1
|
McNitt SA, Dick JK, Hernandez-Castaneda MA, Sangala J, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel K, Hamilton SE, Hart GT. Phenotype and function of IL-10-producing NK cells in individuals with malaria experience. JCI Insight 2025; 10:e183076. [PMID: 40337867 DOI: 10.1172/jci.insight.183076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
P.falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive NK cells correlated with reduced parasite load and protection from symptoms. We also found that murine NK cell production of IL-10 protected mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it is unknown what NK cell subsets produce IL-10 or if this is affected by malaria experience. We hypothesized that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we showed that NK cells from participants with malaria experience make significantly more IL-10 than participants with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce IFN-γ and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we found that coculture with primary monocytes, Plasmodium-infected RBCs, and antibody induced IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
Affiliation(s)
- Sarah A McNitt
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenna K Dick
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | | | - Jules Sangala
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| | - Mark Pierson
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kristina S Burrack
- Center for Immunology
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Division of Intramural Research, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, Maryland, USA
| | - Karl Seydel
- Department of Osteopathic Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sara E Hamilton
- Center for Immunology
- Department of Laboratory Medicine and Pathology, and
| | - Geoffrey T Hart
- Division of Infectious Disease and Internal Medicine, Department of Medicine
- Center for Immunology
| |
Collapse
|
2
|
Charles-Chess NAE, Kurup SP. Regulatory T cell memory: implications for malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf067. [PMID: 40267394 DOI: 10.1093/jimmun/vkaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Regulatory T cells (Tregs) can persist as memory cells (mTregs) in both infectious and non-infectious settings. However, their functional behavior, phenotypic stability, and suppressive properties upon antigen re-exposure remain poorly understood. Emerging evidence suggests that mTregs exhibit enhanced proliferation and suppressive capacity upon re-encountering the same antigen, a feature that may be critical in recurrent infections such as malaria. In malaria, Tregs are known to modulate immune responses and influence acute disease outcomes, suggesting that mTreg recall may play a significant role in long-term immunity. This review explores the biology of Treg memory, with a focus on malaria, and examines the immunological implications of maintaining a suppressive mTreg population in malaria immunity.
Collapse
Affiliation(s)
- Nana Appiah Essel Charles-Chess
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Hildebrand JA, Daniels NR, Dehm EM, Fisher BD, Guter JK, Janse CJ, Lucas ED, Sangala JA, Tankersley TN, Hart GT, Hamilton SE. Severe malaria enforces short-lived effector cell differentiation but does not prevent effective secondary responses by memory CD8 T cells. PLoS Pathog 2025; 21:e1012993. [PMID: 40163479 PMCID: PMC11957282 DOI: 10.1371/journal.ppat.1012993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Parasitic infections are a major worldwide health burden, yet most studies of CD8 T cell differentiation focus on acute viral and bacterial infections. To understand effector and memory CD8 T cell responses during erythrocytic malaria infection in mice, we utilized transgenic OT-I T cells and compared CD8 T cell responses between infection with OVA-expressing strains of Listeria monocytogenes (Lm) and Plasmodium berghei ANKA (PbA). We find that CD8 T cells expand vigorously during both infections. However, in contrast to Lm infection, PbA infection induces T cells that are heavily biased toward an IL-7Ra-deficient and KLRG1+ short-lived effector cell (SLEC) phenotype at the expense of memory precursor effector cell (MPECs) formation. PbA-induced inflammation, including IFNγ, is partially responsible for this outcome. Following treatment with antimalarial drugs and T cell contraction, PbA-primed memory T cells are rarely found in the blood and peripheral tissues but do maintain a low presence in the spleen and bone marrow. Despite these poor numbers, PbA memory T cells robustly expand upon vaccination or viral infection, control pathogen burden, and form secondary memory pools. Thus, despite PbA enforced SLEC formation and limited memory, effective secondary responses can still proceed.
