1
|
Shi G, Wang R, Huang C. Augmenting Macrophages Apoptosis Induced by Carnitine Palmitoyl Transferase 1A Inhibition via Acetyl-CoA-Associated Protein Acetylation. Immunology 2025; 175:214-225. [PMID: 40071507 DOI: 10.1111/imm.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/21/2025] [Indexed: 05/07/2025] Open
Abstract
Macrophage apoptosis contributes to acute lung injury (ALI). However, the relationship between cell metabolism and the apoptosis of macrophages remains unclear. In our study, murine alveolar macrophages (MH-S) were stimulated by lipopolysaccharide (LPS) to induce an apoptosis model; cell viability, mitochondrial membrane potential (MMP) and apoptosis rate were determined. TCA metabolites and fatty acids were measured; qPCR and western blot were used to detect gene and protein expressions. The LPS-induced ALI mice model was established, and pathological changes, inflammatory cytokines, and protein acetylation were evaluated. The results showed that LPS exposure impaired cell viability and increased apoptosis of alveolar macrophages (AM) in a concentration-dependent manner. LPS also downregulated the expression of the FAO rate-limiting enzyme carnitine palmitoyl transferase 1A (CPT1A), which was accompanied by suppression of fatty acid oxidation (FAO) and alterations of the fatty acid profile. CPT1A inhibitor etomoxir also promoted cell apoptosis of AM and decreased MMP. Overexpression of CPT1A ameliorated cell apoptosis of AM induced by LPS. Etomoxir and LPS decreased acetyl-CoA levels, and supplementation of acetyl-CoA prevented LPS-induced cell apoptosis. In addition, LPS led to the alteration of acetylated protein profiles. In vivo study, excessive cell apoptosis, decreased expression of proteins related to FAO, and decreased acetyl-CoA levels were detected in ALI animal models. Acetyl-CoA could relieve the apoptosis and inflammation in the lung induced by LPS. These findings suggested the essential role of CPT1A and acetyl-CoA in cell apoptosis of AM induced by LPS.
Collapse
Affiliation(s)
- Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rong Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Bai X, Guo YR, Zhao ZM, Li XY, Dai DQ, Zhang JK, Li YS, Zhang CD. Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies. Cancer Lett 2025; 625:217772. [PMID: 40324582 DOI: 10.1016/j.canlet.2025.217772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Macrophages are innate immune cells distributed throughout the body that play vital roles in organ development, tissue homeostasis, and immune surveillance. Macrophages acquire a binary M1/M2 polarized phenotype through signaling cascades upon sensing different signaling molecules in the environment, thereby playing a core role in a series of immune tasks, rendering precise regulation essential. M1/M2 macrophage phenotypes regulate inflammatory responses, while controlled activation of inflammatory signaling pathways is involved in regulating macrophage polarization. Among the relevant signaling pathways, we focus on the six well-characterized NF-κB, MAPK, JAK-STAT, PI3K/AKT, inflammasome, and cGAS-STING inflammatory pathways, and elucidate their roles and crosstalk in macrophage polarization. Furthermore, the effects of many environmental signals that influence macrophage polarization are investigated by modulating these pathways in vivo and in vitro. We thus detail the physiological and pathophysiological status of these six inflammatory signaling pathways and involvement in regulating macrophage polarization in cancer and beyond, as well as describe potential therapeutic approaches targeting these signaling pathways. In this review, the latest research advances in inflammatory signaling pathways regulating macrophage polarization are reviewed, as targeting these inflammatory signaling pathways provides suitable strategies to intervene in macrophage polarization and various tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Xiao Bai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yun-Ran Guo
- Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhe-Ming Zhao
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jia-Kui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yong-Shuang Li
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Chun-Dong Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
3
|
Huynh PM, Wang F, An YA. Hypoxia signaling in the adipose tissue. J Mol Cell Biol 2025; 16:mjae039. [PMID: 39363240 PMCID: PMC11892559 DOI: 10.1093/jmcb/mjae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in humans and rodent models with obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.
Collapse
Affiliation(s)
- Phu M Huynh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
4
|
Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon 2025; 11:e41620. [PMID: 39866478 PMCID: PMC11758422 DOI: 10.1016/j.heliyon.2024.e41620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Chronic kidney disease (CKD) is by far the most prevalent disease in the world and is now a major global public health problem because of the increase in diabetes, hypertension and obesity. Traditional biomarkers of kidney function lack sensitivity and specificity for early detection and monitoring of CKD progression, necessitating more sensitive biomarkers for early diagnostic intervention. Dyslipidemia is a hallmark of CKD. Advancements in mass spectrometry (MS)-based lipidomics platforms have facilitated comprehensive analysis of lipids in biological samples and have revealed changes in the lipidome that are associated with metabolic disorders, which can be used as new biomarkers for kidney diseases. It is also critical for the discovery of new therapeutic targets and drugs. In this article, we focus on lipids in CKD, lipidomics methodologies and their applications in CKD. Additionally, we introduce novel biomarkers identified through lipidomics approaches and natural products derived from lipidomics for the treatment of CKD. We believe that our study makes a significant contribution to literature by demonstrating that natural products can improve CKD from a lipidomic perspective.
