1
|
Guo Y, Wang R, Lv C, Xu C, Shen G, Wang G, Zhang W, Wang Q, Zhao Y. Jak/Stat-regulated Esftz-f1 negatively regulates the antibacterial immunity of Eriocheir sinensis against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110366. [PMID: 40273962 DOI: 10.1016/j.fsi.2025.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
With the growing global demand for premium aquatic products, the expanding international market presence of Eriocheir sinensis has led to a continuous appreciation of its economic value. However, E. sinensis is threatened by various diseases during its breeding, among which bacterial diseases seriously affect its immune function and impede its growth. Ftz-f1, an orphan nuclear receptor, plays a vital role in the embryonic development, molting process, gonadal development, and immune regulation of invertebrates. This study aims to identify the ftz-f1 homolog, called Esftz-f1, in E. sinensis. The Esftz-f1 ORF spans 1770 bp, encoding a 589-amino acid protein that shares 87.84 % sequence similarity with the Litopenaeus vannamei homolog and this protein contains two conserved functional domains. It is widely expressed in the multiple tissues of E. sinensis, with particularly high expression in the hepatopancreas. Subcellular localization analysis revealed nuclear localization of EsFtz-f1. The expression level of Esftz-f1 changes significantly upon stimulation by V. parahaemolyticus. When Jak and Stat are silenced or inhibited, the expression levels of Esftz-f1 are significantly downregulated. After Esftz-f1 is silenced, the expression levels of antimicrobial peptides, the phagocytic ability of hemocytes, bacterial clearance rate and the survival rate of crabs are significantly upregulated, suggesting that EsFtz-f1 plays a negative regulatory role in the resistance of E. sinensis to V. parahaemolyticus infection. We believe our study will help broaden the research scope of orphan nuclear receptors. It may also provide useful insights that aid further study of the immune mechanism of E. sinensis and provided references for the prevention of diseases during its breeding.
Collapse
Affiliation(s)
- Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rongping Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Chengyu Lv
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Chaohui Xu
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Guangyu Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yunlong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Li M, Qin N, Yuan B, Guo M, Yang L, Tang T, Li F, Liu F. Involvement of nerve cord-expressed SVWC2 in pathogen recognition and defense in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110329. [PMID: 40220924 DOI: 10.1016/j.fsi.2025.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
The single von Willebrand factor C-domain proteins (SVWCs) are primarily found in arthropods and are involved in responding to environmental stress, nutritional availability, and pathogen infection. In this study, an SVWC family member from the Macrobrachium nipponense was identified that contains a conserved single von Willebrand factor C domain that is highly expressed in the nerve cord (designated MnSVWC2). The role of MnSVWC2 in resistance to bacteria and viruses was investigated. MnSVWC2 is upregulated in response to both bacterial challenge and viral infection. The recombinant MnSVWC2 (rMnSVWC2) exhibited binding activity to a range of pathogen-associated molecular patterns (PAMPs). Furthermore, it exhibited Ca2+-dependent binding and agglutination capabilities against Gram-negative, Gram-positive bacteria and yeast. The co-incubation of rMnSVWC2 with E. coli, followed by injection into prawns, resulted in an increase in the phagocytosis of E. coli by hemocytes in vivo. ELISA analysis indicated that rMnSVWC2 can bind to white spot syndrome virus. Knockdown of MnSVWC2 by RNA interference (RNAi) resulted in an increase in virus copies in prawns and a significant decrease in survival rate following viral infection. These findings provide important insights into the function of MnSVWC2 in the innate immunity of M. nipponense and the mechanisms of defense against pathogens.
Collapse
Affiliation(s)
- Muyi Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Nan Qin
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Department of Immunology, Changzhi Medical College, Changzhi, 046000, China
| | - Bowen Yuan
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Minghao Guo
- Hebei Vocational University of Industry and Technology, Shijiazhuang, 050091, China
| | - Likun Yang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ting Tang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengchao Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Meng XZ, Duan Y, Bai Y, Zhang W, Zhang C, Wang KJ, Chen F. Litopeidin 28-51, a novel antimicrobial peptide from Litopenaeus vannamei, combats white spot syndrome virus infection through direct virus lysis and immunomodulatory effects. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110243. [PMID: 40032210 DOI: 10.1016/j.fsi.2025.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
White spot syndrome virus (WSSV) poses a critical threat to crustacean aquaculture, particularly shrimp, causing widespread pandemics. In crustaceans, hemocytes function as a key component of the innate immune system and play a pivotal role in both cellular and humoral immune responses by producing various immune factors, such as antimicrobial peptides (AMPs), to defend against pathogenic microorganisms. In this study, an uncharacterized functional gene named Litopeidin was identified in Pacific white shrimp (Litopenaeus vannamei). It exhibited heightened expression in hemocytes and demonstrated a significant response to WSSV infection. Further, a truncated peptide, Litopeidin28-51, derived from this gene, was characterized and identified as a novel AMP with robust antibacterial and antifungal properties, especially against common aquatic pathogens, including Vibrio spp. Moreover, Litopeidin28-51 significantly suppressed the expression of viral genes (IE1 and VP28, WSSV replication-related genes) and the VP28 protein, as well as reduced viral copy numbers in hematopoietic tissue (Hpt) cells following WSSV infection. Mechanistic studies revealed that Litopeidin28-51 exhibited a direct virucidal effect on WSSV and significantly upregulated immune-related gene expression (including Relish, ALF, Crustin, and LYZ1) in Hpt cells. Notably, in Cherax quadricarinatus and L. vannamei, either co- or pre-treatment with Litopeidin28-51 markedly reduced animal mortality and viral replication in tissues. Collectively, the findings suggest that Litopeidin28-51, a newly identified AMP with potent antibacterial activity, effectively inhibits WSSV replication by disrupting the viral envelope and regulating the cellular antiviral responses, making it a promising candidate for developing anti-infective agents or immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Xin-Zhan Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yingyi Duan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuqi Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weibin Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chang Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Wei D, Liu J, Hu J, Zhang B, Pan Y, Xia Q, Wang F. An NF-κB-regulated cytokine enhances the antiviral resistance of silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:426-439. [PMID: 39680673 DOI: 10.1111/imb.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Insect NF-κB-like factor, Relish, is activated by viral infection and induces the production of antiviral proteins. In this study, we performed a transcriptomic analysis of BmE cells expressing the active form of BmRelish (BmRelishact) and identified BmVago-like as the most strongly-induced secreted-protein. Expression of BmVago-like was specifically triggered by Bombyx mori Nucleo Polyhedro Virus (BmNPV) infection and regulated by BmSTING-BmRelish pathway. Incubating the fresh culture of cells with supernatant medium of BmVago-like expressing cells or recombinant BmVago-like protein (rBmVago-like) significantly increased antiviral resistance. On the contrary, reducing the expression of Bmvago-like by RNA interference (RNAi) in BmE cells as well as in silkworm larvae impaired antiviral response. Furthermore, we constructed transgenic silkworm line over-expressing BmVago-like (BmVago-likeOV) and found they had markedly lower viral load and higher survival rate after BmNPV infection compared with the wild-type control. Co-immunoprecipitation assay showed Bmintegrin β1 interacts with BmVago-like and it was involved in BmVago-like mediated antiviral response. Finally, we found the expression level of signalling molecules in the JAK-STAT pathway increased in rBmVago-like-treated cells and BmVago-likeOV silkworm larvae but decreased in RNAi-treated cells. In summary, our research uncovered an inducible antiviral response in silkworm mediated by cytokine BmVago-like, which is the downstream effector of BmSTING-BmRelish pathway and functions as an antiviral cytokine.