Collapse
Affiliation(s)
- Jacob A. Hildebrand
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Noah R. Daniels
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emma M. Dehm
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin D. Fisher
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph K. Guter
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Erin D. Lucas
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jules A. Sangala
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Disease and Internal Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor N. Tankersley
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Geoffrey T. Hart
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Disease and Internal Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sara E. Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Su XZ, Xu F, Stadler RV, Teklemichael AA, Wu J. Malaria: Factors affecting disease severity, immune evasion mechanisms, and reversal of immune inhibition to enhance vaccine efficacy. PLoS Pathog 2025; 21:e1012853. [PMID: 39847577 PMCID: PMC11756774 DOI: 10.1371/journal.ppat.1012853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement. Some issues associated with the difficulties in developing a sterile vaccine include high antigenic diversity, switching expression of the immune targets, and inhibition of immune pathways. Current vaccine research focuses on identifying conserved and protective epitopes, developing multivalent vaccines (including the whole parasite), and using more powerful adjuvants. However, overcoming the systematic immune inhibition and immune cell dysfunction/exhaustion may be required before high titers of protective antibodies can be achieved. Increased expression of surface molecules such as CD86 and MHC II on antigen-presenting cells and blocking immune checkpoint pathways (interactions of PD-1 and PD-L1; CTLA-4 and CD80) using small molecules could be a promising approach for enhancing vaccine efficacy. This assay reviews the factors affecting the disease severity, the genetics of host-parasite interaction, immune evasion mechanisms, and approaches potentially to improve host immune response for vaccine development.
Collapse
Affiliation(s)
- Xin-zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel V. Stadler
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Awet Alem Teklemichael
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
5
|
Wang ZX, Jiao WJ, Yang Y, Liu HL, Wang HL. Role of inflammasomes in Toxoplasma and Plasmodium infections. Parasit Vectors 2024; 17:466. [PMID: 39548522 PMCID: PMC11566176 DOI: 10.1186/s13071-024-06529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The detection of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) by multimeric protein complexes, known as inflammasomes, triggers an inflammatory response, which is a critical component of the innate immune system. This inflammatory response plays a pivotal role in host resistance against parasitic infections, presenting a significant global health challenge. METHODS We systematically searched for relevant articles from the Pubmed and the Web of Science database to summarize current insights into how inflammasomes function in preventing infections caused by the apicomplexan parasites Toxoplasma and Plasmodium. RESULTS In vivo and in vitro studies have extensively explored inflammasomes such as the absent in melanoma 2 (AIM2), NLR family pyrin-containing protein 1 (NLRP1), NLRP3, and NLRP12 inflammasomes, alongside noncanonical inflammasomes, with particular emphasis on the NLRP1 and the NLRP3 inflammasome during Toxoplasma gondii infection or the AIM2 and the NLRP3 inflammasome at various stages of Plasmodium infection. Toxoplasma gondii interacts with inflammasomes to activate or inhibit immune responses. CONCLUSIONS Inflammasomes control parasite burden and parasite-induced cell death, contribute to immune recognition and inflammatory responses and thus influence apicomplexan parasite-associated pathogenesis and the severity of clinical outcomes. Hence, inflammasomes play crucial roles in the progression and outcomes of toxoplasmosis and malaria. A comprehensive understanding of how parasitic infections modulate inflammasome activity enhances insight into host immune responses against parasites.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Wan-Jun Jiao
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Yong Yang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Hong-Li Liu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
6
|
Franco A, Flores-Garcia Y, Venezia J, Daoud A, Scott AL, Zavala F, Sullivan DJ. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect 2024; 26:105343. [PMID: 38670216 DOI: 10.1016/j.micinf.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Hemozoin is a crystal synthesized by Plasmodium parasites during hemoglobin digestion in the erythrocytic stage. The hemozoin released when the parasites egress from the red blood cell, which is complexed with parasite DNA, is cleared from the circulation by circulating and tissue-resident monocytes and macrophages, respectively. Recently, we reported that intravenous administration of purified hemozoin complexed with Plasmodium berghei DNA (HzPbDNA) resulted in an innate immune response that blocked liver stage development of sporozoites that was dose-dependent and time-limited. Here, we further characterize the organismal, cellular, and molecular events associated with this protective innate response in the liver and report that a large proportion of the IV administered HzPbDNA localized to F4/80+ cells in the liver and that the rapid and strong protection against liver-stage development waned quickly such that by 1 week post-HzPbDNA treatment animals were fully susceptible to infection. RNAseq of the liver after IV administration of HzPbDNA demonstrated that the rapid and robust induction of genes associated with the acute phase response, innate immune activation, cellular recruitment, and IFN-γ signaling observed at day 1 was largely absent at day 7. RNAseq analysis implicated NK cells as the major cellular source of IFN-γ. In vivo cell depletion and IFN-γ neutralization experiments supported the hypothesis that tissue-resident macrophages and NK cells are major contributors to the protective response and the NK cell-derived IFN-γ is key to induction of the mechanisms that block sporozoite development in the liver. These findings advance our understanding of the innate immune responses that prevent liver stage malaria infection.
