that the leucine breakdown product 3,3-hydroxymethylbutyrate (HMB), commonly used as a human muscle-building supplement, is toxic to C. elegans and that bacteria modulate this toxicity. Unbiased genetic screens revealed interactions between the host and microbe, where components of bacterial pyrimidine biosynthesis mitigate HMB toxicity. Finally, upregulated ketone body metabolism genes in mccc-1 mutants provide an alternative route for biosynthesis of the mevalonate precursor 3-hydroxy-3-methylglutaryl-CoA. Our work demonstrates that a complex host-bacteria interplay rewires metabolism to allow host survival when leucine catabolism is perturbed.
Collapse
Affiliation(s)
- Yong-Uk Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Rui Guo
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Science, Hangzhou, P. R. China
| | - Brian J Curtis
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Baumann
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - L Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Ding Z, Zhang J, Choudhury M. A High-Fat and High-Fructose Diet Exacerbates Liver Dysfunction by Regulating Sirtuins in a Murine Model. Life (Basel) 2024; 14:729. [PMID: 38929712 PMCID: PMC11205069 DOI: 10.3390/life14060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as the most prevalent chronic liver disease, closely linked to the escalating rates of diabesity. The Western diet's abundance of fat and fructose significantly contributes to MASLD, disrupting hepatic glucose metabolism. We previously demonstrated that a high-fat and high-fructose diet (HFHFD) led to increased body and liver weight compared to the low-fat diet (LFD) group, accompanied by glucose intolerance and liver abnormalities, indicating an intermediate state between fatty liver and liver fibrosis in the HFHFD group. Sirtuins are crucial epigenetic regulators associated with energy homeostasis and play a pivotal role in these hepatic dysregulations. Our investigation revealed that HFHFD significantly decreased Sirt1 and Sirt7 gene and protein expression levels, while other sirtuins remained unchanged. Additionally, glucose 6-phosphatase (G6Pase) gene expression was reduced in the HFHFD group, suggesting a potential pathway contributing to fibrosis progression. Chromatin immunoprecipitation analysis demonstrated a significant increase in histone H3 lysine 18 acetylation within the G6Pase promoter in HFHFD livers, potentially inhibiting G6Pase transcription. In summary, HFHFD may inhibit liver gluconeogenesis, potentially promoting liver fibrosis by regulating Sirt7 expression. This study offers an epigenetic perspective on the detrimental impact of fructose on MASLD progression.
Collapse
Affiliation(s)
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843-1114, USA
| |
Collapse
|
15
|
Tucker SA, Hu SH, Vyas S, Park A, Joshi S, Inal A, Lam T, Tan E, Haigis KM, Haigis MC. SIRT4 loss reprograms intestinal nucleotide metabolism to support proliferation following perturbation of homeostasis. Cell Rep 2024; 43:113975. [PMID: 38507411 PMCID: PMC11639042 DOI: 10.1016/j.celrep.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
Collapse
Affiliation(s)
- Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Lam
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Tan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, Rao D, Feng H, Gao K, Gu X, Jiang S, Song G, Pan J, Zhang M, Xu Y, Zhang S, Fan Y, Wang X, Zhou J, Yang L, Fan J, Zhang X, Gao Q. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell 2024; 187:1422-1439.e24. [PMID: 38447573 DOI: 10.1016/j.cell.2024.02.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.
Collapse
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fang Nan
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Tiancheng Zhang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuyi Ji
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Feng
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixi Gu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaomeng Pan
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanan Xu
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yihui Fan
- Department of Pathogenic Biology and Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
17
|
Pannek M, Alhalabi Z, Tomaselli D, Menna M, Fiorentino F, Robaa D, Weyand M, Puhlmann M, Tomassi S, Barreca F, Tafani M, Zaganjor E, Haigis MC, Sippl W, Rotili D, Mai A, Steegborn C. Specific Inhibitors of Mitochondrial Deacylase Sirtuin 4 Endowed with Cellular Activity. J Med Chem 2024; 67:1843-1860. [PMID: 38253001 DOI: 10.1021/acs.jmedchem.3c01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sirtuins are NAD+-dependent protein lysine deacylases implicated in aging-related diseases. Mammalian Sirtuin 4 (Sirt4) is located in mitochondria and a potential therapeutic target for cancer and metabolic diseases, but no potent and selective Sirt4 inhibitors have been reported. Here, we describe the identification of potent Sirt4-specific small-molecule inhibitors. Testing hits from a target-based virtual screen revealed 12 active compounds. A focused screen based on two top compounds, followed by structure-assisted design of derivatives, yielded four first-in-class potent Sirt4 inhibitors. Kinetic analyses indicate compound competition with the acyl peptide substrate, consistent with the docking models and implicating Sirt4's unique acyl binding site. The compounds indeed show preference for Sirt4 over other isoforms, with one of them (69) being highly isoform selective, and they are active in cells. Our results provide first lead compounds and mechanistic insights for optimization toward Sirt4-specific inhibitors useful as experimental tools and potential therapeutics.