Collapse
Affiliation(s)
- Dongmei Wei
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jinming Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Beilei Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumeng Pan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Fei Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zhang S, Zhang N, Wan T, He Y, Hao J, Liu Y, Liu Y, Chen B, Zhao W, Wang L, Luo D, Gao C, Yang Q. Oncometabolite D-2HG drives tumor metastasis and protumoral macrophage polarization by targeting FTO/m 6A/ANGPTL4/integrin axis in triple-negative breast cancer. J Exp Clin Cancer Res 2025; 44:41. [PMID: 39910592 PMCID: PMC11800637 DOI: 10.1186/s13046-025-03282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND D-2-hydroxyglutarate (D-2HG), an oncometabolite derived from the tricarboxylic acid cycle. Previous studies have reported the diverse effects of D-2HG in pathophysiological processes, yet its role in breast cancer remains largely unexplored. METHODS We applied an advanced biosensor approach to detect the D-2HG levels in breast cancer samples. We then investigated the biological functions of D-2HG through multiple in vitro and in vivo assays. A joint MeRIP-seq and RNA-seq strategy was used to identify the target genes regulated by D-2HG-mediated N6-methyladenosine (m6A) modification. RNA pull-down assays were further applied to identify the reader that could specifically recognize the m6A modification on angiopoietin like 4 (ANGPTL4) mRNA and RNA immunoprecipitation was used to confirm the findings. RESULTS We found that D-2HG accumulated in triple-negative breast cancer (TNBC), exerting oncogenic effects both in vitro and in vivo by promoting TNBC cell growth and metastasis. Mechanistically, D-2HG enhanced global m6A RNA modifications in TNBC cells, notably upregulating m6A modification on ANGPTL4 mRNA, which was mediated by the inhibition of Fat-mass and obesity-associated protein (FTO), resulting in increased recognition of m6A-modified ANGPTL4 by YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), thereby promoting the enhanced translation of ANGPTL4. As a secretory protein, ANGPTL4 subsequently activated the integrin-mediated JAK2/STAT3 signaling cascade in TNBC cells through autocrine signaling. Notably, the knockdown of ANGPTL4 or treatment with GLPG1087 (an integrin antagonist) significantly reduced D-2HG-induced proliferation and metastasis in TNBC cells. Additionally, ANGPTL4 was found to promote macrophage M2 polarization within the tumor microenvironment via paracrine signaling, further driving TNBC progression. The association of ANGPTL4 with poor prognosis in TNBC patients underscores its clinical relevance. CONCLUSIONS Our study unveils a previously unrecognized role for D-2HG-mediated RNA modification in TNBC progression and targeting the D-2HG/FTO/m6A/ANGPTL4/integrin axis can serve as a promising therapeutic target for TNBC patients.
Collapse
Affiliation(s)
- Siyue Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Tong Wan
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jie Hao
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yiwei Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dan Luo
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
6
|
Jia J, Zhou X, Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol Cell Biochem 2025; 480:1-17. [PMID: 38519710 DOI: 10.1007/s11010-024-04983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.
Collapse
Affiliation(s)
- JunJun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Xuelian Zhou
- Division of Endocrinology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Pudgerd A, Saedan S, Santimanawong W, Weerachatyanukul W, Jariyapong P, Chaijarasphong T, Jongsomchai K, Sritunyalucksana K, Vanichviriyakit R, Chotwiwatthanakun C. Genome editing of WSSV CRISPR/Cas9 and immune activation extends the survival of infected Penaeus vannamei. Sci Rep 2024; 14:26306. [PMID: 39487257 PMCID: PMC11530655 DOI: 10.1038/s41598-024-78277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
White spot syndrome virus (WSSV) is an exceptionally harmful virus that generally causes high levels of mortality in cultured shrimp. Attempts at viral suppression have been made to control the disease and have achieved limited efficiency. Recent advances in genome editing technology using CRISPR/Cas9 have led to potential innovations to prevent or treat many viral diseases. In this study, a CRISPR/Cas9 system was applied to WSSV genome cleavage to suppress WSSV infection in shrimp. The U6 promoter sequence was identified. A chimeric DNA vector consisting of the shrimp U6 promoter with gRNA expression sequences specific to two sites of the WSSV genome and the WSSV ribonucleotide reductase promoter with the Cas9 DNA sequence in pAC-sgRNA-Cas9 was constructed. The expression of gRNAs specific to the WSSV genome and Cas9 was determined in primary cultured hemocyte cells and in shrimp tissue via RT‒PCR. The efficacy of CRISPR/Cas9-WSSV for WSSV genome cleavage was determined in vitro and against WSSV-infected Penaeus vannamei. The reaction of synthetic gRNAs and recombinant Cas9 was able to cleave WSSV DNA amplicons, and shrimp that received CRISPR/Cas9-WSSV presented significantly lower WSSV DNA. In addition to interfering with viral DNA propagation, CRISPR/Cas9-WSSV encapsulated with IHHNV-VLP also stimulated an immune-related gene response. Treatment with CRISPR/Cas9-WSSV against WSSV challenge resulted in a significantly longer survival period. This finding has led to the development and application of a CRISPR/Cas9 system for WSSV infectious disease control, which could be used for managing shrimp aquaculture in the future.
