1
|
Chatterjee A, Naskar P, Mishra S, Dutta S. Pore Formation by Pore Forming Proteins in Lipid Membranes: Structural Insights Through Cryo-EM. J Membr Biol 2025:10.1007/s00232-025-00344-5. [PMID: 40155553 DOI: 10.1007/s00232-025-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Many pathogenic bacteria utilize their complicated appalling arsenal, bacterial virulence factors, to attack host cells by damaging the host cell membrane and neutralizing host defense mechanisms. Bacterial pore-forming proteins (PFPs) are one of them, they include a distinct class of secreted soluble toxin monomers, which binds to the specific cell surface receptors and /or lipids, oligomerizes as an amphipathic transmembrane pore complex on host cell membranes, and deforms the integrity of the plasma membrane. Researchers have focused on characterizing the structure and function of different Pore Forming Toxins (PFTs) from various organisms, where most of the structural studies employed X-ray crystallography, single-particle cryo-EM, and cryo-electron tomography. However, historically, most of these previous studies focused on using detergent to solubilize and oligomerize the PFTs. Additionally, previous studies have also shown that lipid membranes and lipid components, including cell surface receptors, play a critical role in pore formation and oligomerization. However, there are limited studies available that aim to resolve the structure and function of PFTs in liposomes. In this review article, we majorly focused on structural and functional studies of pore-forming toxins in the presence of detergents, lipid nanodiscs, and liposomes. We will also discuss the challenges and benefits of using liposomes to study pore-forming proteins in more biologically relevant membrane environments.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Prasenjit Naskar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
2
|
Kuijk MM, Tusveld E, Lehmann E, van Dalen R, Lasa I, Ingmer H, Pannekoek Y, van Sorge NM. The two-component system ArlRS is essential for wall teichoic acid glycoswitching in Staphylococcus aureus. mBio 2025; 16:e0266824. [PMID: 39611840 PMCID: PMC11708061 DOI: 10.1128/mbio.02668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is among the leading causes of hospital-acquired infections. Critical to S. aureus biology and pathogenesis are the cell wall-anchored glycopolymers wall teichoic acids (WTA). Approximately one-third of S. aureus isolates decorates WTA with a mixture of α1,4- and β1,4-N-acetylglucosamine (GlcNAc), which requires the dedicated glycosyltransferases TarM and TarS, respectively. Environmental conditions, such as high salt concentrations, affect the abundance and ratio of α1,4- and β1,4-GlcNAc WTA decorations, thereby impacting biological properties such as antibody binding and phage infection. To identify regulatory mechanisms underlying WTA glycoswitching, we screened 1,920 S. aureus mutants (Nebraska Transposon Mutant Library) by immunoblotting for differential expression of WTA-linked α1,4- or β1,4-GlcNAc using specific monoclonal antibody Fab fragments. Three two-component systems (TCS), GraRS, ArlRS, and AgrCA, were among the 230 potential hits. Using isogenic TCS mutants, we demonstrated that ArlRS is essential for WTA β1,4-GlcNAc decoration. ArlRS repressed tarM expression through the transcriptional regulator MgrA. In bacteria lacking arlRS, the increased expression of tarM correlated with the absence of WTA β1,4-GlcNAc, likely by outcompeting TarS enzymatic activity. ArlRS was responsive to Mg2+, but not Na+, revealing its role in the previously reported salt-induced WTA glycoswitch from α1,4-GlcNAc to β1,4-GlcNAc. Importantly, ArlRS-mediated regulation of WTA glycosylation affected S. aureus interaction with the innate receptor langerin and lysis by β1,4-GlcNAc-dependent phages. Since WTA represents a promising target for future immune-based treatments and vaccines, our findings provide important insight to align strategies targeting S. aureus WTA glycosylation patterns during infection.IMPORTANCEStaphylococcus aureus is a common colonizer but can also cause severe infections in humans. The development of antibiotic resistance complicates the treatment of S. aureus infections, increasing the need for antibiotic alternatives such as vaccines and therapies with bacterial viruses also known as phages. Wall teichoic acids (WTA) are abundant glycosylated structures of the S. aureus cell wall that have gained attention as a promising target for new treatments. Importantly, WTA glycosylation patterns show variation depending on environmental conditions, thereby impacting phage binding and interaction with host factors, such as antibodies and innate pattern-recognition receptors. Here, we show that the two-component system ArlRS is involved in the regulation of WTA glycosylation by responding to environmental changes in Mg2+ concentration. These findings may support the design of new treatment strategies that target WTA glycosylation patterns of S. aureus during infection.
Collapse
Affiliation(s)
- Marieke M. Kuijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emma Tusveld
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Esther Lehmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rob van Dalen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Universidad Pública de Navarra, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Navarra, Spain
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center location AMC, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Tiwari H, Saha S, Ghosh M. In Silico Hybridization and Molecular Dynamics Simulations for the Identification of Candidate Human MicroRNAs for Inhibition of Virulent Proteins' Expression in Staphylococcus aureus. J Cell Biochem 2025; 126:e30684. [PMID: 39655425 PMCID: PMC11735889 DOI: 10.1002/jcb.30684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Staphylococcus aureus is a major threat to human health, causing infections that range in severity from moderate to fatal. The rising rates of antibiotic resistance highlight the critical need for new therapeutic techniques to combat this infection. It has been recently discovered that microRNAs (miRNAs) are essential for cross-kingdom communication, especially when it comes to host-pathogen interactions. It has been demonstrated that these short noncoding RNAs control gene expression in the gut microbiota, maintaining homeostasis; dysbiosis in this system has been linked to several diseases, including cancer. Our research attempts to use this understanding to target specific bacterial species and prevent severe diseases. In particular, we look for putative human miRNAs that can attach to virulent bacterial proteins' mRNA and prevent them from being expressed. In-silico hybridization experiments were performed between 100 human miRNA sequences with varied expression levels in gram-positive bacterial infections and five virulence factor genes. In addition, these miRNAs' binding properties were investigated using molecular dynamics (MD) simulations. Our findings demonstrate that human miRNAs can target and inhibit the expression of bacterial virulent genes, thereby opening up new paths for developing innovative miRNA-based therapeutics. The implementation of MD simulations in our study not only improves the validity of our findings but also proposes a new method for constructing miRNA-based therapies against life-threatening bacterial infections.