Collapse
Affiliation(s)
- Martin Pannek
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Zayan Alhalabi
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Daniela Tomaselli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Martina Menna
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elma Zaganjor
- Department of Cell Biology, Harvard Medical School, Boston, 02115 Massachusetts, United States
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, 02115 Massachusetts, United States
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute Italy, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
18
|
Wu ZW, Wang L, Mou Q, Wang F, Wang Y, Fang T, Yin Z, Du ZQ, Yang CX. l-valine supplementation disturbs vital molecular pathways and induces apoptosis in mouse testes. Theriogenology 2024; 215:31-42. [PMID: 38000127 DOI: 10.1016/j.theriogenology.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
The branched-chain amino acids (BCAAs: leucine, isoleucine and valine) are essential for animal growth and metabolic health. However, the effect of valine on male reproduction and its underlying molecular mechanism remain largely unknown. Here, we showed that l-valine supplementation (0.30% or 0.45%, water drinking for 3 weeks) did not change body and testis weights, but significantly altered morphology of sertoli cells and germ cells within seminiferous tubule, and enlarged the space between seminiferous tubules within mouse testis. l-valine treatment (0.45%) increased significantly the Caspase3/9 mRNA levels and CASPASE9 protein levels, therefore induced apoptosis of mouse testis. Moreover, gene expression levels related to autophagy (Atg5 and Lamb3), DNA 5 mC methylation (Dnmt1, Dnmt3a, Tet2 and Tet3), RNA m6A methylation (Mettl14, Alkbh5 and Fto), and m6A methylation binding proteins (Ythdf1/2/3 and Igf2bp1/2) were significantly reduced. Protein abundances of ALKBH5, FTO and YTHDF3 were also significantly reduced, but not for ATG5 and TET2. Testis transcriptome sequencing detected 537 differentially expressed genes (DEGs, 26 up-regulated and 511 down-regulated), involved in multiple important signaling pathways. RT-qPCR validated 8 of 9 DEGs (Cd36, Scd1, Insl3, Anxa5, Lcn2, Hsd17b3, Cyp11a1, Cyp17a1 and Agt) to be decreased significantly, consistent with RNA-seq results. Taken together, l-valine treatment could disturb multiple signaling pathways (autophagy and RNA methylation etc.), and induce apoptosis to destroy the tissue structure of mouse testis.
Collapse
Affiliation(s)
- Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China
| | - Li Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China
| | - Qiao Mou
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China.
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; Center of Animal Breeding Technology Innovation of Hubei Province, China.
| |
Collapse
|
19
|
Zhang F, Lv T, Li J, Lian J, Wu H, Jin Y, Jia F, Zhang X. Citrate synthase lysine K215 hypoacetylation contributes to microglial citrate accumulation and pro-inflammatory functions after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14567. [PMID: 38421106 PMCID: PMC10851320 DOI: 10.1111/cns.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.