Collapse
Affiliation(s)
- Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Dahik VD, Kc P, Materne C, Reydellet C, Lhomme M, Cruciani-Guglielmacci C, Denom J, Bun E, Ponnaiah M, Deknuydt F, Frisdal E, Hardy LM, Durand H, Guillas I, Lesnik P, Gudelj I, Lauc G, Guérin M, Kontush A, Soprani A, Magnan C, Diedisheim M, Bluteau O, Venteclef N, Le Goff W. ABCG1 orchestrates adipose tissue macrophage plasticity and insulin resistance in obesity by rewiring saturated fatty acid pools. Sci Transl Med 2024; 16:eadi6682. [PMID: 39661702 DOI: 10.1126/scitranslmed.adi6682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
The mechanisms governing adipose tissue macrophage (ATM) metabolic adaptation during diet-induced obesity (DIO) are poorly understood. In obese adipose tissue, ATMs are exposed to lipid fluxes, which can influence the activation of specific inflammatory and metabolic programs and contribute to the development of obesity-associated insulin resistance and other metabolic disorders. In the present study, we demonstrate that the membrane ATP-binding cassette g1 (Abcg1) transporter controls the ATM functional response to fatty acids (FAs) carried by triglyceride-rich lipoproteins, which are abundant in high-energy diets. Mice genetically lacking Abcg1 in the myeloid lineage presented an ameliorated inflammatory status in adipose tissue and reduced insulin resistance. Abcg1-deficient ATMs exhibited a less inflammatory phenotype accompanied by a low bioenergetic profile and modified FA metabolism. A closer look at the ATM lipidome revealed a shift in the handling of FA pools, including a redirection of saturated FAs from membrane phospholipids to lipid droplets, leading to a reduction in membrane rigidity and neutralization of proinflammatory FAs. ATMs from human individuals with obesity presented the same reciprocal relationship between ABCG1 expression and this inflammatory and metabolic status. Abolition of this protective, anti-inflammatory phenotype in Abcg1-deficient ATMs was achieved through restoration of lipoprotein lipase (Lpl) activity, thus delineating the importance of the Abcg1/Lpl axis in controlling ATM metabolic inflammation. Overall, our study identifies the rewiring of FA pools by Abcg1 as a major pathway orchestrating ATM plasticity and insulin resistance in DIO.
Collapse
Affiliation(s)
- Veronica D Dahik
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Pukar Kc
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Clément Materne
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Canelle Reydellet
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O data science (MP), ICAN omics (ML), ICAN BioCell Flow Cytometry (FD), 75013 Paris, France
| | | | - Jessica Denom
- Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Eric Bun
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O data science (MP), ICAN omics (ML), ICAN BioCell Flow Cytometry (FD), 75013 Paris, France
| | - Florence Deknuydt
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O data science (MP), ICAN omics (ML), ICAN BioCell Flow Cytometry (FD), 75013 Paris, France
| | - Eric Frisdal
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Lise M Hardy
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Hervé Durand
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Isabelle Guillas
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Philippe Lesnik
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, HR-10 000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, HR-10 000 Zagreb, Croatia
| | - Maryse Guérin
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Anatol Kontush
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Antoine Soprani
- Department of Digestive Surgery, Générale de Santé (GDS), Geoffroy Saint Hilaire Clinic, 75005 Paris, France
| | | | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), 37540 Saint-Cyr-sur-Loire, France
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Olivier Bluteau
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
- Department of Endocrine and Oncological Biochemistry, AP-HP Pitié-Salpêtrière-Charles Foix, F-75651 Paris, France
| | - Nicolas Venteclef
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Wilfried Le Goff
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| |
Collapse
|
6
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
7
|
Kempkes RWM, Prinjha RK, de Winther MPJ, Neele AE. Novel insights into the dynamic function of PRC2 in innate immunity. Trends Immunol 2024; 45:1015-1030. [PMID: 39603889 DOI: 10.1016/j.it.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.
Collapse
Affiliation(s)
- Rosalie W M Kempkes
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands
| | | | - Menno P J de Winther
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| | - Annette E Neele
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Jeelani I, Moon JS, da Cunha FF, Nasamran CA, Jeon S, Zhang X, Bandyopadhyay GK, Dobaczewska K, Mikulski Z, Hosseini M, Liu X, Kisseleva T, Brenner D, Singh S, Loomba R, Kim M, Lee YS. HIF-2α drives hepatic Kupffer cell death and proinflammatory recruited macrophage activation in nonalcoholic steatohepatitis. Sci Transl Med 2024; 16:eadi0284. [PMID: 39259813 PMCID: PMC11665927 DOI: 10.1126/scitranslmed.adi0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.
Collapse
Affiliation(s)
- Ishtiaq Jeelani
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jae-Su Moon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Flavia Franco da Cunha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Chanond A. Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seokhyun Jeon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Xinhang Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Gautam K. Bandyopadhyay
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California, 92093, USA
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - David Brenner
- Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seema Singh
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
- Division of Epidemiology Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, 92093, USA
- NAFLD Research Center University of California, San Diego, La Jolla, California, 92093, USA
| | - Minkyu Kim
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
10
|
Zheng Z, Yang S, Dai W, Xue P, Sun Y, Wang J, Zhang X, Lin J, Kong J. The role of pyroptosis in metabolism and metabolic disease. Biomed Pharmacother 2024; 176:116863. [PMID: 38850650 DOI: 10.1016/j.biopha.2024.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Pyroptosis is a lytic and pro-inflammatory form of regulated cell death characterized by the formation of membrane pores mediated by the gasdermin protein family. Two main activation pathways have been documented: the caspase-1-dependent canonical pathway and the caspase-4/5/11-dependent noncanonical pathway. Pyroptosis leads to cell swelling, lysis, and the subsequent release of inflammatory mediators, including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Chronic inflammation is a well-established foundation and driver for the development of metabolic diseases. Conversely, metabolic pathway dysregulation can also induce cellular pyroptosis. Recent studies have highlighted the significant role of pyroptosis modulation in various metabolic diseases, including type 2 diabetes mellitus, obesity, and metabolic (dysfunction) associated fatty liver disease. These findings suggest that pyroptosis may serve as a promising novel therapeutic target for metabolic diseases. This paper reviews an in-depth study of the current advancements in understanding the role of pyroptosis in the progression of metabolic diseases.