Collapse
Affiliation(s)
- Harshita Tiwari
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Subhadip Saha
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Monidipa Ghosh
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| |
Collapse
|
4
|
Liu L, Wang L, Liu X, Wang B, Guo X, Wang Y, Xu Y, Guan J, Zhao Y. Elucidating the potential of isorhapontigenin in targeting the MgrA regulatory network: a paradigm shift for attenuating MRSA virulence. Antimicrob Agents Chemother 2024; 68:e0061124. [PMID: 39046236 PMCID: PMC11373206 DOI: 10.1128/aac.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.
Collapse
Affiliation(s)
- Lihan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yueying Wang
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yueshan Xu
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Nygaard TK, Borgogna TR, Pallister KB, Predtechenskaya M, Burroughs OS, Gao A, Lubick EG, Voyich JM. The Relative Importance of Cytotoxins Produced by Methicillin-Resistant Staphylococcus aureus Strain USA300 for Causing Human PMN Destruction. Microorganisms 2024; 12:1782. [PMID: 39338457 PMCID: PMC11434515 DOI: 10.3390/microorganisms12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a prominent Gram-positive bacterial pathogen that expresses numerous cytotoxins known to target human polymorphonuclear leukocytes (PMNs or neutrophils). These include leukocidin G/H (LukGH, also known as LukAB), the Panton-Valentine leukocidin (PVL), γ-hemolysin A/B (HlgAB), γ-hemolysin B/C (HlgBC), leukocidin E/D (LukED), α-hemolysin (Hla), and the phenol-soluble modulin-α peptides (PSMα). However, the relative contribution of each of these cytotoxins in causing human PMN lysis is not clear. In this study, we used a library of cytotoxin deletion mutants in the clinically relevant methicillin-resistant S. aureus (MRSA) isolate LAC (strain ST8:USA300) to determine the relative importance of each for causing human PMN lysis upon exposure to extracellular components as well as following phagocytosis. Using flow cytometry to examine plasma membrane permeability and assays quantifying lactose dehydrogenase release, we found that PVL was the dominant extracellular factor causing human PMN lysis produced by USA300. In contrast, LukGH was the most important cytotoxin causing human PMN lysis immediately following phagocytosis with contributions from the other bicomponent leukocidins only observed at later time points. These results not only clarify the relative importance of different USA300 cytotoxins for causing human PMN destruction but also demonstrate how two apparently redundant virulence factors play distinctive roles in promoting S. aureus pathogenesis.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Timothy R Borgogna
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Kyler B Pallister
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Maria Predtechenskaya
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Owen S Burroughs
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Annika Gao
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Evan G Lubick
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Jovanka M Voyich
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| |
Collapse
|
6
|
Ji X, Shi A, Wang J, Zhang B, Hu Y, Lv H, Wu J, Sun Y, Liu JM, Zhang Y, Wang S. EnvZ/OmpR Controls Protein Expression and Modifications in Cronobacter sakazakii for Virulence and Environmental Resilience. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18697-18707. [PMID: 39165163 DOI: 10.1021/acs.jafc.4c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Cronobacter sakazakii is a notorious foodborne opportunistic pathogen, particularly affecting vulnerable populations such as premature infants, and poses significant public health challenges. This study aimed to elucidate the role of the envZ/ompR genes in environmental tolerance, pathogenicity, and protein regulation of C. sakazakii. An envZ/ompR knockout mutant was constructed and assessed for its impact on bacterial growth, virulence, environmental tolerance, and protein regulation. Results demonstrate that deletion of envZ/ompR genes leads to reduced growth rate and attenuated virulence in animal models. Additionally, the knockout strain exhibited compromised environmental tolerance, particularly in desiccation and oxidative stress conditions, along with impaired adhesion and invasion abilities in epithelial cells. Proteomic analysis revealed significant alterations in protein expression and phosphorylation patterns, highlighting potential compensatory mechanisms triggered by gene deletion. Furthermore, investigation into protein deamidation and glucose metabolism uncovered a link between envZ/ompR deletion and energy metabolism dysregulation. Interestingly, the downregulation of MalK and GrxC proteins was identified as contributing factors to altered desiccation tolerance and disrupted redox homeostasis, respectively, providing mechanistic insights into the phenotypic changes observed. Overall, this study enhances understanding of the multifaceted roles of envZ/ompR in C. sakazakii physiology and pathogenesis, shedding light on potential targets for therapeutic intervention and food safety strategies.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Bai S, Wen X, Li B, Hu R, Yang J, Yu Q, Zeng X, Feng H, Zhu F, Cai Z, Zhang G. Extracellular vesicles from alveolar macrophages harboring phagocytosed methicillin-resistant Staphylococcus aureus induce necroptosis. Cell Rep 2024; 43:114453. [PMID: 38985677 DOI: 10.1016/j.celrep.2024.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.