Collapse
Affiliation(s)
- Fengchen Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tao Lv
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Li
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Lian
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wu
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichao Jin
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Jia
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of NeurosurgeryNantong First People's Hospital, Affiliated Hospital 2 of Nantong UniversityNantongChina
| | - Xiaohua Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
20
|
Tan YK, Castillo-Corea BRDJ, Kumar R, Lai PH, Lin SS, Wang HC. Shrimp SIRT4 promotes white spot syndrome virus replication. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109328. [PMID: 38142022 DOI: 10.1016/j.fsi.2023.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
In WSSV pathogenesis, the molecular mechanisms and the key host factors that regulate the viral replication and morphogenesis remain unclear. However, like most viruses, WSSV is known to induce metabolic reprogramming in several metabolic pathways including the host glutamine metabolism, and several recent reports have suggested that the sirtuins SIRT3, SIRT4, and SIRT5, which belong to a family of NAD+-dependent deacetylases, play an important role in this regulation. Here we focus on characterizing LvSIRT4 from Litopenaeus vannamei and investigate its role in regulating glutamine dehydrogenase (GDH), an important enzyme that promotes glutaminolysis and viral replication. We found that LvSIRT4 silencing led to significant decreases in both WSSV gene expression and the number of viral genome copies. Conversely, overexpression of LvSIRT4 led to significant increases in the expression of WSSV genes and the WSSV genome copy number. Immunostaining in Sf9 insect cells confirmed the presence of LvSIRT4 in the mitochondria and the co-localization of LvSIRT4 and LvGDH in the same cellular locations. In vivo gene silencing of LvSIRT4 significantly reduced the gene expression of LvGDH whereas LvSIRT4 overexpression had no effect. However, neither silencing nor overexpression had any effect on the protein expression levels of LvGDH. Lastly, although GDH activity in uninfected shrimp was unchanged, the GDH enzyme activity in WSSV-infected shrimp was significantly increased after both LvSIRT4 silencing and overexpression. This suggests that although there may be no direct regulation, LvSIRT4 might still be able to indirectly regulate LvGDH via the mediation of one or more WSSV proteins that have yet to be identified.
Collapse
Affiliation(s)
- Yu Kent Tan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| | - Ping-Hung Lai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
22
|
Yang K, Zhang J, Zhao Y, Shao Y, Zhai M, Liu H, Zhang L. Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers. BIOLOGY 2023; 12:1397. [PMID: 37997996 PMCID: PMC10669838 DOI: 10.3390/biology12111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
As the only two You-chicken breeds in China, Baicheng-You (BCY) and Beijing-You (BJY) chickens are famous for their good meat quality. However, so far, the molecular basis of germplasm of the two You-chicken breeds is not yet clear. The genetic relationship among BCY, BJY, and European-origin broilers (BRs) was analyzed using whole genome resequencing data to contribute to this issue. A total of 18,852,372 single nucleotide polymorphisms (SNPs) were obtained in this study. After quality control, 8,207,242 SNPs were applied to subsequent analysis. The data indicated that BJY chickens possessed distant distance with BRs (genetic differentiation coefficient (FST) = 0.1681) and BCY (FST = 0.1231), respectively, while BCY and BRs had a closer relationship (FST = 0.0946). In addition, by using FST, cross-population extended haplotype homozygosity (XP-EHH), and cross-population composite likelihood ratio (XP-CLR) methods, we found 374 selected genes between BJY and BRs chickens and 279 selected genes between BCY and BJY chickens, respectively, which contained a number of important candidates or genetic variations associated with feather growth and fat deposition of BJY chickens and potential disease resistance of BCY chickens. Our study demonstrates a genome-wide view of genetic diversity and differentiation among BCY, BJY, and BRs. These results may provide useful information on a molecular basis related to the special characteristics of these broiler breeds, thus enabling us to better understand the formation mechanism of Chinese-You chickens.
Collapse
Affiliation(s)
- Kai Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| | - Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (H.L.)
| | - Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| | - Yonggang Shao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.S.); (M.Z.)
| | - Manjun Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.S.); (M.Z.)
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (H.L.)
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Y.); (Y.Z.)