Collapse
Affiliation(s)
- Adriano Franco
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jarrett Venezia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Abdel Daoud
- Department of Pathology, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Alan L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Alonaizan R. Molecular regulation of NLRP3 inflammasome activation during parasitic infection. Biosci Rep 2024; 44:BSR20231918. [PMID: 38623843 PMCID: PMC11096646 DOI: 10.1042/bsr20231918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Parasitic diseases are a serious global health concern, causing many common and severe infections, including Chagas disease, leishmaniasis, and schistosomiasis. The NLRP3 inflammasome belongs to the NLR (nucleotide-binding domain leucine-rich-repeat-containing proteins) family, which are cytosolic proteins playing key roles in the detection of pathogens. NLRP3 inflammasomes are activated in immune responses to Plasmodium, Leishmania, Toxoplasma gondii, Entamoeba histolytica, Trypanosoma cruzi, and other parasites. The role of NLRP3 is not fully understood, but it is a crucial component of the innate immune response to parasitic infections and its functions as a sensor triggering the inflammatory response to the invasive parasites. However, while this response can limit the parasites' growth, it can also result in potentially catastrophic host pathology. This makes it essential to understand how NLRP3 interacts with parasites to initiate the inflammatory response. Plasmodium hemozoin, Leishmania glycoconjugate lipophosphoglycan (LPG) and E. histolytica Gal/GalNAc lectin can stimulate NLRP3 activation, while the dense granule protein 9 (GRA9) of T. gondii has been shown to suppress it. Several other parasitic products also have diverse effects on NLRP3 activation. Understanding the mechanism of NLRP3 interaction with these products will help to develop advanced therapeutic approaches to treat parasitic diseases. This review summarizes current knowledge of the NLRP3 inflammasome's action on the immune response to parasitic infections and aims to determine the mechanisms through which parasitic molecules either activate or inhibit its action.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
McNitt SA, Dick JK, Hernandez Castaneda M, Sangala JA, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel KB, Hamilton SE, Hart GT. Phenotype and function of IL-10 producing NK cells in individuals with malaria experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593687. [PMID: 38798324 PMCID: PMC11118352 DOI: 10.1101/2024.05.11.593687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
|
9
|
Sekar P, Rajagopalan S, Shabani E, Kanjee U, Schureck MA, Arora G, Peterson ME, Traore B, Crompton PD, Duraisingh MT, Desai SA, Long EO. NK cell-induced damage to P.falciparum-infected erythrocytes requires ligand-specific recognition and releases parasitophorous vacuoles that are phagocytosed by monocytes in the presence of immune IgG. PLoS Pathog 2023; 19:e1011585. [PMID: 37939134 PMCID: PMC10659167 DOI: 10.1371/journal.ppat.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMβ2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.
Collapse
Affiliation(s)
- Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sumati Rajagopalan
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marc A. Schureck
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gunjan Arora
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mary E. Peterson
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Boubacar Traore
- Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sanjay A. Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
10
|
Amo L, Kole HK, Scott B, Qi CF, Krymskaya L, Wang H, Miller LH, Janse CJ, Bolland S. Plasmodium curtails autoimmune nephritis via lasting bone marrow alterations, independent of hemozoin accumulation. Front Immunol 2023; 14:1192819. [PMID: 37539049 PMCID: PMC10394379 DOI: 10.3389/fimmu.2023.1192819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
The host response against infection with Plasmodium commonly raises self-reactivity as a side effect, and antibody deposition in kidney has been cited as a possible cause of kidney injury during severe malaria. In contrast, animal models show that infection with the parasite confers long-term protection from lethal lupus nephritis initiated by autoantibody deposition in kidney. We have limited knowledge of the factors that make parasite infection more likely to induce kidney damage in humans, or the mechanisms underlying protection from autoimmune nephritis in animal models. Our experiments with the autoimmune-prone FcγR2B[KO] mice have shown that a prior infection with P. yoelii 17XNL protects from end-stage nephritis for a year, even when overall autoreactivity and systemic inflammation are maintained at high levels. In this report we evaluate post-infection alterations, such as hemozoin accumulation and compensatory changes in immune cells, and their potential role in the kidney-specific protective effect by Plasmodium. We ruled out the role of pigment accumulation with the use of a hemozoin-restricted P. berghei ANKA parasite, which induced a self-resolved infection that protected from autoimmune nephritis with the same mechanism as parasitic infections that accumulated normal levels of hemozoin. In contrast, adoptive transfer experiments revealed that bone marrow cells were altered by the infection and could transmit the kidney protective effect to a new host. While changes in the frequency of bone marrow cell populations after infection were variable and unique to a particular parasite strain, we detected a sustained bias in cytokine/chemokine expression that suggested lower fibrotic potential and higher Th1 bias likely affecting multiple cell populations. Sustained changes in bone marrow cell activation profile could have repercussions in immune responses long after the infection was cleared.