Collapse
Affiliation(s)
- Songjie Bai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xuehuan Wen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bingyu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ruomeng Hu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jie Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qing Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xianchang Zeng
- Institute of Immunology, and Department of Orthopedics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Huajun Feng
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopedics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Gensheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
8
|
Li Q, Lv K, Jiang N, Liu T, Hou N, Yu L, Yang Y, Feng A, Zhang Y, Su Z, Sang X, Feng Y, Chen R, Xu W, Cui L, Cao Y, Chen Q. SOD3 suppresses early cellular immune responses to parasite infection. Nat Commun 2024; 15:4913. [PMID: 38851821 PMCID: PMC11162418 DOI: 10.1038/s41467-024-49348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Host immune responses are tightly controlled by various immune factors during infection, and protozoan parasites also manipulate the immune system to evade surveillance, leading to an evolutionary arms race in host‒pathogen interactions; however, the underlying mechanisms are not fully understood. We observed that the level of superoxide dismutase 3 (SOD3) was significantly elevated in both Plasmodium falciparum malaria patients and mice infected with four parasite species. SOD3-deficient mice had a substantially longer survival time and lower parasitemia than control mice after infection, whereas SOD3-overexpressing mice were much more vulnerable to parasite infection. We revealed that SOD3, secreted from activated neutrophils, bound to T cells, suppressed the interleukin-2 expression and concomitant interferon-gamma responses crucial for parasite clearance. Overall, our findings expose active fronts in the arms race between the parasites and host immune system and provide insights into the roles of SOD3 in shaping host innate immune responses to parasite infection.
Collapse
Affiliation(s)
- Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Tong Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liying Yu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yixin Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Anni Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ziwei Su
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yaming Cao
- Department of Immunology, China Medical University, 77 Puhe Road, Shenyang, 110122, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Afairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
9
|
Liang H, Wang Y, Liu F, Duan G, Long J, Jin Y, Chen S, Yang H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens 2024; 13:434. [PMID: 38921732 PMCID: PMC11206676 DOI: 10.3390/pathogens13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.
Collapse
Affiliation(s)
- Hongyue Liang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China;
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| |
Collapse
|
10
|
Ahator SD, Wenzl K, Hegstad K, Lentz CS, Johannessen M. Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems 2024; 9:e0013024. [PMID: 38470253 PMCID: PMC11019936 DOI: 10.1128/msystems.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predominant methicillin-resistant S. aureus strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, in vitro infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from Bacillus subtilis and the modeled structures of the four NarL TCSs in S. aureus, we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in S. aureus, shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Karoline Wenzl
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
11
|
Yang B, Wang D, Yu S, Zhang C, Ai J, Yu X. Breaking CHIPS-Mediated immune evasion with tripterin to promote neutrophil chemotaxis against MRSA infection. Int Immunopharmacol 2024; 129:111597. [PMID: 38295543 DOI: 10.1016/j.intimp.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Neutrophils are the most important innate immune cells in host defense against methicillin-resistant Staphylococcus aureus (MRSA). However, MRSA orchestrates precise and timely expression of a series of virulence factors, especially the chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS), to evade neutrophil-mediated host defenses. Here, we demonstrated that tripterin, a plant-derived bioactive pentacyclic triterpenoid, had a low minimum inhibitory concentration (MIC) of 1.28 µg/mL and displayed excellent anti-MRSA activity in vitro and in vivo. RNA-seq and further knockdown experiments revealed that tripterin could dramatically downregulate the expression of CHIPS by regulating the SaeRS two-component regulatory system, thereby enhancing the chemotactic response of neutrophils. Furthermore, tripterin also displayed a potential inhibitory effect on biofilm components to enhance neutrophil infiltration into the interior of the biofilm. In a mouse bacteremia model, tripterin could still maintain an excellent therapeutic effect that was significantly better than that of the traditional antibiotic vancomycin. Overall, these results suggest that tripterin possesses a superior antibacterial activity via breaking CHIPS-mediated immune evasion to promote neutrophil chemotaxis, thus providing a novel strategy for combating serious pathogenic infections.
Collapse
Affiliation(s)
- Baoye Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Shi Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chengwei Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jing Ai
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China; Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, China
| | - Xiang Yu
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China; Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, China.
| |
Collapse
|
12
|
Baz AA, Hao H, Lan S, Li Z, Liu S, Chen S, Chu Y. Neutrophil extracellular traps in bacterial infections and evasion strategies. Front Immunol 2024; 15:1357967. [PMID: 38433838 PMCID: PMC10906519 DOI: 10.3389/fimmu.2024.1357967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Neutrophils are innate immune cells that have a vital role in host defense systems. Neutrophil extracellular traps (NETs) are one of neutrophils' defense mechanisms against pathogens. NETs comprise an ejected lattice of chromatin associated with histones, granular proteins, and cytosolic proteins. They are thought to be an efficient strategy to capture and/or kill bacteria and received intensive research interest in the recent years. However, soon after NETs were identified, it was observed that certain bacteria were able to evade NET entrapment through many different mechanisms. Here, we outline the recent progress of NETs in bacterial infections and the strategies employed by bacteria to evade or withstand NETs. Identifying the molecules and mechanisms that modulate NET release will improve our understanding of the functions of NETs in infections and provide new avenues for the prevention and treatment of bacterial diseases.
Collapse
Affiliation(s)
- Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
13
|
John MS, Chinnappan M, Artami M, Bhattacharya M, Keogh RA, Kavanaugh J, Sharma T, Horswill AR, Harris-Tryon TA. Androgens at the skin surface regulate S. aureus pathogenesis through the activation of agr quorum sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579753. [PMID: 38370751 PMCID: PMC10871326 DOI: 10.1101/2024.02.10.579753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Staphylococcus aureus, the most frequent cause of skin infections, is more common in men than women and selectively colonizes the skin during inflammation. Yet, the specific cues that drive infection in these settings remain unclear. Here we show that the host androgens testosterone and dihydrotestosterone promote S. aureus pathogenesis and skin infection. Without the secretion of these hormones, skin infection in vivo is limited. Testosterone activates S. aureus virulence in a concentration dependent manner through stimulation of the agr quorum sensing system, with the capacity to circumvent other inhibitory signals in the environment. Taken together, our work defines a previously uncharacterized inter-kingdom signal between the skin and the opportunistic pathogen S. aureus and identifies the mechanism of sex-dependent differences in S. aureus skin infection. One-Sentence Summary Testosterone promotes S. aureus pathogenesis through activation of the agr quorum sensing system.