| |
Collapse
|
23
|
Kasai S, Kokubu D, Mizukami H, Itoh K. Mitochondrial Reactive Oxygen Species, Insulin Resistance, and Nrf2-Mediated Oxidative Stress Response-Toward an Actionable Strategy for Anti-Aging. Biomolecules 2023; 13:1544. [PMID: 37892226 PMCID: PMC10605809 DOI: 10.3390/biom13101544] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species (ROS) are produced mainly by mitochondrial respiration and function as signaling molecules in the physiological range. However, ROS production is also associated with the pathogenesis of various diseases, including insulin resistance (IR) and type 2 diabetes (T2D). This review focuses on the etiology of IR and early events, especially mitochondrial ROS (mtROS) production in insulin-sensitive tissues. Importantly, IR and/or defective adipogenesis in the white adipose tissues (WAT) is thought to increase free fatty acid and ectopic lipid deposition to develop into systemic IR. Fatty acid and ceramide accumulation mediate coenzyme Q reduction and mtROS production in IR in the skeletal muscle, while coenzyme Q synthesis downregulation is also involved in mtROS production in the WAT. Obesity-related IR is associated with the downregulation of mitochondrial catabolism of branched-chain amino acids (BCAAs) in the WAT, and the accumulation of BCAA and its metabolites as biomarkers in the blood could reliably indicate future T2D. Transcription factor NF-E2-related factor 2 (Nrf2), which regulates antioxidant enzyme expression in response to oxidative stress, is downregulated in insulin-resistant tissues. However, Nrf2 inducers, such as sulforaphane, could restore Nrf2 and target gene expression and attenuate IR in multiple tissues, including the WAT.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Daichi Kokubu
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Diet & Well-being Research Institute, KAGOME CO., LTD., 17 Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| |
Collapse
|
24
|
Han J, Li X, Liang B, Ma S, Pu Y, Yu F, Lu J, Ma Y, MacHugh DE, Jiang L. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159378. [PMID: 37572997 DOI: 10.1016/j.bbalip.2023.159378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Adipose-derived stem cells (ADSCs) that are enriched in adipose tissue with multilineage differentiation potential have become an important tool in therapeutic research and tissue engineering. Certain breeds of sheep exhibit a unique fat tail trait such that tail tissue accounts for approximately 10 % of body weight and can provide an excellent source of ADSCs. Here, we describe isolation of primary ADSCs from ovine embryonic fat tail tissues that displayed high self-renewal capacity, multilineage differentiation and excellent adipogenic ability. Through transcriptome analysis covering ADSCs differentiating into adipocytes, 37 transcription factors were involved in early transcriptional events that initiate a regulatory cascade of adipogenesis; the entire adipogenic activity consists of a reduction in proliferation ability and upregulation of genes related to lipid generation and energy metabolism, as well as several genes associated with myogenesis. Furthermore, Comparative transcriptome analysis across species (sheep, human, and mouse) revealed enhanced basal metabolic ability in differentiating ovine ADSCs, which may relate to the excellent adipogenic capability of these cells. We also identified a small evolutionarily conserved gene set, consisting of 21 and 22 genes exhibiting increased and decreased expression, respectively. Almost half (20) of these genes have not previously been reported to regulate adipogenesis in mammals. In this study, we identified important regulators that trigger ovine adipocyte differentiation, main biological pathways involved in adipogenesis as well as the evolutionarily conserved genes governing adipogenic process across species. Our study provides a novel excellent biomaterial and novel genes regulating adipogenesis for cellular transplantation therapy and investigations of fat metabolism.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaojie Li
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Benmeng Liang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sijia Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Agricultural College, Ningxia University, Yinchuan, Ningxia, China
| | - Yabin Pu
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuqing Yu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing 100193, China
| | - Yuehui Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| | - Lin Jiang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
25
|
Aguillard AM, Tzeng J, Ferrer I, Tam BT, Lorenzo DN. A cell-autonomous mechanism regulates BCAA catabolism in white adipocytes and systemic metabolic balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551146. [PMID: 37577547 PMCID: PMC10418053 DOI: 10.1101/2023.07.31.551146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Elevated plasma branched-chain amino acids (BCAAs) are strongly associated with obesity, insulin resistance (IR), and diabetes in humans and rodent models. However, the mechanisms of BCAA dysregulation and its systemic, organ, and cell-specific implications in the development of obesity and IR are not well understood. To gain mechanistic insight into the causes and effects of plasma BCAA elevations, we leveraged mouse models with high circulating BCAA levels prior to the onset of obesity and IR. Young mice lacking ankyrin-B in white adipose tissue (WAT) or bearing an ankyrin-B variant that causes age-driven metabolic syndrome exhibit downregulation of BCAA catabolism selectively in WAT and excess plasma BCAAs. Using cellular assays, we demonstrated that ankyrin-B promotes the surface localization of the amino acid transporter Asct2 in white adipocytes, and its deficit impairs BCAA uptake. Excess BCAA supplementation worsened glucose tolerance and insulin sensitivity across genotypes. In contrast, BCAA overconsumption only increased adiposity in control mice, implicating WAT utilization of BCAAs in their obesogenic effects. These results shed light into the mechanistic underpinnings of metabolic syndrome caused by ankyrin-B deficits and provide new evidence of the relevance of WAT in the regulation of systemic BCAA levels, adiposity, and glucose homeostasis.