Collapse
Affiliation(s)
- Zhuyuan Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang 110122, PR China
| | - Pengwei Xue
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yang Sun
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jingnan Wang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaolin Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jiang Lin
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
11
|
Zeng D, Wang K, Chen Z, Yao C. Association between TyG index and long-term prognosis of patients with ST-segment elevated myocardial infarction undergoing percutaneous coronary intervention: a retrospective cohort study. BMJ Open 2024; 14:e079279. [PMID: 38889947 PMCID: PMC11191807 DOI: 10.1136/bmjopen-2023-079279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE To assess the association between the serum triglyceride-glucose product index (TyG index) and the risk for all-cause mortality in patients with ST-segment elevated myocardial infarction (STEMI). DESIGN Retrospective. SETTING AND PARTICIPANTS This retrospective study included 896 patients with STEMI who underwent percutaneous coronary intervention (PCI) at a comprehensive university-affiliated hospital between January 2016 and January 2019. METHODS Patients were equally divided into quartiles (Q1, Q2, Q3 and Q4 group) according to TyG index values. PRIMARY ENDPOINT All-cause mortality. RESULTS After a median follow-up of 3 years, 108 (17.1%) patients died. TyG index was independently associated with increased all-cause mortality (OR, 1.39; 95% CI, 1.22 to 1.58) after adjusting for age, sex, low-density lipoprotein cholesterol (LDL-c), cardiac troponin I, B-type natriuretic peptide, delayed PCI, post-PCI complications, medication and left ventricular ejection fraction. The adjusted OR was 1.31 (95% CI, 0.62 to 2.77) for Q2, 2.12 (95% CI, 1.01 to 4.53) for Q3 and 4.02 (95% CI, 1.90 to 8.78) for Q4 compared with the lowest quartile (Q1) (p for trend<0.001). In the restricted cubic spline regression model, the relationship between the TyG index and the risk of all-cause mortality was linear (p for non-linear=0.575). Each unit increase in the TyG index was associated with a 68% increase in the multivariate risk for all-cause mortality (OR 1.68; 95% CI, 1.20 to 2.38). In the subgroup analysis, there was an interaction between LDL-c and the TyG index on the risk of all-cause mortality (p for interaction=0.007). CONCLUSION The TyG index was significantly associated with the long-term all-cause mortality among patients with STEMI who underwent PCI.
Collapse
Affiliation(s)
- Deli Zeng
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Chen
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Caoyuan Yao
- Department of Respiratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Xia J, Chen H, Wang X, Chen W, Lin J, Xu F, Nie Q, Ye C, Zhong B, Zhao M, Yun C, Zeng G, Mao Y, Wen Y, Zhang X, Yan S, Wang X, Sun L, Liu F, Zhong C, Xia P, Jiang C, Rao H, Pang Y. Sphingosine d18:1 promotes nonalcoholic steatohepatitis by inhibiting macrophage HIF-2α. Nat Commun 2024; 15:4755. [PMID: 38834568 PMCID: PMC11150497 DOI: 10.1038/s41467-024-48954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.
Collapse
Affiliation(s)
- Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Xiaoxiao Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Weixuan Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bitao Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
| | - Min Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yuejian Mao
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yongping Wen
- Mengniu Institute of Nutrition Science, Shanghai, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Shanghai, China
- Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lulu Sun
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| |
Collapse
|
13
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
14
|
Ruan Q, Geng Y, Zhao M, Zhang H, Cheng X, Zhao T, Yue X, Jiang X, Jiang X, Hou XY, Zhu LL. Prolyl hydroxylase inhibitor FG-4592 alleviates neuroinflammation via HIF-1/BNIP3 signaling in microglia. Biomed Pharmacother 2024; 173:116342. [PMID: 38430635 DOI: 10.1016/j.biopha.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Neuroinflammation is responsible for neuropsychiatric dysfunction following acute brain injury and neurodegenerative diseases. This study describes how a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor FG-4592 prevents the lipopolysaccharide (LPS)-induced acute neuroinflammation in microglia. METHODS The distribution of FG-4592 in mouse brain tissues was determined by collision-induced dissociation tandem mass spectrometry. Microglial activation in the hippocampus was analyzed by immunofluorescence. Moreover, we determined the activation of HIF-1 and nuclear factor-κB (NF-κB) signaling pathways, proinflammatory responses using molecular biological techniques. Transcriptome sequencing and BNIP3 silencing were conducted to explore signaling pathway and molecular mechanisms underlying FG-4592 anti-inflammatory activity. RESULTS FG-4592 was transported into the brain tissues and LPS increased its transportation. FG-4592 promoted the expression of HIF-1α and induced the downstream gene transcription in the hippocampus. Administration with FG-4592 significantly inhibited microglial hyperactivation and decreased proinflammatory cytokine levels following LPS treatment in the hippocampus. The LPS-induced inflammatory responses and the NF-κB signaling pathway were also downregulated by FG-4592 pretreatment in microglial cells. Mechanistically, Venn diagram analysis of transcriptomic changes of BV2 cells identified that BNIP3 was a shared and common differentially expressed gene among different treatment groups. FG-4592 markedly upregulated the protein levels of BNIP3 in microglia. Importantly, BNIP3 knockdown aggravated the LPS-stimulated inflammatory responses and partially reversed the protection of FG-4592 against microglial inflammatory signaling and microglial activation in the mouse hippocampus. CONCLUSIONS FG-4592 alleviates neuroinflammation through facilitating microglial HIF-1/BNIP3 signaling pathway in mice. Targeting HIF-PHD/HIF-1/BNIP3 axis is a promising strategy for the development of anti-neuroinflammation drugs.