Collapse
|
14
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|
15
|
Lin WC, Hsu KC, You MF, Lee KH, Chi CH, Chen JY. Octanoic acid promotes clearance of antibiotic-tolerant cells and eradicates biofilms of Staphylococcus aureus isolated from recurrent bovine mastitis. Biofilm 2023; 6:100149. [PMID: 37635811 PMCID: PMC10450856 DOI: 10.1016/j.bioflm.2023.100149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Antibiotic therapy is the primary treatment for bovine mastitis, but the drawbacks of this strategy include poor cure rate and economic losses from the need to discard milk with antibiotic residues. Unfortunately, few other treatment options are currently available for mastitis. Failure of antibiotic treatments is often attributed to formation of bacterial biofilms and abscesses in the mammary gland tissue, which lead to chronic infections that are difficult to eradicate and drive recurrent disease. A major mastitis-causing pathogen (MCP) associated with biofilms in bovine mastitis is Staphylococcus aureus. In this study, we demonstrate that octanoic acid has broad-spectrum microbicidal activity against MCPs and effectively inhibits S. aureus biofilm formation in milk (>50% inhibition at 3.13 mM). Octanoic acid effectively clears biofilms (95% eradication at 1X minimum bactericidal concentration, MBC) and infrequently induces S. aureus small colony variants (SCVs) that may cause recurrent mastitis. Additionally, octanoic acid rapidly kills persistent biofilm cells and cells with antibiotic tolerance (within 4 h). In contrast, antibiotics treated at >100X MBC cannot eradicate biofilms but do induce SCVs and antibiotic-tolerant cells. These effects may accelerate the transition from biofilm to chronic infection. Thus, octanoic acid exhibits bactericidal action against S. aureus biofilms, and it is less likely than antibiotic therapy to induce persistent cells and pathogen tolerance. Moreover, octanoic acid acts additively with antibiotics against S. aureus, and it attenuates tetracycline-induced virulence factor gene expression in S. aureus cells. According to these data, octanoic acid may prevent the pathological progression of bovine mastitis and offer a new strategy for treating the condition.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Kai-Chen Hsu
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Feng You
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Kuo-Hua Lee
- Hsin-Chu Branch Station, COA- TRI, Hsin-Chu, Taiwan
| | - Chau-Hwa Chi
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
- The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
16
|
Zhu C, Bai Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Zhang X, Hu J, Wang L, Zhao Y, Bai Y. Antimicrobial Peptide MPX with Broad-Spectrum Bactericidal Activity Promotes Proper Abscess Formation and Relieves Skin Inflammation. Probiotics Antimicrob Proteins 2023; 15:1608-1625. [PMID: 36626016 DOI: 10.1007/s12602-022-10035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Bacteria have developed antibiotic resistance during the large-scale use of antibiotics, and multidrug-resistant strains are common. The development of new antibiotics or antibiotic substitutes has become an important challenge for humankind. MPX is a 14 amino acid peptide belonging to the MP antimicrobial peptide family. In this study, the antibacterial spectrum of the antimicrobial peptide MPX was first tested. The antimicrobial peptide MPX was tested for antimicrobial activity against the gram-positive bacterium S. aureus ATCC 25923, the gram-negative bacteria E. coli ATCC 25922 and Salmonella enterica serovar Typhimurium CVCC541, and the fungus Candida albicans ATCC 90029. The results showed that MPX had good antibacterial activity against the above four strains, especially against E. coli, for which the MIC was as low as 15.625 μg/mL. The study on the bactericidal mechanism of the antimicrobial peptide revealed that MPX can destroy the integrity of the cell membrane, increase membrane permeability, and change the electromotive force of the membrane, thereby allowing the contents to leak out and mediating bacterial death. A mouse acute infection model was used to evaluate the therapeutic effect of MPX after acute infection of subcutaneous tissue by S. aureus. The study showed that MPX could promote tissue repair in S. aureus infection and alleviate lung damage caused by S. aureus. In addition, skin H&E staining showed that MPX treatment facilitated the formation of appropriate abscesses at the subcutaneous infection site and facilitated the clearance of bacteria by the skin immune system. The above results show that MPX has good antibacterial activity and broad-spectrum antibacterial potential and can effectively prevent the invasion of subcutaneous tissue by S. aureus, providing new ideas and directions for the immunotherapy of bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yundi Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Xilong Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China.