Collapse
Affiliation(s)
- Laura Amo
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Hemanta K. Kole
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Bethany Scott
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ludmila Krymskaya
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Hongsheng Wang
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Silvia Bolland
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
11
|
Fontana MF, Ollmann Saphire E, Pepper M. Plasmodium infection disrupts the T follicular helper cell response to heterologous immunization. eLife 2023; 12:83330. [PMID: 36715223 PMCID: PMC9886276 DOI: 10.7554/elife.83330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Naturally acquired immunity to malaria develops only after many years and repeated exposures, raising the question of whether Plasmodium parasites, the etiological agents of malaria, suppress the ability of dendritic cells (DCs) to activate optimal T cell responses. We demonstrated recently that B cells, rather than DCs, are the principal activators of CD4+ T cells in murine malaria. In the present study, we further investigated factors that might prevent DCs from priming Plasmodium-specific T helper cell responses. We found that DCs were significantly less efficient at taking up infected red blood cells (iRBCs) compared to soluble antigen, whereas B cells more readily bound iRBCs. To assess whether DCs retained the capacity to present soluble antigen during malaria, we measured responses to a heterologous protein immunization administered to naïve mice or mice infected with P. chabaudi. Antigen uptake, DC activation, and expansion of immunogen-specific T cells were intact in infected mice, indicating DCs remained functional. However, polarization of the immunogen-specific response was dramatically altered, with a near-complete loss of germinal center T follicular helper cells specific for the immunogen, accompanied by significant reductions in antigen-specific B cells and antibody. Our results indicate that DCs remain competent to activate T cells during Plasmodium infection, but that T cell polarization and humoral responses are severely disrupted. This study provides mechanistic insight into the development of both Plasmodium-specific and heterologous adaptive responses in hosts with malaria.
Collapse
Affiliation(s)
- Mary F Fontana
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for ImmunologyLa JollaUnited States
| | - Marion Pepper
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
12
|
Plasmodium berghei Purified Hemozoin Associated with DNA Strongly Inhibits P. berghei Liver-Stage Development in BALB/c Mice after Intravenous Inoculation. Infect Immun 2023; 91:e0030422. [PMID: 36622216 PMCID: PMC9872621 DOI: 10.1128/iai.00304-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the acidic lysosome-like digestive vacuole, Plasmodium parasites crystallize heme from hemoglobin into hemozoin, or malaria pigment. Upon release of progeny merozoites, the residual hemozoin is phagocytized by macrophages principally in the liver and spleen where the heme crystals can persist for months to years, as heme oxygenase does not readily degrade the crystal. Previous studies demonstrated hemozoin modulation of monocytes and macrophages. Hemozoin modulates immune function activity of monocytes/macrophages. Here, we used purified/washed hemozoin (W-Hz) isolated from murine Plasmodium berghei infections and intravenously (i.v.) injected it back into naive mice. We characterized the modulating effect of W-Hz on liver-stage replication. Purified washed hemozoin decreases P. berghei liver levels both at 1 week and 1 month after i.v. injection in a dose and time dependent fashion. The injected hemozoin fully protected in nine out of 10 mice given a 50 sporozoite inoculum, and in 10 out of 10 mice against 2,000 sporozoites when they were infected an hour or a day after hemozoin inoculation. DNase treatment at the hemozoin reversed the observed liver load reduction. The liver load reduction was similar in mature B- and T-cell-deficient RAG-1 knockout (KO) mice suggesting an innate immune protection mechanism. This work indicates a role for residual hemozoin in down modulation of Plasmodium liver stages.
Collapse
|
13
|
Gonzales SJ, Clarke KN, Batugedara G, Garza R, Braddom AE, Reyes RA, Ssewanyana I, Garrison KC, Ippolito GC, Greenhouse B, Bol S, Bunnik EM. A Molecular Analysis of Memory B Cell and Antibody Responses Against Plasmodium falciparum Merozoite Surface Protein 1 in Children and Adults From Uganda. Front Immunol 2022; 13:809264. [PMID: 35720313 PMCID: PMC9201334 DOI: 10.3389/fimmu.2022.809264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.
Collapse
Affiliation(s)
- S. Jake Gonzales
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kathleen N. Clarke
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ashley E. Braddom
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kendra C. Garrison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Gregory C. Ippolito
- Department of Molecular Biosciences and Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|