Collapse
Affiliation(s)
- Qianqian Ruan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Ling-Ling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
15
|
Yao T, Wei D, Tian X, Zhao L, Wan Q, Zhang X, Cai J, Li S, Diao B, Feng S, Shan B, Shao M, Wu Y. PDGFRβ + cell HIF2α is dispensable for white adipose tissue metabolic remodeling and hepatic lipid accumulation in obese mice. Lipids Health Dis 2024; 23:81. [PMID: 38509584 PMCID: PMC10953078 DOI: 10.1186/s12944-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRβ + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRβ + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRβ + cells remains undetermined in vivo. METHODS New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRβ + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRβ + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRβ + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRβ + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRβ + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRβ + cell Epas1-deficient mice. CONCLUSION The new findings in this study support that, in contrast to HIF1α, PDGFRβ + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.
Collapse
Affiliation(s)
- Tao Yao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Danni Wei
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Tian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiangyou Wan
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Zhang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Juan Cai
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Diao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Suihan Feng
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bo Shan
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengle Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
16
|
Wang L, Fan J, Yang T, Shen J, Wang L, Ge W. Investigating the therapeutic effects and mechanisms of Roxadustat on peritoneal fibrosis Based on the TGF-β/Smad pathway. Biochem Biophys Res Commun 2024; 693:149387. [PMID: 38145606 DOI: 10.1016/j.bbrc.2023.149387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Peritoneal fibrosis (PF) is particularly common in individuals undergoing peritoneal dialysis (PD). Fibrosis of the parenchymal tissue typically progresses slowly. Therefore, preventing and reducing the advancement of fibrosis is crucial for effective patient treatment. Roxadustat is a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), primarily used to treat and improve renal anemia. Recent studies have found that HIF-1α possesses antioxidant activity and exerts a certain protective effect in ischemic heart disease and spinal cord injury, while it can also delay the progression of pulmonary and renal fibrosis. This study establishes the mice model through intraperitoneal injection of 4.25 % peritoneal dialysate fluid (PDF) and explores the therapeutic effects of Roxadustat by inducing TGF-β1-mediated epithelial-mesenchymal transition (EMT) in Met-5A cells. The aim is to investigate the protective role and mechanisms of Roxadustat against PD-related PF. We observed thicker peritoneal tissue and reduced permeability in animals with PD-related PF samples. This was accompanied by heightened inflammation, which Roxadustat alleviated by lowering the levels of inflammatory cytokines (IL-6, TNF-α). Furthermore, Roxadustat inhibited EMT in PF mice and TGF-β1-induced Met-5A cells, as evidenced by decreased expression of fibrotic markers, such as fibronectin, collagen I, and α-SMA, alongside an elevation in the expression of the epithelial marker, E-cadherin. Roxadustat also significantly decreased the expression of TGF-β1 and the phosphorylation of p-Smad2 and p-Smad3. In conclusion, Roxadustat ameliorates peritoneal fibrosis through the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, China
| | - Jiangqing Fan
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, China
| | - Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jizhong Shen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, China.
| |
Collapse
|
17
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Magliulo D, Simoni M, Caserta C, Fracassi C, Belluschi S, Giannetti K, Pini R, Zapparoli E, Beretta S, Uggè M, Draghi E, Rossari F, Coltella N, Tresoldi C, Morelli MJ, Di Micco R, Gentner B, Vago L, Bernardi R. The transcription factor HIF2α partakes in the differentiation block of acute myeloid leukemia. EMBO Mol Med 2023; 15:e17810. [PMID: 37807875 PMCID: PMC10630882 DOI: 10.15252/emmm.202317810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.
Collapse
Affiliation(s)
- Daniela Magliulo
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Matilde Simoni
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Fracassi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Serena Belluschi
- Vita Salute San Raffaele University School of MedicineMilanItaly
- Present address:
MogrifyCambridgeUK
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Pini
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ettore Zapparoli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Martina Uggè
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Draghi
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Federico Rossari
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele University School of MedicineMilanItaly
| | - Nadia Coltella
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Tresoldi
- Unit of Hematology and Bone Marrow TransplantationIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marco J Morelli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Present address:
Ludwig Institute for Cancer researchLausanne UniversityLausanneSwitzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Rosa Bernardi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
19
|
Meibers HE, Warrick KA, VonHandorf A, Vallez CN, Kawarizadeh K, Saha I, Donmez O, Jain VG, Kottyan LC, Weirauch MT, Pasare C. Effector memory T cells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. Cell Rep 2023; 42:113180. [PMID: 37794597 PMCID: PMC10654673 DOI: 10.1016/j.celrep.2023.113180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
Cognate interaction between CD4+ effector memory T (TEM) cells and dendritic cells (DCs) induces innate inflammatory cytokine production, resulting in detrimental autoimmune pathology and cytokine storms. While TEM cells use tumor necrosis factor (TNF) superfamily ligands to activate DCs, whether TEM cells prompt other DC-intrinsic changes that influence the innate inflammatory response has never been investigated. We report the surprising discovery that TEM cells trigger double-strand DNA breaks via mitochondrial reactive oxygen species (ROS) production in interacting DCs. Initiation of the DNA damage response in DCs induces activation of a cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-independent, non-canonical stimulator of interferon genes (STING)-TNF receptor-associated factor 6 (TRAF6)-nuclear factor κB (NF-κB) signaling axis. Consequently, STING-deficient DCs display reduced NF-κB activation and subsequent defects in transcriptional induction and functional production of interleukin-1β (IL-1β) and IL-6 following their interaction with TEM cells. The discovery of TEM cell-induced innate inflammation through DNA damage and a non-canonical STING-NF-κB pathway presents this pathway as a potential target to alleviate T cell-driven inflammation in autoimmunity and cytokine storms.