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
17
|
Campbell MJ, Beenken KE, Ramirez AM, Smeltzer MS. The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis. Virulence 2023; 14:2175496. [PMID: 36748843 PMCID: PMC9928472 DOI: 10.1080/21505594.2023.2175496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated that MgrA, SarA, SarR, SarS, SarZ, and Rot bind at least three of the four promoters associated with genes encoding primary extracellular proteases in Staphylococcus aureus (Aur, ScpA, SspA/SspB, SplA-F). We also showed that mutation of sarA results in a greater increase in protease production, and decrease in biofilm formation, than mutation of the loci encoding any of these other proteins. However, these conclusions were based on in vitro studies. Thus, the goal of the experiments reported here was to determine the relative impact of the regulatory loci encoding these proteins in vivo. To this end, we compared the virulence of mgrA, sarA, sarR, sarS, sarZ, and rot mutants in a murine osteomyelitis model. Mutants were generated in the methicillin-resistant USA300 strain LAC and the methicillin-sensitive USA200 strain UAMS-1, which was isolated directly from the bone of an osteomyelitis patient during surgical debridement. Mutation of mgrA and rot limited virulence to a statistically significant extent in UAMS-1, but not in LAC, while the sarA mutant exhibited reduced virulence in both strains. The reduced virulence of the sarA mutant was correlated with reduced cytotoxicity for osteoblasts and osteoclasts, reduced biofilm formation, and reduced sensitivity to the antimicrobial peptide indolicidin, all of which were directly attributable to increased protease production in both LAC and UAMS-1. These results illustrate the importance of considering diverse clinical isolates when evaluating the impact of regulatory mutations on virulence and demonstrate the significance of SarA in limiting protease production in vivo in S. aureus.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
18
|
Yang F, Suo M, Weli H, Wong M, Junidi A, Cummings C, Johnson R, Mallory K, Liu AY, Greenberg ZJ, Schuettpelz LG, Miller MJ, Luke CJ, Randolph GJ, Zinselmeyer BH, Wardenburg JB, Clemens RA. Staphylococcus aureus α-toxin impairs early neutrophil localization via electrogenic disruption of store-operated calcium entry. Cell Rep 2023; 42:113394. [PMID: 37950870 PMCID: PMC10731421 DOI: 10.1016/j.celrep.2023.113394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
The pore-forming S. aureus α-toxin (Hla) contributes to virulence and disease pathogenesis. While high concentrations of toxin induce cell death, neutrophils exhibit relative resistance to lysis, suggesting that the action of Hla may not be solely conferred by lytic susceptibility. Using intravital microscopy, we observed that Hla disrupts neutrophil localization and clustering early in infection. Hla forms a narrow, ion-selective pore, suggesting that Hla may dysregulate calcium or other ions to impair neutrophil function. We found that sub-lytic Hla did not permit calcium influx but caused rapid membrane depolarization. Depolarization decreases the electrogenic driving force for calcium, and concordantly, Hla suppressed calcium signaling in vitro and in vivo and calcium-dependent leukotriene B4 (LTB4) production, a key mediator of neutrophil clustering. Thus, Hla disrupts the early patterning of the neutrophil response to infection, in part through direct impairment of neutrophil calcium signaling. This early mis-localization of neutrophils may contribute to establishment of infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mingyi Suo
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Homayemem Weli
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mason Wong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alex Junidi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celeste Cummings
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Johnson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kiara Mallory
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Y Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zev J Greenberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cliff J Luke
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
20
|
Arya R, Kim T, Youn JW, Bae T, Kim KK. Identification of an antivirulence agent targeting the master regulator of virulence genes in Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1268044. [PMID: 38029271 PMCID: PMC10644738 DOI: 10.3389/fcimb.2023.1268044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of bactericidal antibiotic-resistant strains has increased the demand for alternative therapeutic agents, such as antivirulence agents targeting the virulence regulators of pathogens. Staphylococcus aureus exoprotein expression (sae) locus, the master regulator of virulence gene expression in multiple drug-resistant S. aureus, is a promising therapeutic target. In this study, we screened a small-molecule library using a SaeRS green fluorescent protein (GFP)-reporter that responded to transcription controlled by the sae locus. We identified the compound, N-(2-methylcyclohexyl)-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SKKUCS), as an efficient repressor of sae-regulated GFP activity. SKKUCS inhibited hemolysin production and reduced α-hemolysin-mediated cell lysis. Moreover, SKKUCS substantially reduced the expression levels of various virulence genes controlled by the master regulators, sae, and the accessory gene regulator (agr), demonstrating its potential as an antivirulence reagent targeting the key virulence regulators. Furthermore, autokinase inhibition assay and molecular docking suggest that SKKUCS inhibits the kinase activity of SaeS and potentially targets the active site of SaeS kinase, possibly inhibiting ATP binding. Next, we evaluated the efficacy and toxicity of SKKUCS in vivo using murine models of staphylococcal intraperitoneal and skin infections. Treatment with SKKUCS markedly increased animal survival and significantly decreased the bacterial burden in organs and skin lesion sizes. These findings highlight SKKUCS as a potential antivirulence drug for drug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Rekha Arya
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| | - Joo Won Youn
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| |
Collapse
|
21
|
Greenwich JL, Fleming D, Banin E, Häussler S, Kjellerup BV, Sauer K, Visick KL, Fuqua C. The biofilm community resurfaces: new findings and post-pandemic progress. J Bacteriol 2023; 205:e0016623. [PMID: 37756166 PMCID: PMC10601713 DOI: 10.1128/jb.00166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The ninth American Society for Microbiology Conference on Biofilms was convened in-person on 13-17 November 2022 in Charlotte, NC. As the first of these conferences since prior to the start of the COVID-19 pandemic, the energy among the participants of the conference was clear, and the meeting was a tremendous success. The mixture of >330 oral and poster presentations resoundingly embodied the vitality of biofilm research across a wide range of topics and multiple scientific disciplines. Special activities, including a pre-conference symposium for early career researchers, further enhanced the attendee experience. As a general theme, the conference was deliberately structured to provide high levels of participation and engagement among early career scientists.