Collapse
Affiliation(s)
- Arnon Pudgerd
- Division of Anatomy, School of Medical Sciences, University of Phayao, Maeka, Muang, Phayao, 56000, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Sukanya Saedan
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wanida Santimanawong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | - Thawatchai Chaijarasphong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Maeka, Muang, Phayao, 56000, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
8
|
Marques JT, Meignin C, Imler JL. An evolutionary perspective to innate antiviral immunity in animals. Cell Rep 2024; 43:114678. [PMID: 39196781 DOI: 10.1016/j.celrep.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses pose a significant threat to cellular organisms. Innate antiviral immunity encompasses both RNA- and protein-based mechanisms designed to sense and respond to infections, a fundamental aspect present in all living organisms. A potent RNA-based antiviral mechanism is RNA interference, where small RNA-programmed nucleases target viral RNAs. Protein-based mechanisms often rely on the induction of transcriptional responses triggered by the recognition of viral infections through innate immune receptors. These responses involve the upregulation of antiviral genes aimed at countering viral infections. In this review, we delve into recent advances in understanding the diversification of innate antiviral immunity in animals. An evolutionary perspective on the gains and losses of mechanisms in diverse animals coupled to mechanistic studies in model organisms such as the fruit fly Drosophila melanogaster is essential to provide deep understanding of antiviral immunity that can be translated to new strategies in the treatment of viral diseases.
Collapse
Affiliation(s)
- Joao T Marques
- Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084 Strasbourg, France; Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Nanakorn Z, Kawai T, Tassanakajon A. Cytokine-like-Vago-mediated antiviral response in Penaeus monodon via IKK-NF-κB signaling pathway. iScience 2024; 27:110161. [PMID: 38974974 PMCID: PMC11226982 DOI: 10.1016/j.isci.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon (IFN) system is the primary mechanism of innate antiviral defense in immune response. To date, limited studies of IFN system were conducted in crustaceans. Previous report in Penaeus monodon demonstrated the interconnection of cytokine-like molecule Vago and inhibitor of kappa B kinase-nuclear factor κB (IKK-NF-κB) cascade against white spot syndrome virus (WSSV). This study further identified five different PmVago isoforms. Upon immune stimulation, PmVagos expressed against shrimp pathogens. PmVago1, PmVago4, and PmVago5 highly responded to WSSV, whereas, PmVago1 and PmVago4 RNAi exhibited a rapid mortality with elevated WSSV replication. Suppression of PmVago1 and PmVago4 negatively affected proPO system, genes in signal transduction, and AMPs. WSSV infection additionally induced PmVaog4 granule accumulation and cellular translocation to the area of cell membrane. More importantly, PmVago1 and PmVago4 promoters were stimulated by PmIKK overexpression; meanwhile, they further activated Dorsal and Relish promoter activities. These results suggested the possible roles of the cytokine-like PmVago via IKK-NF-κB cascade against WSSV infection.
Collapse
Affiliation(s)
- Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Li H, Di X, Wang S, Li Q, Weng S, He J, Li C. Nucleic Acid Sensing by STING Induces an IFN-like Antiviral Response in a Marine Invertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1945-1957. [PMID: 38700419 DOI: 10.4049/jimmunol.2300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Xuanzheng Di
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Qinyao Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| |
Collapse
|
11
|
Chen M, Huang WK, Yao Y, Wu SM, Yang YX, Liu WX, Luo G, Wei SF, Zhang H, Liu HM, Wang B. Heterologous expression of the insect SVWC peptide WHIS1 inhibits Candida albicans invasion into A549 and HeLa epithelial cells. Front Microbiol 2024; 15:1358752. [PMID: 38873147 PMCID: PMC11169590 DOI: 10.3389/fmicb.2024.1358752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Candida albicans (C. albicans), a microbe commonly isolated from Candida vaginitis patients with vaginal tract infections, transforms from yeast to hyphae and produces many toxins, adhesins, and invasins, as well as C. albicans biofilms resistant to antifungal antibiotic treatment. Effective agents against this pathogen are urgently needed. Antimicrobial peptides (AMPs) have been used to cure inflammation and infectious diseases. In this study, we isolated whole housefly larvae insect SVWC peptide 1 (WHIS1), a novel insect single von Willebrand factor C-domain protein (SVWC) peptide from whole housefly larvae. The expression pattern of WHIS1 showed a response to the stimulation of C. albicans. In contrast to other SVWC members, which function as antiviral peptides, interferon (IFN) analogs or pathogen recognition receptors (PRRs), which are the prokaryotically expressed MdWHIS1 protein, inhibit the growth of C. albicans. Eukaryotic heterologous expression of WHIS1 inhibited C. albicans invasion into A549 and HeLa cells. The heterologous expression of WHIS1 clearly inhibited hyphal formation both extracellularly and intracellularly. Furthermore, the mechanism of WHIS1 has demonstrated that it downregulates all key hyphal formation factors (ALS1, ALS3, ALS5, ECE1, HWP1, HGC1, EFG1, and ZAP1) both extracellularly and intracellularly. These data showed that heterologously expressed WHIS1 inhibits C. albicans invasion into epithelial cells by affecting hyphal formation and adhesion factor-related gene expression. These findings provide new potential drug candidates for treating C. albicans infection.