Collapse
Affiliation(s)
- Ashley M Aguillard
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Tzeng
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ismael Ferrer
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
| | - Bjorn T Tam
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Shin MC, Jung YH, Jeong Y, Oh AR, Lee SB, Kim K. Kctd17-mediated Chop degradation promotes adipogenic differentiation. Biochem Biophys Res Commun 2023; 653:126-132. [PMID: 36868076 DOI: 10.1016/j.bbrc.2023.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Obesity is commonly associated with excessive adipogenesis, a process by which preadipocytes undergo differentiation into mature adipocytes; however, the mechanisms underlying adipogenesis are not completely understood. Potassium channel tetramerization domain-containing 17 (Kctd17) belongs to the Kctd superfamily and act as a substrate adaptor of the Cullin 3-RING E3 ubiquitin ligase, which is involved in a wide variety of cell functions. However, its function in the adipose tissue remains largely unknown. Here, we found that Kctd17 expression levels were increased in white adipose tissue, especially in adipocytes, in obese mice compared to lean control mice. Gain or loss of function of Kctd17 in preadipocytes inhibited or promoted adipogenesis, respectively. Furthermore, we found that Kctd17 bound to C/EBP homologous protein (Chop) to target it for ubiquitin-mediated degradation, and this process was likely associated with increased adipogenesis. In conclusion, these data suggest that Kctd17 plays an important role in adipogenesis and can be a novel therapeutic target for obesity.
Collapse
Affiliation(s)
- Min Cheol Shin
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, Republic of Korea; Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
28
|
He L, Liu Q, Cheng J, Cao M, Zhang S, Wan X, Li J, Tu H. SIRT4 in ageing. Biogerontology 2023; 24:347-362. [PMID: 37067687 DOI: 10.1007/s10522-023-10022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 04/18/2023]
Abstract
Ageing is a phenomenon in which cells, tissues and organs undergo systemic pathological changes as individuals age, leading to the occurrence of ageing-related diseases and the end of life. It is associated with many phenotypes known as ageing characteristics, such as genomic instability, nutritional imbalance, mitochondrial dysfunction, cell senescence, stem cell depletion, and an altered microenvironment. The sirtuin family (SIRT), known as longevity proteins, is thought to delay ageing and prolong life, and mammals, including humans, have seven family members (SIRT1-7). SIRT4 has been studied less among the sirtuin family thus far, but it has been reported that it has important physiological functions in organisms, such as promoting DNA damage repair, participating in the energy metabolism of three substances, inhibiting inflammatory reactions and apoptosis, and regulating mitochondrial function. Recently, some studies have demonstrated the involvement of SIRT4 in age-related processes, but knowledge in this field is still scarce. Therefore, this review aims to analyse the relationship between SIRT4 and ageing characteristics as well as some age-related diseases (e.g., cardiovascular diseases, metabolic diseases, neurodegenerative diseases and cancer).