Collapse
Affiliation(s)
| | - Derek Fleming
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Karin Sauer
- Department of Biological Sciences, University of Binghamton, Binghamton, New York, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
22
|
Zheng P, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Latest Advances in the Application of Humanized Mouse Model for Staphylococcus aureus. J Infect Dis 2023; 228:800-809. [PMID: 37392466 DOI: 10.1093/infdis/jiad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important pathogen for humans and can cause a wide range of diseases, from mild skin infections, severe osteomyelitis to fatal pneumonia, sepsis, and septicemia. The mouse models have greatly facilitated the development of S. aureus studies. However, due to the substantial differences in immune system between mice and humans, the conventional mouse studies are not predictive of success in humans, in which case humanized mice may overcome this limitation to some extent. Humanized mice can be used to study the human-specific virulence factors produced by S. aureus and the mechanisms by which S. aureus interacts with humans. This review outlined the latest advances in humanized mouse models used in S. aureus studies.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Deng T, Zheng H, Zhu Y, Liu M, He G, Li Y, Liu Y, Wu J, Cheng H. Emerging Trends and Focus in Human Skin Microbiome Over the Last Decade: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:2153-2173. [PMID: 37583484 PMCID: PMC10424697 DOI: 10.2147/ccid.s420386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Background Human skin microbiome is the first barrier against exogenous attack and is associated with various skin disease pathogenesis and progression. Advancements in high-throughput sequencing technologies have paved the way for a deeper understanding of this field. Based on the bibliometric analysis, this investigation aimed to identify the hotspots and future research trends associated with human skin microbiomes studied over the past decade. Methods The published research on skin microbiome from January 2013 to January 2023 was retrieved from the Web of Science Core Collection. Data cleaning processes to ensure robust data and the bibliometrix packages R, CiteSpace, VOSviewer, Origin, and Scimago Graphica for bibliometric and visual analyses were utilized. Results A total of 1629 published documents were analyzed. The overall publication trend steadily increased, with relatively fast growth in 2017 and 2020. The United States of America has the highest number of publications and citations and shows close collaborations with China and Germany. The University of California, San Diego, indicated a higher number of publications than other institutions and the fastest growth rate. The top three most publishing journals on this topic are Microorganisms, Frontiers in Microbiology, and Experimental dermatology. Gallo RL is the most influential author with the highest h- and g-index and most publications in skin microecology, followed by Grice EA and Kong HH. The top 10 most frequently used keywords in recent years included skin microbiome, microbiome, staphylococcus aureus, diversity, atopic dermatitis, skin, bacteria, infections, gut microbiota, and disease. Conclusion The skin microbiome is an area of research that requires continuous analysis, and even with much-achieved progress, future research will further be aided as technology develops.
Collapse
Affiliation(s)
- Tinghan Deng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ying Zhu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Guanjin He
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ya Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Yichen Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
24
|
Qin B, Wu S, Dong H, Deng S, Liu Y, Zhang W, Feng G, Lei L, Xie H. Accelerated Healing of Infected Diabetic Wounds by a Dual-Layered Adhesive Film Cored with Microsphere-Loaded Hydrogel Composite Dressing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33207-33222. [PMID: 37418597 DOI: 10.1021/acsami.2c22650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Diabetic wounds, a prevalent chronic disease, are associated with older age. The hyperglycemic microenvironment in diabetic wounds significantly reduces the immune system, inducing bacterial invasion. The coupling of tissue repair and antibacterial treatment is critical for infected diabetic ulcer regeneration. In this study, a dual-layered sodium alginate/carboxymethyl chitosan (SA/CMCS) adhesive film cored with an SA-bFGF microsphere-loaded small intestine submucosa (SIS) hydrogel composite dressing with a graphene oxide (GO)-based antisense transformation system was developed to promote infected diabetic wound healing and bacterial eradication. Initially, our injectable SIS-based hydrogel composite stimulated angiogenesis, collagen deposition, and immunoregulation in diabetic wound repair. The GO-based transformation system subsequently inhibited bacterial viability in infected wounds by post-transformation regulation. Meanwhile, the SA/CMCS film provided stable adhesion covering the wound area to maintain a moist microenvironment, which promoted in situ tissue repair. Our findings provide a promising clinical translation strategy for promoting the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Boquan Qin
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shizhou Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxian Dong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02215-1300, United States
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wanli Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Guoying Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
25
|
Weig AW, O'Conner PM, Kwiecinski JM, Marciano OM, Nunag A, Gutierrez AT, Melander RJ, Horswill AR, Melander C. A structure activity relationship study of 3,4'-dimethoxyflavone for ArlRS inhibition in Staphylococcus aureus. Org Biomol Chem 2023; 21:3373-3380. [PMID: 37013457 PMCID: PMC10192164 DOI: 10.1039/d3ob00123g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to many β-lactam antibiotics, and their highly coordinated excretion of virulence factors. One way in which MRSA accomplishes this is by responding to environmental stimuli using two-component systems (TCS). The ArlRS TCS has been identified as having a key role in regulating virulence in both systemic and local infections caused by S. aureus. We recently disclosed 3,4'-dimethoxyflavone as a selective ArlRS inhibitor. In this study we explore the structure-activity relationship (SAR) of the flavone scaffold for ArlRS inhibition and identify several compounds with increased activity compared to the parent. Additionally, we identify a compound that suppresses oxacillin resistance in MRSA, and begin to probe the mechanism of action behind this activity.