Collapse
Affiliation(s)
- Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Wei-Kang Huang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi-Mei Wu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Luo
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shao-Feng Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| |
Collapse
|
12
|
Wang XX, Ding MJ, Gao J, Zhao L, Cao R, Wang XW. Modulation of host lipid metabolism by virus infection leads to exoskeleton damage in shrimp. PLoS Pathog 2024; 20:e1012228. [PMID: 38739679 PMCID: PMC11115362 DOI: 10.1371/journal.ppat.1012228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/23/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ming-Jie Ding
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Si JY, Wu LJ, Xu FL, Cao XT, Lan JF. PHB2 inhibits WSSV replication by promoting the nuclear translocation of STAT. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109503. [PMID: 38479567 DOI: 10.1016/j.fsi.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes β-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.
Collapse
Affiliation(s)
- Jia-Yu Si
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
14
|
Wang XX, Zhang H, Gao J, Wang XW. Ammonia stress-induced heat shock factor 1 enhances white spot syndrome virus infection by targeting the interferon-like system in shrimp. mBio 2024; 15:e0313623. [PMID: 38358252 PMCID: PMC10936208 DOI: 10.1128/mbio.03136-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Disease emergence is the consequence of host-pathogen-environment interactions. Ammonia is a key stress factor in aquatic environments that usually increases the risk of pathogenic diseases in aquatic animals. However, the molecular regulatory mechanisms underlying the enhancement of viral infection following ammonia stress remain largely unknown. Here, we found that ammonia stress enhances white spot syndrome virus infection in kuruma shrimp (Marsupenaeus japonicus) by targeting the antiviral interferon-like system through heat shock factor 1 (Hsf1). Hsf1 is an ammonia-induced transcription factor. It regulates the expression of Cactus and Socs2, which encode negative regulators of NF-κB signaling and Jak/Stat signaling, respectively. By inhibiting these two pathways, ammonia-induced Hsf1 suppressed the production and function of MjVago-L, an arthropod interferon analog. Therefore, this study revealed that Hsf1 is a central regulator of suppressed antiviral immunity after ammonia stress and provides new insights into the molecular regulation of immunity in stressful environments. IMPORTANCE Ammonia is the end product of protein catabolism and is derived from feces and unconsumed foods. It threatens the health and growth of aquatic animals. In this study, we demonstrated that ammonia stress suppresses shrimp antiviral immunity by targeting the shrimp interferon-like system and that heat shock factor 1 (Hsf1) is a central regulator of this process. When shrimp are stressed by ammonia, they activate Hsf1 for stress relief and well-being. Hsf1 upregulates the expression of negative regulators that inhibit the production and function of interferon analogs in shrimp, thereby enhancing white spot syndrome viral infection. Therefore, this study, from a molecular perspective, explains the problem in the aquaculture industry that animals living in stressed environments are more susceptible to pathogens than those living in unstressed conditions. Moreover, this study provides new insights into the side effects of heat shock responses and highlights the complexity of achieving cellular homeostasis under stressful conditions.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Su R, Li X, Xiao J, Xu J, Tian J, Liu T, Hu Y. UiO-66 nanoparticles combat influenza A virus in mice by activating the RIG-I-like receptor signaling pathway. J Nanobiotechnology 2024; 22:99. [PMID: 38461229 PMCID: PMC10925002 DOI: 10.1186/s12951-024-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 μg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.
Collapse
Affiliation(s)
- Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Jiawei Xu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
16
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
17
|
Massu A, Mahanil K, Limkul S, Phiwthong T, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Identification of immune-responsive circular RNAs in shrimp (Litopenaeus vannamei) upon yellow head virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109246. [PMID: 38013134 DOI: 10.1016/j.fsi.2023.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs (ncRNAs) formed through a process known as back-splicing. They play a crucial role in the genetic regulation of various biological processes. Currently, circRNAs have been identified as participants in the antiviral response within mammalian cells. However, circRNAs in shrimp infected with the yellow head virus (YHV) remain largely unexplored. Therefore, this study aims to identify circRNAs in the hemocytes of Litopenaeus vannamei during YHV infection. We discovered 358 differentially expressed circRNAs (DECs), with 177 of them being up-regulated and 181 down-regulated. Subsequently, eight DECs, including circ_alpha-1-inhibitor 3, circ_CDC42 small effector protein 2, circ_hemicentin 2, circ_integrin alpha V, circ_kazal-type proteinase inhibitor, circ_phenoloxidase 3, circ_related protein rab-8B, and circ_protein toll-like, were randomly selected for analysis of their expression patterns during YHV infection using qRT-PCR. Furthermore, the circRNAs' characteristics were confirmed through PCR, RNase R treatment, and Sanger sequencing, all of which were consistent with the features of circRNAs. These findings contribute to a better understanding of circRNAs' involvement in the antiviral response in shrimp.
Collapse
Affiliation(s)
- Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kanjana Mahanil
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
18
|
Labropoulou V, Wang L, Magkrioti C, Smagghe G, Swevers L. Single domain von Willebrand factor type C "cytokines" and the regulation of the stress/immune response in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22071. [PMID: 38288483 DOI: 10.1002/arch.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.