Collapse
Affiliation(s)
- Ling He
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Qingcheng Liu
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jielong Cheng
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Mei Cao
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuaimei Zhang
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaolin Wan
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huaijun Tu
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
29
|
Surugihalli C, Muralidaran V, Ryan CE, Patel K, Zhao D, Sunny NE. Branched-chain amino acids alter cellular redox to induce lipid oxidation and reduce de novo lipogenesis in the liver. Am J Physiol Endocrinol Metab 2023; 324:E299-E313. [PMID: 36791321 PMCID: PMC10042599 DOI: 10.1152/ajpendo.00307.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Metabolic and molecular interactions between branched-chain amino acid (BCAA) and lipid metabolism are evident in insulin-resistant tissues. However, it remains unclear whether insulin resistance is a prerequisite for these relationships and whether BCAAs or their metabolic intermediates can modulate hepatic lipid oxidation and synthesis. We hypothesized that BCAAs can alter hepatic oxidative function and de novo lipogenesis, independent of them being anaplerotic substrates for the mitochondria. Mice (C57BL/6NJ) were reared on a low-fat (LF), LF diet plus 1.5X BCAAs (LB), high-fat (HF) or HF diet plus 1.5X BCAAs (HB) for 12 wk. Hepatic metabolism was profiled utilizing stable isotopes coupled to mass spectrometry and nuclear magnetic resonance, together with fed-to-fasted changes in gene and protein expression. A greater induction of lipid oxidation and ketogenesis on fasting was evident in the BCAA-supplemented, insulin-sensitive livers from LB mice, whereas their rates of hepatic de novo lipogenesis remained lower than their LF counterparts. Onset of insulin resistance in HF and HB mice livers blunted these responses. Whole body turnover of BCAAs and their ketoacids, their serum concentrations, and the ketogenic flux from BCAA catabolism, all remained similar between fasted LF and LB mice. This suggested that the impact of BCAAs on lipid metabolism can occur independent of them or their degradation products fueling anaplerosis through the liver mitochondria. Furthermore, the greater induction of lipid oxidation in the LB livers accompanied higher mitochondrial NADH/NAD+ ratio and higher fed-to-fasting phosphorylation of AMPKα and ACC. Taken together, our results provide evidence that BCAA supplementation, under conditions of insulin sensitivity, improved the feeding-to-fasting induction of hepatic lipid oxidation through changes in cellular redox, thus providing a favorable biochemical environment for flux through β-oxidation and lower de novo lipogenesis.NEW & NOTEWORTHY Branched-chain amino acids (BCAAs) have been shown to modulate lipid metabolic networks in various tissues, especially during insulin resistance. In this study we show that the dietary supplementation of BCAAs to normal, insulin-sensitive mice resulted in higher mitochondrial NADH:NAD+ ratios and AMPK activation in the liver. This change in the cellular redox status provided an optimal metabolic milieu to increase fatty acid oxidation while keeping the rates of de novo lipogenesis lower in the BCAA-supplemented mice livers.
Collapse
Affiliation(s)
- Chaitra Surugihalli
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| | - Vaishna Muralidaran
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| | - Caitlin E Ryan
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| | - Kruti Patel
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| | - David Zhao
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
30
|
Shinde AB, Nunn ER, Wilson GA, Chvasta MT, Pinette JA, Myers JW, Peck SH, Spinelli JB, Zaganjor E. Inhibition of nucleotide biosynthesis disrupts lipid accumulation and adipogenesis. J Biol Chem 2023; 299:104635. [PMID: 36963490 PMCID: PMC10149209 DOI: 10.1016/j.jbc.2023.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Energy balance and nutrient availability are key determinants of cellular decisions to remain quiescent, proliferate or differentiate into a mature cell. After assessing its environmental state, the cell must rewire its metabolism to support distinct cellular outcomes. Mechanistically, how metabolites regulate cell fate decisions is poorly understood. We used adipogenesis as our model system to ascertain the role of metabolism in differentiation. We isolated adipose tissue stromal vascular fraction (SVF) cells and profiled metabolites before and after adipogenic differentiation to identify metabolic signatures associated with these distinct cellular states. We found that differentiation alters nucleotide accumulation. Furthermore, inhibition of nucleotide biosynthesis prevented lipid storage within adipocytes and downregulated the expression of lipogenic factors. In contrast to proliferating cells, in which mTORC1 is activated by purine accumulation, mTORC1 signaling was unaffected by purine levels in differentiating adipocytes. Rather, our data indicated that purines regulate transcriptional activators of adipogenesis, PPARγ and C/EBPα to promote differentiation. Although de novo nucleotide biosynthesis has mainly been studied in proliferation, our study points to its requirement in adipocyte differentiation.