Collapse
Affiliation(s)
- Alexander W Weig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Patrick M O'Conner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Orry M Marciano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Angelica Nunag
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Andrew T Gutierrez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
26
|
NOD2 Agonism Counter-Regulates Human Type 2 T Cell Functions in Peripheral Blood Mononuclear Cell Cultures: Implications for Atopic Dermatitis. Biomolecules 2023; 13:biom13020369. [PMID: 36830738 PMCID: PMC9953199 DOI: 10.3390/biom13020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is known as a skin disease; however, T cell immunopathology found in blood is associated with its severity. Skin Staphylococcus aureus (S. aureus) and associated host-pathogen dynamics are important to chronic T helper 2 (Th2)-dominated inflammation in AD, yet they remain poorly understood. This study sought to investigate the effects of S. aureus-derived molecules and skin alarmins on human peripheral blood mononuclear cells, specifically testing Th2-type cells, cytokines, and chemokines known to be associated with AD. We first show that six significantly elevated Th2-related chemokine biomarkers distinguish blood from adult AD patients compared to healthy controls ex vivo; in addition, TARC/CCL17, LDH, and PDGF-AA/AB correlated significantly with disease severity. We then demonstrate that these robust AD-associated biomarkers, as well as associated type 2 T cell functions, are readily reproduced from healthy blood mononuclear cells exposed to the alarmin TSLP and the S. aureus superantigen SEB in a human in vitro model, including IL-13, IL-5, and TARC secretion as well as OX-40-expressing activated memory T cells. We further show that the agonism of nucleotide-binding oligomerization domain-containing protein (NOD)2 inhibits this IL-13 secretion and memory Th2 and Tc2 cell functional activation while inducing significantly increased pSTAT3 and IL-6, both critical for Th17 cell responses. These findings identify NOD2 as a potential regulator of type 2 immune responses in humans and highlight its role as an endogenous inhibitor of pathogenic IL-13 that may open avenues for its therapeutic targeting in AD.
Collapse
|
27
|
Wortel IMN, Kim S, Liu AY, Ibarra EC, Miller MJ. Listeria motility increases the efficiency of epithelial invasion during intestinal infection. PLoS Pathog 2022; 18:e1011028. [PMID: 36584235 PMCID: PMC9836302 DOI: 10.1371/journal.ppat.1011028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes (Lm) is a food-borne pathogen that causes severe bacterial gastroenteritis, with high rates of hospitalization and mortality. Lm is ubiquitous in soil, water and livestock, and can survive and proliferate at low temperatures. Following oral ingestion of contaminated food, Lm crosses the epithelium through intestinal goblet cells in a mechanism mediated by Lm InlA binding host E-cadherin. Importantly, human infections typically occur with Lm growing at or below room temperature, which is flagellated and motile. Even though many important human bacterial pathogens are flagellated, little is known regarding the effect of Lm motility on invasion and immune evasion. Here, we used complementary imaging and computer modeling approaches to test the hypothesis that bacterial motility helps Lm locate and engage target cells permissive for invasion. Imaging explanted mouse and human intestine, we showed that Lm grown at room temperature uses motility to scan the epithelial surface and preferentially attach to target cells. Furthermore, we integrated quantitative parameters from our imaging experiments to construct a versatile "layered" cellular Potts model (L-CPM) that simulates host-pathogen dynamics. Simulated data are consistent with the hypothesis that bacterial motility enhances invasion by allowing bacteria to search the epithelial surface for their preferred invasion targets. Indeed, our model consistently predicts that motile bacteria invade twice as efficiently over the first hour of infection. We also examined how bacterial motility affected interactions with host cellular immunity. In a mouse model of persistent infection, we found that neutrophils migrated to the apical surface of the epithelium 5 hours post infection and interacted with Lm. Yet in contrast to the view that neutrophils "hunt" for bacteria, we found that these interactions were driven by motility of Lm-which moved at least ~50x faster than neutrophils. Furthermore, our L-CPM predicts that motile bacteria maintain their invasion advantage even in the presence of host phagocytes, with the balance between invasion and phagocytosis governed almost entirely by bacterial motility. In conclusion, our simulations provide insight into host pathogen interaction dynamics at the intestinal epithelial barrier early during infection.
Collapse
Affiliation(s)
- Inge M. N. Wortel
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Annie Y. Liu
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enid C. Ibarra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
28
|
Langouët-Astrié C, Oshima K, McMurtry SA, Yang Y, Kwiecinski JM, LaRivière WB, Kavanaugh JS, Zakharevich I, Hansen KC, Shi D, Zhang F, Boguslawski KM, Perelman SS, Su G, Torres VJ, Liu J, Horswill AR, Schmidt EP. The influenza-injured lung microenvironment promotes MRSA virulence, contributing to severe secondary bacterial pneumonia. Cell Rep 2022; 41:111721. [PMID: 36450248 PMCID: PMC10082619 DOI: 10.1016/j.celrep.2022.111721] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Influenza infection is substantially worsened by the onset of secondary pneumonia caused by bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). The bidirectional interaction between the influenza-injured lung microenvironment and MRSA is poorly understood. By conditioning MRSA ex vivo in bronchoalveolar lavage fluid collected from mice at various time points of influenza infection, we found that the influenza-injured lung microenvironment dynamically induces MRSA to increase cytotoxin expression while decreasing metabolic pathways. LukAB, a SaeRS two-component system-dependent cytotoxin, is particularly important to the severity of post-influenza MRSA pneumonia. LukAB's activity is likely shaped by the post-influenza lung microenvironment, as LukAB binds to (and is activated by) heparan sulfate (HS) oligosaccharide sequences shed from the epithelial glycocalyx after influenza. Our findings indicate that post-influenza MRSA pneumonia is shaped by bidirectional host-pathogen interactions: host injury triggers changes in bacterial expression of toxins, the activity of which may be shaped by host-derived HS fragments.