Collapse
Affiliation(s)
- Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Luoluo Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Christiana Magkrioti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Guy Smagghe
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Entomology, Guizhou University, Guizhou, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| |
Collapse
|
19
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
20
|
Jaeger AS, Marano J, Riemersma KK, Castaneda D, Pritchard EM, Pritchard JC, Bohm EK, Baczenas JJ, O'Connor SL, Weger-Lucarelli J, Friedrich TC, Aliota MT. Gain without pain: adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector. J Virol 2023; 97:e0116223. [PMID: 37800949 PMCID: PMC10653995 DOI: 10.1128/jvi.01162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kasen K. Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Castaneda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Elise M. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
21
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
22
|
Qin N, Li M, Zhang H, Li F, Guo X, Wu M, Zhang Q, Tang T, Liu F. Single von Willebrand factor C-domain protein confers host defense against white spot syndrome virus by functioning as a pattern recognition receptor in Macrobrachium nipponense. Int J Biol Macromol 2023; 241:124520. [PMID: 37085073 DOI: 10.1016/j.ijbiomac.2023.124520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The single von Willebrand factor C-domain proteins (SVWCs), also known as Vago, are primarily found in arthropods. Their expression was induced by nutritional status, bacterial and viral infections. Despite the prominence of SVWCs in antiviral immunity, the detailed molecular mechanisms remain poorly explained. SVWC has been proposed to elicit antiviral activities through its function as an interferon analog. In contrast, herein, we illustrate that an SVWC homolog from Macrobrachium nipponense (MnSVWC) confers host defense against white spot syndrome virus (WSSV) and covert mortality nodavirus (CMNV) as a pattern recognition receptor (PRR). qRT-PCR analyses demonstrated that the expression of MnSVWC was enhanced upon WSSV infection in all detected tissues, including gills, nerve cords, and hemocytes. Coating WSSV with recombinant MnSVWC (rMnSVWC) promoted the phagocytic activity of hemocytes and subsequent clearance of invasive WSSV from the prawn. On the other hand, the knockdown of MnSVWC with RNAi improved the proliferation ability of WSSV and CMNV in the prawn. Analysis of ELISA and Co-immunoprecipitation (Co-IP) showed that rMnSVWC could bind WSSV by interacting with the vesicle proteins VP26 and VP28. Co-IP analysis verified the interaction between MnSVWC and calmodulin, which implies a vesicle protein-SVWC-calmodulin-clathrin-dependent mechanism underlying the hemocyte-mediated phagocytosis against WSSV. Subsequently, MnSVWC was recognized to activate the expression of transcription factor STAT and an interferon-stimulating gene Viperin, illustrating its involvement in modulating humoral immunity via activation of the JAK/STAT pathway after WSSV infection. These findings indicate that MnSVWC could bind to WSSV as a PRR and participate in the promotion of hemocyte-mediated phagocytosis and the activation of the JAK/STAT pathway in prawns.
Collapse
Affiliation(s)
- Nan Qin
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China; Department of Immunology, Changzhi Medical College, Changzhi 046000, China
| | - Muyi Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Han Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Feifei Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xinrui Guo
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengjia Wu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
23
|
Laohawutthichai P, Jatuyosporn T, Supungul P, Tassanakajon A, Krusong K. Effects of PmDOME and PmSTAT knockdown on white spot syndrome virus infection in Penaeus monodon. Sci Rep 2023; 13:9852. [PMID: 37330617 PMCID: PMC10276838 DOI: 10.1038/s41598-023-37085-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023] Open
Abstract
Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway plays an important role in antiviral immunity. This research reports the full-length DOME receptor gene in Penaeus monodon (PmDOME) and examines the effects of PmDOME and PmSTAT silencing on immune-related gene expressions in shrimp hemocytes during white spot syndrome virus (WSSV) infection. PmDOME and PmSTAT were up-regulated in shrimp hemocytes upon WSSV infection. Suppression of PmDOME and PmSTAT showed significant impacts on the expression levels of ProPO2 (melanization), Vago5 (interferon-like protein) and several antimicrobial peptides, including ALFPm3, Penaeidin3, CrustinPm1 and CrustinPm7. Silencing of PmDOME and PmSTAT reduced WSSV copy numbers and delayed the cumulative mortality caused by WSSV. We postulated that suppression of the JAK/STAT signaling pathway may activate the proPO, IFN-like antiviral cytokine and AMP production, resulting in a delay of WSSV-related mortality.
Collapse
Affiliation(s)
- Pasunee Laohawutthichai
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thapanan Jatuyosporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Liu J, Shao Y, Li D, Li C. N6-methyladenosine helps Apostichopus japonicus resist Vibrio splendidus infection by targeting coelomocyte autophagy via the AjULK-AjYTHDF/AjEEF-1α axis. Commun Biol 2023; 6:547. [PMID: 37210465 DOI: 10.1038/s42003-023-04929-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is one of the most abundant post-transcriptional modifications that can mediate autophagy in various pathological processes. However, the functional role of m6A in autophagy regulation is not well-documented during Vibrio splendidus infection of Apostichopus japonicus. In this study, the inhibition of m6A level by knockdown of methyltransferase-like 3 (AjMETTL3) significantly decreased V. splendidus-induced coelomocyte autophagy and led to an increase in the intracellular V. splendidus burden. In this condition, Unc-51-like kinase 1 (AjULK) displayed the highest differential expression of m6A level. Moreover, knockdown of AjULK can reverse the V. splendidus-mediated autophagy in the condition of AjMETTL3 overexpression. Furthermore, knockdown of AjMETTL3 did not change the AjULK mRNA transcript levels but instead decreased protein levels. Additionally, YTH domain-containing family protein (AjYTHDF) was identified as a reader protein of AjULK and promoted AjULK expression in an m6A-dependent manner. Furthermore, the AjYTHDF-mediated AjULK expression depended on its interaction with translation elongation factor 1-alpha (AjEEF-1α). Altogether, our findings suggest that m6A is involved in resisting V. splendidus infection via facilitating coelomocyte autophagy in AjULK-AjYTHDF/AjEEF-1α-dependent manner, which provides a theoretical basis for disease prevention and therapy in A. japonicus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China.