Collapse
Affiliation(s)
- Hannah E Meibers
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathrynne A Warrick
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles N Vallez
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kiana Kawarizadeh
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Irene Saha
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Omer Donmez
- Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Viral G Jain
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Leah C Kottyan
- Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
20
|
Yuan Z, Yu D, Gou T, Tang G, Guo C, Shi J. Research progress of NLRP3 inflammasome and its inhibitors with aging diseases. Eur J Pharmacol 2023; 957:175931. [PMID: 37495038 DOI: 10.1016/j.ejphar.2023.175931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
In recent years, a new target closely linked to a variety of diseases has appeared in the researchers' vision, which is the NLRP3 inflammasome. With the deepening of the study of NLRP3 inflammasome, it was found that it plays an extremely important role in a variety of physiological pathological processes, and NLRP3 inflammasome was also found to be associated with some age-related diseases. It is associated with the development of insulin resistance, Alzheimer's disease, Parkinson's, cardiovascular aging, hearing and vision loss. At present, the only clinical approach to the treatment of NLRP3 inflammasome-related diseases is to use anti-IL-1β antibodies, but NLRP3-specific inhibitors may be better than the IL-1β antibodies. This article reviews the relationship between NLRP3 inflammasome and aging diseases: summarizes some of the relevant experimental results reported in recent years, and introduces the biological signals or pathways closely related to the NLRP3 inflammasome in a variety of aging diseases, and also introduces some promising small molecule inhibitors of NLRP3 inflammasome for clinical treatment, such as: ZYIL1, DFV890 and OLT1177, they have excellent pharmacological effects and good pharmacokinetics.
Collapse
Affiliation(s)
- Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Tingting Gou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyuan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chun Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
21
|
Honda TSB, Ku J, Anders HJ. Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol 2023; 14:1214289. [PMID: 37564649 PMCID: PMC10411525 DOI: 10.3389/fimmu.2023.1214289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
The NLRP3 inflammasome transforms a wide variety of infectious and non-infectious danger signals that activate pro-inflammatory caspases, which promote the secretion of IL-1β and IL-18, and pyroptosis, a pro-inflammatory form of cell necrosis. Most published evidence documents the presence and importance of the NLRP3 inflammasome in monocytes, macrophages, and neutrophils during host defense and sterile forms of inflammation. In contrast, in numerous unbiased data sets, NLRP3 inflammasome-related transcripts are absent in non-immune cells. However, an increasing number of studies report the presence and functionality of the NLRP3 inflammasome in almost every cell type. Here, we take a closer look at the reported cell type-specific expression of the NLRP3 inflammasome components, review the reported inflammasome-dependent and -independent functions, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
22
|
Jin X, Ma Y, Liu D, Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm (Beijing) 2023; 4:e249. [PMID: 37125240 PMCID: PMC10130418 DOI: 10.1002/mco2.249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death with an intracellular program mediated, which plays a pivotal role in maintaining homeostasis and embryonic development. Pyroptosis is a new paradigm of PCD, which has received increasing attention due to its close association with immunity and disease. Pyroptosis is a form of inflammatory cell death mediated by gasdermin that promotes the release of proinflammatory cytokines and contents induced by inflammasome activation. Recently, increasing evidence in studies shows that pyroptosis has a crucial role in inflammatory conditions like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and metabolic diseases (MDs), suggesting that targeting cell death is a potential intervention for the treatment of these inflammatory diseases. Based on this, the review aims to identify the molecular mechanisms and signaling pathways related to pyroptosis activation and summarizes the current insights into the complicated relationship between pyroptosis and multiple human inflammatory diseases (CVDs, cancer, NDs, and MDs). We also discuss a promising novel strategy and method for treating these inflammatory diseases by targeting pyroptosis and focus on the pyroptosis pathway application in clinics.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yinchu Ma
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Didi Liu
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yi Huang
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| |
Collapse
|
23
|
Fernandez GJ, Ramírez-Mejía JM, Castillo JA, Urcuqui-Inchima S. Vitamin D modulates expression of antimicrobial peptides and proinflammatory cytokines to restrict Zika virus infection in macrophages. Int Immunopharmacol 2023; 119:110232. [PMID: 37150017 DOI: 10.1016/j.intimp.2023.110232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Although the impact of Zika virus (ZIKV) infection on human health has been well documented, we still have no vaccine or effective treatment. This fact highlights the importance of searching for alternative therapy for treating ZIKV. To search for ZIKV antivirals, we examined the effect of vitamin D in monocyte-derived macrophages (MDMs) differentiated in the presence of vitamin D (D3-MDM) and explored the molecular mechanisms by analyzing transcriptional profiles. Our data show the restriction of ZIKV infection in D3-MDMs as compared to MDMs. Transcriptional profiles show that vitamin D alters about 19% of Zika response genes (8.2% diminished and 10.8% potentiated). Among the genes with diminished expression levels, we found proinflammatory cytokines and chemokines such as IL6, TNF, IL1A, IL1B, and IL12B, CCL1, CCL4, CCL7, CXCL3, CXCL6, and CXCL8. On the other hand, genes with potentiated expression were related to degranulation such as Lysozyme, cathelicidin (CAMP), and Serglycin. Since the CAMP gene encodes the antimicrobial peptide LL-37, we treated MDMs with LL-37 and infected them with ZIKV. The results showed a decrease in the proportion of infected cells. Our data provide new insights into the role of vitamin D in restricting ZIKV infection in macrophages that are mediated by induction of cathelicidin/LL-37 expression and downregulation of proinflammatory genes. Results highlight the biological relevance of vitamin D-inducible peptides as an antiviral treatment for Zika fever.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia; Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellín, Colombia.