Collapse
Affiliation(s)
- Abhijit B Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mathew T Chvasta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sun H Peck
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Nashville Veterans Affairs Medical Center, Department of Veterans Affairs, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
31
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
32
|
Bae EJ, Park BH. Multiple Roles of Sirtuin 6 in Adipose Tissue Inflammation. Diabetes Metab J 2023; 47:164-172. [PMID: 36631993 PMCID: PMC10040615 DOI: 10.4093/dmj.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
Adipose tissue (AT) inflammation is strongly associated with obesity-induced insulin resistance. When subjected to metabolic stress, adipocytes become inflamed and secrete a plethora of cytokines and chemokines, which recruit circulating immune cells to AT. Although sirtuin 6 (Sirt6) is known to control genomic stabilization, aging, and cellular metabolism, it is now understood to also play a pivotal role in the regulation of AT inflammation. Sirt6 protein levels are reduced in the AT of obese humans and animals and increased by weight loss. In this review, we summarize the potential mechanism of AT inflammation caused by impaired action of Sirt6 from the immune cells' point of view. We first describe the properties and functions of immune cells in obese AT, with an emphasis on discrete macrophage subpopulations which are central to AT inflammation. We then highlight data that links Sirt6 to functional phenotypes of AT inflammation. Importantly, we discuss in detail the effects of Sirt6 deficiency in adipocytes, macrophages, and eosinophils on insulin resistance or AT browning. In our closing perspectives, we discuss emerging issues in this field that require further investigation.
Collapse
Affiliation(s)
- Eun Ju Bae
- School of Pharmacy, Chonbuk National University, Jeonju, Korea
- Corresponding authors: Eun Ju Bae https://orcid.org/0000-0003-1693-8290 School of Pharmacy, Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
- Byung-Hyun Park https://orcid.org/0000-0003-3768-4285 Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| |
Collapse
|
33
|
Quan X, Xin Y, Wang HL, Sun Y, Chen C, Zhang J. Implications of altered sirtuins in metabolic regulation and oral cancer. PeerJ 2023; 11:e14752. [PMID: 36815979 PMCID: PMC9936870 DOI: 10.7717/peerj.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
Sirtuins (SIRTs 1-7) are a group of histone deacetylase enzymes with a wide range of enzyme activities that target a range of cellular proteins in the nucleus, cytoplasm, and mitochondria for posttranslational modifications by acetylation (SIRT1, 2, 3, and 5) or ADP ribosylation (SIRT4, 6, and 7). A variety of cellular functions, including mitochondrial functions and functions in energy homeostasis, metabolism, cancer, longevity and ageing, are regulated by sirtuins. Compromised sirtuin functions and/or alterations in the expression levels of sirtuins may lead to several pathological conditions and contribute significantly to alterations in metabolic phenotypes as well as oral carcinogenesis. Here, we describe the basic characteristics of seven mammalian sirtuins. This review also emphasizes the key molecular mechanisms of sirtuins in metabolic regulation and discusses the possible relationships of sirtuins with oral cancers. This review will provide novel insight into new therapeutic approaches targeting sirtuins that may potentially lead to effective strategies for combating oral malignancies.
Collapse
Affiliation(s)
- Xu Quan
- Department of Stomatology, Shanghai General Hospital, Shanghai, China
| | - Ying Xin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Yingjie Sun
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jiangying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
35
|
Chen J, Lou R, Zhou F, Li D, Peng C, Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front Immunol 2022; 13:1068986. [PMID: 36505468 PMCID: PMC9730827 DOI: 10.3389/fimmu.2022.1068986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity, a complex disease involving an excessive amount of body fat and a major threat to public health all over the world, is the determining factor of the onset and development of metabolic disorders, including type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease. Long-term overnutrition results in excessive expansion and dysfunction of adipose tissue, inflammatory responses and over-accumulation of extracellular matrix in adipose tissue, and ectopic lipid deposit in other organs, termed adipose tissue remodeling. The mammalian Sirtuins (SIRT1-7) are a family of conserved NAD+-dependent protein deacetylases. Mounting evidence has disclosed that Sirtuins and their prominent substrates participate in a variety of physiological and pathological processes, including cell cycle regulation, mitochondrial biogenesis and function, glucose and lipid metabolism, insulin action, inflammatory responses, and energy homeostasis. In this review, we provided up-to-date and comprehensive knowledge about the roles of Sirtuins in adipose tissue remodeling, focusing on the fate of adipocytes, lipid mobilization, adipose tissue inflammation and fibrosis, and browning of adipose tissue, and we summarized the clinical trials of Sirtuin activators and inhibitors in treating metabolic diseases, which might shed light on new therapeutic strategies for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| |
Collapse
|
36
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
37
|
Zeng C, Chen M. Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:1079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
Affiliation(s)
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
38
|
Xiong Y, Jiang L, Li T. Aberrant branched-chain amino acid catabolism in cardiovascular diseases. Front Cardiovasc Med 2022; 9:965899. [PMID: 35911554 PMCID: PMC9334649 DOI: 10.3389/fcvm.2022.965899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Globally, cardiovascular diseases are the leading cause of death. Research has focused on the metabolism of carbohydrates, fatty acids, and amino acids to improve the prognosis of cardiovascular diseases. There are three types of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) required for protein homeostasis, energy balance, and signaling pathways. Increasing evidence has implicated BCAAs in the pathogenesis of multiple cardiovascular diseases. This review summarizes the biological origin, signal transduction pathways and function of BCAAs as well as their significance in cardiovascular diseases, including myocardial hypertrophy, heart failure, coronary artery disease, diabetic cardiomyopathy, dilated cardiomyopathy, arrhythmia and hypertension.