| |
Collapse
|
25
|
Wang Q, Xu Y, Xiao C, Zhu F. The effect of white spot syndrome virus (WSSV) envelope protein VP28 on innate immunity and resistance to white spot syndrome virus in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108795. [PMID: 37149234 DOI: 10.1016/j.fsi.2023.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
VP28 is the most abundant membrane protein of WSSV, and the recombinant protein VP28 (VP26 or VP24) was constructed for the immune protection experiment in this study. Crayfish were immunized by intramuscular injection of recombinant protein V28 (VP26 or VP24) at a dose of 2 μg/g. The survival rate of crayfish immunized by VP28 showed a higher value than by VP26 or VP24 after WSSV challenge. Compared with the WSSV-positive control group, the VP28-immunized group could inhibit the replication of WSSV in crayfish, increasing the survival rate of crayfish to 66.67% after WSSV infection. The results of gene expression showed that VP28 treatment could enhance the expression of immune genes, mainly JAK and STAT genes. VP28 treatment also enhanced total hemocyte counts and enzyme activities including PO, SOD, and CAT in crayfish. VP28 treatment reduced the apoptosis of hemocytes in crayfish, as well as after WSSV infection. In conclusion, VP28 treatment can enhance the innate immunity of crayfish and has a significant effect on resistance to WSSV, and can be used as a preventive tool.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chongyang Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
26
|
Luo Z, Qin YK, Zhao K, Nan XY, Li WW, Li EC, Wang Q. Caspar negatively regulates anti-bacterial immunity by controlling the nuclear translocation of Relish in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108714. [PMID: 36990260 DOI: 10.1016/j.fsi.2023.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Caspar, a homolog of the Fas-associated factor 1 (FAF1) family, contains an N-terminal ubiquitin interaction domain, a ubiquitin-like self-association domain, and a C-terminal ubiquitin regulatory domain. Caspar has been reported to be involved in the antibacterial immunity of Drosophila, which is unclear whether it is involved in the antibacterial immune process of crustaceans. In this article, we identified a Caspar gene in Eriocheir sinensis and named it EsCaspar. EsCaspar positively respond to bacterial stimulation and downregulate the expression of certain associated antimicrobial peptides by inhibiting the nuclear translocation of EsRelish. Thus, EsCaspar might be a suppressor of the immune deficiency (IMD) pathway that prevents over-activation of the immune system. Indeed, excess EsCaspar protein in crabs reduced resistance to bacterial infection. In conclusion, EsCaspar is a suppressor of the IMD pathway in crabs that plays a negative regulatory role in antimicrobial immunity.
Collapse
Affiliation(s)
- Zhi Luo
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yu-Kai Qin
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ke Zhao
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Xing-Yu Nan
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Er-Chao Li
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| | - Qun Wang
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
27
|
Jaeger AS, Marano J, Riemersma K, Castañeda D, Pritchard E, Pritchard J, Bohm EK, Baczenas JJ, O’Connor SL, Weger-Lucarelli J, Friedrich TC, Aliota MT. Gain without pain: Adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533515. [PMID: 36993525 PMCID: PMC10055270 DOI: 10.1101/2023.03.20.533515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Zika virus (ZIKV) is now in a post-pandemic period, for which the potential for re-emergence and future spread is unknown. Adding to this uncertainty is the unique capacity of ZIKV to directly transmit between humans via sexual transmission. Recently, we demonstrated that direct transmission of ZIKV between vertebrate hosts leads to rapid adaptation resulting in enhanced virulence in mice and the emergence of three amino acid substitutions (NS2A-A117V, NS2A-A117T, and NS4A-E19G) shared among all vertebrate-passaged lineages. Here, we further characterized these host-adapted viruses and found that vertebrate-passaged viruses also have enhanced transmission potential in mosquitoes. To understand the contribution of genetic changes to the enhanced virulence and transmission phenotype, we engineered these amino acid substitutions, singly and in combination, into a ZIKV infectious clone. We found that NS4A-E19G contributed to the enhanced virulence and mortality phenotype in mice. Further analyses revealed that NS4A-E19G results in increased neurotropism and distinct innate immune signaling patterns in the brain. None of the substitutions contributed to changes in transmission potential in mosquitoes. Together, these findings suggest that direct transmission chains could enable the emergence of more virulent ZIKV strains without compromising mosquito transmission capacity, although the underlying genetics of these adaptations are complex.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University
| | - Kasen Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Elise Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Julia Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| |
Collapse
|
28
|
Zhao Y, Zhang X, Zhang X, Shen G, Li W, Wang Q. Integrinβ1/FAK/ERK signalling pathway is essential for Chinese mitten crab Eriocheir sinensis hemocyte survival. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108473. [PMID: 36470403 DOI: 10.1016/j.fsi.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Integrins are cellular adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrins can stimulate various signaling pathways by binding to different ligands, thereby exerting immunological functions. While integrins have been found to primarily play a role in bacterial agglutination, phagocytosis, and inhibition of apoptosis in invertebrates, the specific signaling pathway and mechanism of action remain unclear. In vertebrates, β1 integrin and extracellular matrix interactions can associate with focal adhesion kinase (FAK) to initiate MAPK/ERK signaling and regulate cell survival; however, in invertebrates (e.g., Chinese mitten crab), the mechanisms of integrins are poorly understood. The purpose of this study was to investigate whether integrinβ1/FAK activation of the MAPK/ERK pathway regulates hemocyte survival and the associated mechanism. Treatment with an integrinβ1 inhibitor RGD (a conserved tripeptide Arg-Gly-Asp), decreased the levels of FAK and ERK expression and phosphorylation, followed by an intensification of apoptosis. Similar results were obtained following siRNA knockdown of integrinβ1 expression. We further found that the attenuation of ERK phosphorylation enhanced the level of Caspase-3 expression. Together, these findings suggest that integrinβ1 activates the FAK/ERK signaling cascade and is involved in the survival of Chinese mitten crab hemocytes.
Collapse
Affiliation(s)
- Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaona Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
29
|
Limkul S, Phiwthong T, Massu A, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Transcriptome-based insights into the regulatory role of immune-responsive circular RNAs in Litopanaeus vannamei upon WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108499. [PMID: 36549581 DOI: 10.1016/j.fsi.2022.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) originating from a post-transcriptional modification process called back-splicing. Despite circRNAs being traditionally considered by-products rather than independently functional, circRNAs play many vital roles, such as in host immunity during viral infection. However, in shrimp, these remain largely unexplored. Therefore, this study aims to identify circRNAs in Litopenaeus vannamei in the context of WSSV infection, one of the most eradicative pathogens threatening shrimp populations worldwide. We identified 290 differentially expressed circRNAs (DECs) in L. vannamei upon WSSV infection. Eight DECs were expressed from their parental genes, including alpha-1-inhibitor-3, calpain-B, integrin-V, hemicentin-2, hemocytin, mucin-17, proPO2, and rab11-FIP4. These were examined quantitatively by qRT-PCR, which revealed the relevant expression profiles to those obtained from circRNA-Seq. Furthermore, the structural and chemical validation of the DECs conformed to the characteristics of circRNAs. One of the functional properties of circRNAs as a miRNA sponge was examined via the interaction network between DECs and WSSV-responsive miRNAs, which highlighted the targets of miRNA sponges. Our discovery could provide insight into the participation of these ncRNAs in shrimp antiviral responses.