| | - Julieta M Ramírez-Mejía
- CIBIOP Group, Department of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia.
| | - Jorge Andrés Castillo
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia; Grupo de enfermedades infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
24
|
Wei D, Tian X, Zhai X, Sun C. Adipose Tissue Macrophage-Mediated Inflammation in Obesity: A Link to Posttranslational Modification. Immunol Invest 2023:1-25. [PMID: 37129471 DOI: 10.1080/08820139.2023.2205883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adipose tissue macrophages (ATM) are an essential type of immune cells in adipose tissue. Obesity induces the inflammation of adipose tissues, as expressed by ATM accumulation, that is more likely to become a source of systemic metabolic diseases, including insulin resistance. The process is characterized by the transcriptional regulation of inflammatory pathways by virtue of signaling molecules such as cytokines and free fatty acids. Notably, posttranslational modification (PTM) is a key link for these signaling molecules to trigger the proinflammatory or anti-inflammatory phenotype of ATMs. This review focuses on summarizing the functions and molecular mechanisms of ATMs regulating inflammation in obese adipose tissue. Furthermore, the role of PTM is elaborated, hoping to identify new horizons of treatment and prevention for obesity-mediated metabolic disease.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
25
|
Makinde HKM, Dunn JLM, Gadhvi G, Carns M, Aren K, Chung AH, Muhammad LN, Song J, Cuda CM, Dominguez S, Pandolfino JE, Dematte D’Amico JE, Budinger GS, Assassi S, Frech TM, Khanna D, Shaeffer A, Perlman H, Hinchcliff M, Winter DR. Three Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients. Arthritis Rheumatol 2023; 75:595-608. [PMID: 36281773 PMCID: PMC10165944 DOI: 10.1002/art.42380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a complex clinical phenotype. Transcriptional profiling of whole blood or tissue from patients are affected by changes in cellular composition that drive gene expression and an inability to detect minority cell populations. We undertook this study to focus on the 2 main subtypes of circulating monocytes, classical monocytes (CMs) and nonclassical monocytes (NCMs) as a biomarker of SSc disease severity. METHODS SSc patients were recruited from the Prospective Registry for Early Systemic Sclerosis. Clinical data were collected, as well as peripheral blood for isolation of CMs and NCMs. Age-, sex-, and race-matched healthy volunteers were recruited as controls. Bulk macrophages were isolated from the skin in a separate cohort. All samples were assayed by RNA sequencing (RNA-seq). RESULTS We used an unbiased approach to cluster patients into 3 groups (groups A-C) based on the transcriptional signatures of CMs relative to controls. Each group maintained their characteristic transcriptional signature in NCMs. Genes up-regulated in group C demonstrated the highest expression compared to the other groups in SSc skin macrophages, relative to controls. Patients from groups B and C exhibited worse lung function than group A, although there was no difference in SSc skin disease at baseline, relative to controls. We validated our approach by applying our group classifications to published bulk monocyte RNA-seq data from SSc patients, and we found that patients without skin disease were most likely to be classified as group A. CONCLUSION We are the first to show that transcriptional signatures of CMs and NCMs can be used to unbiasedly stratify SSc patients and correlate with disease activity outcome measures.
Collapse
Affiliation(s)
- Hadijat-Kubura M. Makinde
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Julia L. M. Dunn
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
- Cincinnati Children’s Hospital Medical Center, Division of Allergy & Immunology. Cincinnati, OH 45229 (current affiliation)
| | - Gaurav Gadhvi
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Mary Carns
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Kathleen Aren
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Anh H. Chung
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Lutfiyya N. Muhammad
- Northwestern University, Feinberg School of Medicine Department of Preventive Medicine. Chicago, IL 60611
| | - Jing Song
- Northwestern University, Feinberg School of Medicine Department of Preventive Medicine. Chicago, IL 60611
| | - Carla M. Cuda
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Salina Dominguez
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - John E. Pandolfino
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology. Chicago, IL 60611
| | - Jane E. Dematte D’Amico
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Division of Pulmonary and Critical Care. Chicago, IL 60611
| | - G. Scott Budinger
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Division of Pulmonary and Critical Care. Chicago, IL 60611
| | - Shervin Assassi
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- University of Texas Health Science Center at Houston, Division of Rheumatology, Houston, Texas 77030
| | - Tracy M. Frech
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- Vanderbilt University, Department of Medicine, Division of Rheumatology and Immunology. Nashville, TN 37232
| | - Dinesh Khanna
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- University of Michigan, Department of Medicine, Division of Rheumatology. Ann Arbor, MI 48109
| | - Alex Shaeffer
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Monique Hinchcliff
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- Yale University, School of Medicine, Section of Rheumatology, Allergy & Immunology. New Haven, CT 06520
| | - Deborah R. Winter
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| |
Collapse
|
26
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
27
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
28
|
Liu YF, Wang HH, Geng YH, Han L, Tu SH, Wang H. Advances of berberine against metabolic syndrome-associated kidney disease: Regarding effect and mechanism. Front Pharmacol 2023; 14:1112088. [PMID: 36814494 PMCID: PMC9939707 DOI: 10.3389/fphar.2023.1112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is drastically growing worldwide, resulting in MetS-associated kidney disease. According to traditional theories, preventing blood pressure, lipid, glycose, and obesity and improving insulin resistance (IR), a couple of medications are required for MetS. It not only lowers patients' compliance but also elevates adverse reactions. Accordingly, we attempted to seek answers from complementary and alternative medicine. Ultimately, berberine (BBR) was chosen due to its efficacy and safety on MetS through multi-pathways and multi-targets. The effects and mechanisms of BBR on obesity, IR, diabetic nephropathy, hypertension, hyperlipidemia, and hyperuricemia were elaborated. In addition, the overall properties of BBR and interventions for various kidney diseases were also collected. However, more clinical trials are expected to further identify the beneficial effects of BBR.