Collapse
Affiliation(s)
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sarah A McMurtry
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yimu Yang
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jakub M Kwiecinski
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30387, Poland
| | - Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kavanaugh
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Igor Zakharevich
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045, USA
| | - Deling Shi
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sofya S Perelman
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Gouwei Su
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jian Liu
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Alexander R Horswill
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA
| |
Collapse
|
29
|
Rao L, Xu Y, Shen L, Wang X, Zhao H, Wang B, Zhang J, Xiao Y, Guo Y, Sheng Y, Cheng L, Song Z, Yu F. Small-molecule compound SYG-180-2-2 attenuates Staphylococcus aureus virulence by inhibiting hemolysin and staphyloxanthin production. Front Cell Infect Microbiol 2022; 12:1008289. [PMID: 36310881 PMCID: PMC9606476 DOI: 10.3389/fcimb.2022.1008289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Multi-drug resistant Staphylococcus aureus infection is still a serious threat to global health. Therefore, there is an urgent need to develop new antibacterial agents based on virulence factor therapy to overcome drug resistance. Previously, we synthesized SYG-180-2-2 (C21H16N2OSe), an effective small molecule compound against biofilm. The aim of this study was to investigate the anti-virulence efficacy of SYG-180-2-2 against Staphylococcus aureus. MIC results demonstrated no apparent antibacterial activity of the SYG-180-2-2. The growth curve assay showed that SYG-180-2-2 had nonlethal effect on S. aureus. Besides, SYG-180-2-2 strongly inhibited the hemolytic activity and staphyloxanthin synthesis in S. aureus. Inhibition of staphyloxanthin by SYG-180-2-2 enhanced the sensitivity of S. aureus to oxidants and human whole blood. In addition, SYG-180-2-2 significantly decreased the expression of saeR-mediated hemolytic gene hlb and staphyloxanthin-related crtM, crtN and sigB genes by quantitative polymerase chain reaction (qPCR). Meanwhile, the expression of oxidative stress-related genes sodA, sodM and katA also decreased. Galleria Mellonella assay revealed that SYG-180-2-2 was not toxic to larvae. Further, the larvae infection model showed that the virulence of bacteria was significantly reduced after 4 μg/mL SYG-180-2-2 treatment. SYG-180-2-2 also reduced skin abscess formation in mice by reducing bacterial burden and subcutaneous inflammation. In conclusion, SYG-180-2-2 might be a promising agent to attenuate the virulence of S. aureus by targeting genes associated with hemolytic activity and staphyloxanthin synthesis.
Collapse
Affiliation(s)
- Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaoguang Sheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lixia Cheng
- Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Janssen L, Muller HS, Martins VDP. Unweaving the NET: Microbial strategies for neutrophil extracellular trap evasion. Microb Pathog 2022; 171:105728. [PMID: 36028070 DOI: 10.1016/j.micpath.2022.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Circa 20 years ago, a new type of defense mechanism was described in neutrophils. At the time, this mechanism corresponded to the extrusion of DNA, associated with histones, granular and cytosolic proteins from the cell and it was produced in response to exposure to pathogens or interleukins. The resulting NET-like structure was described as to entrap and/or kill microbes. However, shortly after the discovery the so-called Neutrophil Extracellular Traps, it was soon noticed and often mentioned in the literature that certain microbes are able to evade NET-mediated entrapment and/or death, to the point where its antimicrobial capacities were questioned, depending on the infection context. In this review, we summarize the diversity of strategies published thus far that viruses, fungi, bacteria and protists employ as to prevent or endure NETs. Moreover, we point to a few perspectives on the matter and a few evolutionary speculations on NETs evasion.
Collapse
Affiliation(s)
- Luis Janssen
- Institute of Biological Sciences, Department of Cellular Biology, University of Brasilia, Brasilia, Brazil
| | - Herick Sampaio Muller
- Institute of Biological Sciences, Department of Cellular Biology, University of Brasilia, Brasilia, Brazil
| | - Vicente de Paulo Martins
- Institute of Biological Sciences, Department of Cellular Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
31
|
Therapeutic Inhibition of Staphylococcus aureus ArlRS Two-Component Regulatory System Blocks Virulence. Antimicrob Agents Chemother 2022; 66:e0018722. [PMID: 35736133 PMCID: PMC9295591 DOI: 10.1128/aac.00187-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is a common cause of severe infections, and its widespread antibiotic resistance necessitates search for alternative therapies, such as inhibition of virulence. As S. aureus produces multiple individual virulence factors, inhibition of an entire regulatory system might provide better effects than targeting each virulence factor separately. Herein, we describe two novel inhibitors of S. aureus two-component regulatory system ArlRS: 3,4'-dimethoxyflavone and homopterocarpin. Unlike other putative ArlRS inhibitors previously identified, these two compounds were effective and specific. In vitro kinase assays indicated that 3,4'-dimethoxyflavone directly inhibits ArlS autophosphorylation, while homopterocarpin did not exhibit such effect, suggesting that two inhibitors work through distinct mechanisms. Application of the inhibitors to methicillin-resistant S. aureus (MRSA) in vitro blocked ArlRS signaling, inducing an abnormal gene expression pattern that was reflected in changes at the protein level, enhanced sensitivity to oxacillin, and led to the loss of numerous cellular virulence traits, including the ability to clump, adhere to host ligands, and evade innate immunity. The pleiotropic antivirulence effect of inhibiting a single regulatory system resulted in a marked therapeutic potential, demonstrated by the ability of inhibitors to decrease severity of MRSA infection in mice. Altogether, this study demonstrated the feasibility of ArlRS inhibition as anti-S. aureus treatment, and identified new lead compounds for therapeutic development.
Collapse
|
32
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
33
|
Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and Neutrophil Extracellular Traps: The Master Manipulator Meets Its Match in Immunothrombosis. Arterioscler Thromb Vasc Biol 2022; 42:261-276. [PMID: 35109674 PMCID: PMC8860219 DOI: 10.1161/atvbaha.121.316930] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.
Collapse
Affiliation(s)
- Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Marilena Crescente
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.).,Department of Life Sciences, Manchester Metropolitan University, United Kingdom (M.C.)
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium (S.M., M.C., P.V., K.M.)
| |
Collapse
|