Collapse
Affiliation(s)
- Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
30
|
Li H, Su N, Zhu Y, Wang W, Cai M, Luo X, Xia W, Quan S. Growth hormone inhibits the JAK/STAT3 pathway by regulating SOCS1 in endometrial cells in vitro: a clue to enhance endometrial receptivity in recurrent implantation failure. Eur J Histochem 2022; 67:3580. [PMID: 36546418 PMCID: PMC9827423 DOI: 10.4081/ejh.2023.3580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent implantation failure (RIF) is defined as failure to achieve clinical pregnancy after at least 3 transfers of good-quality embryos by natural or artificial means. RIF is often a complex problem with a wide variety of etiologies and mechanisms as well as treatment options. In this study, using immunohistochemistry and Western blot, we demonstrated that the expression of leukemia inhibitory factor (LIF), Janus kinase 1 (JAK1), and signal transducer and activator of transcription 3 (STAT3) was increased, while that of suppressor of cytokine signaling 1 (SOCS1) was decreased in RIF patients. Growth hormone (GH) administration proved to have positive effects on embryo implantation in RIF patients, but the action mechanism of GH has not been elucidated yet. To this aim, we studied the effects of GH on the proliferation in vitro of endometrial adenocarcinoma Ishikawa cells. GH stimulated the expression of LIF and SOCS1, and through SOCS1 inhibits the expression of phosphorylated STAT3, and finally inhibits the occurrence of RIF. Excessive phosphorylation of STAT can lead to decreased endometrial receptivity and abnormal embryo implantation. We also examined the effects of LIF overexpression and an LIF inhibitor (EC330) on the JAK/STAT pathway. LIF promoted cell proliferation, and the up-regulation of LIF increased the expression of SOCS1 and JAK1/STAT3 pathway-related genes in Ishikawa cells. As GH can inhibit the JAK1/STAT3 pathway through LIF, we hypothesize that upregulating SOCS1 may be a potential approach to treat RIF at the molecular level. GH can inhibit the JAK1/STAT3 pathway through LIF, up-regulating SOCS1 to treat RIF at the molecular level.
Collapse
Affiliation(s)
- Haixia Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou,Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Ning Su
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaqiao Zhu
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Meihong Cai
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaohuan Luo
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Xia
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Song Quan
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou,Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Limkul S, Phiwthong T, Massu A, Jaree P, Thawonsuwan J, Teaumroong N, Boonanuntanasarn S, Somboonwiwat K, Boonchuen P. The interferon-like proteins, Vagos, in Fenneropenaeus merguiensis elicit antimicrobial responses against WSSV and VP AHPND infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:718-728. [PMID: 36341873 DOI: 10.1016/j.fsi.2022.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The Vago interferon-like protein participates in the interplay between interferon regulatory factors and the expression of immune-responsive genes. Vago was initially perceived to participate only in the antiviral activation through JAK/STAT pathway. However, certain isoforms of Vago can stimulate antimicrobial responses. Here we identify Vago isoforms in Fenneropenaeus merguiensis (FmVagos) and how they function in antiviral and antibacterial responses against highly invasive pathogens, including white spot syndrome virus (WSSV) and Vibrio parahaemolyticus (VPAHPND). Three isoforms of FmVagos were identified: FmVago4, FmVago5a, and FmVago5b, and expressed throughout tissues of the shrimp. During infection, FmVago4, FmVago5a, and FmVago5b, were up-regulated after WSSV and VPAHPND challenges at certain time points. Pre-injection of purified recombinant FmVago4 (rVago4), FmVago5a (rVago5a), and FmVago5b (rVago5b) proteins could significantly reduce the mortality of shrimp upon WSSV infection, while the increase of survival rate of VPAHPND-infected shrimp was observed only in rVago4 treatment. The immunity routes that FmVagos might instigate in response to the pathogens were examined by qRT-PCR, revealing that the JAK/STAT pathway was activated after introducing rVago4, rVago5a, and rVago5b, while the Toll/IMD pathway and proPO system, combined with PO activity, were provoked only in the rVago4-treated shrimp. Our finding suggests cross-talk between Vago's antiviral and antimicrobial responses in shrimp immunity. These findings complement previous studies in which Vago and its specific isoform could promote viral and bacterial clearance in shrimp.
Collapse
Affiliation(s)
- Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Amarin Massu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research Center, Department of Fisheries, Songkhla, 90110, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
32
|
Qin Y, Luo Z, Zhao K, Nan X, Guo Y, Li W, Wang Q. A new SVWC protein functions as a pattern recognition protein in antibacterial responses in Chinese mitten crab (Eriocheirsinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1125-1135. [PMID: 36402266 DOI: 10.1016/j.fsi.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Because invertebrates lack acquired immunity, they rely primarily on the innate immune system to defend themselves against viral and bacterial infections. SVWC, also called Vago, is a class of small-molecule proteins characterized by a single von Willebrand factor C-domain and appears to be restricted to arthropods. It has been reported that SVWC is involved in antiviral immunity in invertebrates, but whether it is involved in antimicrobial immunity and the mechanism of its involvement in antimicrobial immunity remains unclear. In this study, we identified a novel SVWC gene in Eriocheir sinensis and named it EsSVWC. EsSVWC was found to respond positively to bacterial stimulation and to regulate the expression of related antimicrobial peptides (AMPs). The EsSVWC protein recognized and bound to a variety of pathogen-associated molecular patterns (PAMPs) but did not exhibit direct bactericidal effects. Thus, the EsSVWC protein in crabs helps resist bacterial infection and improve survival rates. In summary, EsSVWC may regulate the innate immune system of crabs in response to microbial invasion in an indirect manner.