Collapse
Affiliation(s)
- Ya-Fei Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan-Huan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin-Hong Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-Hao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Nephrology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Cui L, Sun F, Xu Y, Li M, Chen L, Chen C, Qian J, Li D, Du M, Wang S. Tim-3 Coordinates Macrophage-Trophoblast Crosstalk via Angiogenic Growth Factors to Promote Pregnancy Maintenance. Int J Mol Sci 2023; 24:ijms24021538. [PMID: 36675047 PMCID: PMC9867110 DOI: 10.3390/ijms24021538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
T-cell immunoglobulin mucin-3 (Tim-3) is an important checkpoint that induces maternal-fetal tolerance in pregnancy. Macrophages (Mφs) play essential roles in maintaining maternal-fetal tolerance, remodeling spiral arteries, and regulating trophoblast biological behaviors. In the present study, the formation of the labyrinth zone showed striking defects in pregnant mice treated with Tim-3 neutralizing antibodies. The adoptive transfer of Tim-3+Mφs, rather than Tim-3-Mφs, reversed the murine placental dysplasia resulting from Mφ depletion. With the higher production of angiogenic growth factors (AGFs, including PDGF-AA, TGF-α, and VEGF), Tim-3+dMφs were more beneficial in promoting the invasion and tube formation ability of trophoblasts. The blockade of AGFs in Tim-3+Mφs led to the narrowing of the labyrinthine layer of the placenta, compromising maternal-fetal tolerance, and increasing the risk of fetal loss. Meanwhile, the AGFs-treated Tim-3-Mφs could resolve the placental dysplasia and fetal loss resulting from Mφ depletion. These findings emphasized the vital roles of Tim-3 in coordinating Mφs-extravillous trophoblasts interaction via AGFs to promote pregnancy maintenance and in extending the role of checkpoint signaling in placental development. The results obtained in our study also firmly demonstrated that careful consideration of reproductive safety should be taken when selecting immune checkpoint and AGF blockade therapies in real-world clinical care.
Collapse
|
30
|
Wang N, Hua J, Fu Y, An J, Chen X, Wang C, Zheng Y, Wang F, Ji Y, Li Q. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol 2023; 11:1125723. [PMID: 36923253 PMCID: PMC10008962 DOI: 10.3389/fcell.2023.1125723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Jing Hua
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yuhua Fu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Jiading District, Shanghai, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Chuancui Wang
- Department of Pulmonary and Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Yanghong Zheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| |
Collapse
|
31
|
Qu J, Li D, Jin J, Sun N, Wu J, Yang C, Wu L, Zhuang S, Wu H, Chen R, Ren Y, Zhong C, Ying L, Zhang Y, Yuan X, Zhang M. Hypoxia-Inducible Factor 2α Attenuates Renal Ischemia-Reperfusion Injury by Suppressing CD36-Mediated Lipid Accumulation in Dendritic Cells in a Mouse Model. J Am Soc Nephrol 2023; 34:73-87. [PMID: 36719147 PMCID: PMC10101615 DOI: 10.1681/asn.0000000000000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.
Collapse
Affiliation(s)
- Junwen Qu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Dawei Li
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nan Sun
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiajin Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chao Yang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingling Wu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shaoyong Zhuang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoyu Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ruoyang Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yaofei Ren
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Zhong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liang Ying
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yan Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiaodong Yuan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
32
|
Olona A, Leishman S, Anand PK. The NLRP3 inflammasome: regulation by metabolic signals. Trends Immunol 2022; 43:978-989. [PMID: 36371361 DOI: 10.1016/j.it.2022.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.