Collapse
Affiliation(s)
- Yixiao Xiong
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Jiang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Li,
| |
Collapse
|
39
|
Zhao G, Rusche LN. Sirtuins in Epigenetic Silencing and Control of Gene Expression in Model and Pathogenic Fungi. Annu Rev Microbiol 2022; 76:157-178. [PMID: 35609947 DOI: 10.1146/annurev-micro-041020-100926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guolei Zhao
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| | - Laura N Rusche
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| |
Collapse
|
40
|
Nunn ER, Shinde AB, Zaganjor E. Weighing in on Adipogenesis. Front Physiol 2022; 13:821278. [PMID: 35283790 PMCID: PMC8914022 DOI: 10.3389/fphys.2022.821278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health concern worldwide because of its contribution to metabolic syndrome, type II diabetes, insulin resistance (IR), and numerous cancers. In obesity, white adipose tissue (WAT) expands through two mechanisms: increase in adipocyte cell number by precursor cell differentiation through the process of adipogenesis (hyperplasia) and increase in existing mature adipocyte cell size (hypertrophy). While hypertrophy is associated with the negative effects of obesity on metabolic health, such as inflammation and lipotoxicity, adipogenesis prevents obesity-mediated metabolic decline. Moreover, in metabolically healthy obesity adipogenesis is increased. Thus, it is vital to understand the mechanistic basis for adipose expansion to inform novel therapeutic approaches to mitigate the dysfunction of this tissue and associated diseases. In this mini-review, we summarize recent studies on the regulation of adipogenesis and provide a perspective on targeting adipogenesis as a potential therapeutic avenue for metabolic disorders.
Collapse
|
41
|
Rossmeislová L, Gojda J, Smolková K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators? Cancer Metastasis Rev 2021; 40:1115-1139. [PMID: 34962613 DOI: 10.1007/s10555-021-10016-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
Abstract
Branched-chain amino acids (BCAA) are essential amino acids utilized in anabolic and catabolic metabolism. While extensively studied in obesity and diabetes, recent evidence suggests an important role for BCAA metabolism in cancer. Elevated plasma levels of BCAA are associated with an increased risk of developing pancreatic cancer, namely pancreatic ductal adenocarcinoma (PDAC), a tumor with one of the highest 1-year mortality rates. The dreadful prognosis for PDAC patients could be attributable also to the early and frequent development of cancer cachexia, a fatal host metabolic reprogramming leading to muscle and adipose wasting. We propose that BCAA dysmetabolism is a unifying component of several pathological conditions, i.e., obesity, insulin resistance, and PDAC. These conditions are mutually dependent since PDAC ranks among cancers tightly associated with obesity and insulin resistance. It is also well-established that PDAC itself can trigger insulin resistance and new-onset diabetes. However, the exact link between BCAA metabolism, development of PDAC, and tissue wasting is still unclear. Although tissue-specific intracellular and systemic metabolism of BCAA is being intensively studied, unresolved questions related to PDAC and cancer cachexia remain, namely, whether elevated circulating BCAA contribute to PDAC etiology, what is the biological background of BCAA elevation, and what is the role of adipose tissue relative to BCAA metabolism during cancer cachexia. To cover those issues, we provide our view on BCAA metabolism at the intracellular, tissue, and whole-body level, with special emphasis on different metabolic links to BCAA intermediates and the role of insulin in substrate handling.
Collapse
Affiliation(s)
- Lenka Rossmeislová
- Department of Pathophysiology, Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic
| | - Katarína Smolková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|