Collapse
Affiliation(s)
- Antoni Olona
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK; Program in Cardiovascular and Metabolic Disorders, and Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Stuart Leishman
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK
| | - Paras K Anand
- Department of Infectious Disease, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
33
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
34
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
35
|
Magliulo D, Bernardi R. Hypoxic stress and hypoxia-inducible factors in leukemias. Front Oncol 2022; 12:973978. [PMID: 36059690 PMCID: PMC9435438 DOI: 10.3389/fonc.2022.973978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
To cope with hypoxic stress, ancient organisms have developed evolutionally conserved programs centered on hypoxia-inducible transcriptional factors (HIFs). HIFs and their regulatory proteins have evolved as rheostats to adapt cellular metabolism to atmospheric oxygen fluctuations, but the amplitude of their transcriptional programs has tremendously increased along evolution to include a wide spectrum of physiological and pathological processes. The bone marrow represents a notable example of an organ that is physiologically exposed to low oxygen levels and where basal activation of hypoxia signaling appears to be intrinsically wired within normal and neoplastic hematopoietic cells. HIF-mediated responses are mainly piloted by the oxygen-labile α subunits HIF1α and HIF2α, and current literature suggests that these genes have a functional specification that remains to be fully defined. Since their identification in the mid 90s, HIF factors have been extensively studied in solid tumors, while their implication in leukemia has lagged behind. In the last decades however, many laboratories have addressed the function of hypoxia signaling in leukemia and obtained somewhat contradictory results. Suppression of HIFs expression in different types of leukemia has unveiled common leukemia-promoting functions such as stimulation of bone marrow neoangiogenesis, maintenance of leukemia stem cells and chemoresistance. However, genetic studies are revealing that a definition of HIF factors as bona fide tumor promoters is overly simplistic, and, depending on the leukemia subtype, the specific oncogenic event, or the stage of leukemia development, activation of hypoxia-inducible genes may lead to opposite consequences. With this article we will provide an updated summary of the studies describing the regulation and function of HIF1α and HIF2α in blood malignancies, spanning from acute to chronic, lymphoid to myeloid leukemias. In discussing these data, we will attempt to provide plausible explanations to contradictory findings and point at what we believe are areas of weakness in which further investigations are urgently needed. Gaining additional knowledge into the role of hypoxia signaling in leukemia appears especially timely nowadays, as new inhibitors of HIF factors are entering the clinical arena for specific types of solid tumors but their utility for patients with leukemia is yet to be determined.
Collapse
Affiliation(s)
| | - Rosa Bernardi
- Laboratory of Preclinical Models of Cancer, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
36
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
37
|
Liu Y, Sun R, Lin X, Wu L, Chen H, Shen S, Li Y, Wei Y, Deng G. Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP3 inflammasome pathway. Biomed Pharmacother 2022; 151:113078. [PMID: 35567986 DOI: 10.1016/j.biopha.2022.113078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) has an effect on the health of pregnant women and fetuses. Procyanidins (PA) is a flavonoid with anti-diabetic activity, but its effects and mechanisms on GDM have not been defined. Herein, we studied further the functions and mechanisms of PA on insulin resistance (IR) in GDM mice, as well as on postpartum and offspring mice. GDM mice model was built by feeding a high-fat-high-sucrose diet, and PA intervention (27.8 mg/kg/d) was performed from 4 weeks before pregnancy to delivery. Intestinal flora deficient (IFD) mice model was established by broad spectrum antibiotics. PA decreased the gestational weight gain, and the levels of fasting blood glucose, insulin, homeostasis model of assessment for IR index, yet increased the levels of HOMA for insulin sensitivity index. Interestingly, in IFD mice the effect of PA on improving IR was significantly weakened. PA inhibited inflammation by decreasing the levels of IL-6, TNF-α, IL-17 and CRP, which also been blocked in the IFD mice. Moreover, PA improved glycometabolism and reduced the secretion of inflammatory factors and hepatic inflammation infiltration of mice at 4 weeks postpartum, but had no significant effect on offspring mice. Mechanistically, PA treatment suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide-binding domain like receptor protein 3 (NLRP3) inflammasome activation. In vitro studies, 4-hydroxyphenylacetic acid and 3-(4-hydroxyphenyl) propionic acid, main intestinal flora metabolites of PA restrained NF-κB/NLRP3 activation. In conclusions, PA improved IR via NF-κB/NLRP3 pathway in GDM and postpartum mice, which partly through its metabolites by gut microbiome.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - XiaoPing Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanlan Wu
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Siwen Shen
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Clinical Nutrition, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China.
| |
Collapse
|
38
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
39
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol 2022; 19:384-408. [PMID: 34876704 PMCID: PMC8891297 DOI: 10.1038/s41423-021-00791-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular metabolism orchestrates the intricate use of tissue fuels for catabolism and anabolism to generate cellular energy and structural components. The emerging field of immunometabolism highlights the importance of cellular metabolism for the maintenance and activities of immune cells. Macrophages are embryo- or adult bone marrow-derived leukocytes that are key for healthy tissue homeostasis but can also contribute to pathologies such as metabolic syndrome, atherosclerosis, fibrosis or cancer. Macrophage metabolism has largely been studied in vitro. However, different organs contain diverse macrophage populations that specialize in distinct and often tissue-specific functions. This context specificity creates diverging metabolic challenges for tissue macrophage populations to fulfill their homeostatic roles in their particular microenvironment and conditions their response in pathological conditions. Here, we outline current knowledge on the metabolic requirements and adaptations of macrophages located in tissues during homeostasis and selected diseases.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| | - Gillian Dunphy
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
41
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. BIOLOGY 2022; 11:biology11020300. [PMID: 35205167 PMCID: PMC8869508 DOI: 10.3390/biology11020300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The regulation of hypoxia has recently emerged as having a central impact in mitochondrial function and dysfunction in various diseases, including the major disorders threatening worldwide: cardiovascular diseases and cancer. Despite the studies in this matter, its effective role in protection and disease progression even though its direct molecular mechanism in both disorders is still to be elucidated. This review aims to cover the current knowledge about the effect of hypoxia on mitochondrial function and dysfunction, and inflammation, in cardiovascular diseases and cancer, and reports further therapeutic strategies based on the modulation of hypoxic pathways. Abstract Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Mariasole Perrone
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Asrat E. Kahsay
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mario Della Sala
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, Ospedale Mater Salutis di Legnago, 37045 Verona, Italy;
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Correspondence: (C.G.); (S.P.)
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
- Correspondence: (C.G.); (S.P.)
| |
Collapse
|