Collapse
Affiliation(s)
- Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi Luo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
33
|
Boonyakida J, Nakanishi T, Satoh J, Shimahara Y, Mekata T, Park EY. Immunostimulation of shrimp through oral administration of silkworm pupae expressing VP15 against WSSV. FISH & SHELLFISH IMMUNOLOGY 2022; 128:157-167. [PMID: 35917887 DOI: 10.1016/j.fsi.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most concerning pathogens in penaeid shrimp and can cause severe loss in shrimp aquaculture worldwide. Among the WSSV structural proteins, VP15, a DNA-binding protein located in the WSSV nucleocapsid, is an antiviral protein candidate to protect kuruma shrimp (Marsupenaeus japonicus) from WSSV infection. We identified that the truncated VP15, VP15(26-57), is responsible for the protective effect against the WSSV. This study attempts to develop an immunizing agent against WSSV using silkworm pupa as a delivery vector through oral administration. The VP15, VP15(26-57), and SR11 peptide derived from VP15(26-57) were expressed in silkworm pupae. Oral administration of feed mixed with the powdered pupae that expressed VP15-derived constructs enhanced the survivability of kuruma shrimp with an overall relative percent survival (RPS) higher than 70%. There is no death for the group receiving pupa/VP15(26-57), and the RPS is 100%. In addition, we also investigated the relative mRNA expression levels of immune-related genes by qPCR at different time points. Our results indicate that the oral administration of pupa/VP15-derived products could provide a high protective effect against WSSV and be a practical approach for controlling WSSV in aquaculture.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan.
| | - Takafumi Nakanishi
- Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan.
| | - Jun Satoh
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Tamaki Field Station, Mie, 519-0423, Japan.
| | - Yoshiko Shimahara
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Kamiura Field Station, Oita, 879-2602, Japan.
| | - Tohru Mekata
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Namsei Field Station, Mie, 516-0193, Japan.
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan; Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan.
| |
Collapse
|
34
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
35
|
Jian S, Leng J, Wen Z, Luo H, Hu C, Wen C, Hu B. β-arrestin interacts with TRAF6 to negatively regulate the NF-κB pathway in triangle sail mussel Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2022; 127:65-73. [PMID: 35705131 DOI: 10.1016/j.fsi.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
As members of arrestins family, β-arrestins are widely expressed in monocytes, macrophages, neutrophils and other immune cells. They can regulate the immune response of bodies through various ways. In the present study, a β-arrestin homolog named Hcβ-arrestin was cloned and identified from Hyriopsis cumingii. Predicted Hcβ-arrestin protein contained a conserved arrestin domain, which could be further divided into arrestin-N (39-192aa) and arrestin-C (211-365aa). Amino acid sequence alignment showed that it had the highest identity with Mytilus galloprovincialis and Mytilus edulis counterpart, which was 89.02% and 87.68%, respectively. Furthermore, real-time quantitative PCR analysis showed that the Hcβ-arrestin gene was widely expressed in the detected tissues and with the highest expression in hepatopancreas. The transcription of Hcβ-arrestin in hepatopancreas and gill of mussels was significantly up-regulated after stimulation with peptidoglycan, lipopolysaccharide (LPS) and polyinosinic polycytidylic acid. Knockdown of Hcβ-arrestin gene significantly increased the expression of some antibacterial effector genes, such as lysozyme, LPS-binding protein/bactericidal permeability increasing protein and theromacin in hepatopancreas and gills of LPS stimulated mussels, but only had little effect on TLR pathway genes. In addition, GST pull-down assay confirmed that Hcβ-arrestin can bind to HcTRAF6 protein in vitro. Dual luciferase reporter assay showed that the co-expression of HcTRAF6 and Hcβ-arrestin inhibited the activation of NF-κB reporter by HcTRAF6. These findings indicated that Hcβ-arrestins could interact with HcTRAF6 to negatively regulate the NF-κB pathway in H. cumingii.
Collapse
Affiliation(s)
- ShaoQing Jian
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - JiangHe Leng
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ZiYi Wen
- Department of Biological Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - HaiYang Luo
- Department of Ecology, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ChengXi Hu
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ChunGen Wen
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - BaoQing Hu
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
36
|
Luo M, Xu X, Liu X, Shen W, Yang L, Zhu Z, Weng S, He J, Zuo H. The Non-Receptor Protein Tyrosine Phosphatase PTPN6 Mediates a Positive Regulatory Approach From the Interferon Regulatory Factor to the JAK/STAT Pathway in Litopenaeus vannamei. Front Immunol 2022; 13:913955. [PMID: 35844582 PMCID: PMC9276969 DOI: 10.3389/fimmu.2022.913955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
SH2-domain-containing protein tyrosine phosphatases (PTPs), belonging to the class I PTP superfamily, are responsible for the dephosphorylation on the phosphorylated tyrosine residues in some proteins that are involved in multiple biological processes in eukaryotes. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway transduce signaling responding to interferons and initiate cellular antiviral responses. The activity of the JAK/STAT pathway is generally orchestrated by the de-/phosphorylation of the tyrosine and serine residues of JAKs and STATs, in which the dephosphorylation processes are mainly controlled by PTPs. In the present study, an SH2-domian-contianing PTP, temporally named as LvPTPN6, was identified in Litopenaeus vannamei. LvPTPN6 shares high similarity with PTPN6s from other organisms and was phylogenetically categorized into the clade of arthropods that differs from those of fishes and mammals. LvPTPN6 was constitutively expressed in all detected tissues, located mainly in the cytoplasm, and differentially induced in hemocyte and gill after the challenge of stimulants, indicating its complicated regulatory roles in shrimp immune responses. Intriguingly, the expression of LvPTPN6 was regulated by interferon regulatory factor (IRF), which could directly bind to the LvPTPN6 promoter. Surprisingly, unlike other PTPN6s, LvPTPN6 could promote the dimerization of STAT and facilitate its nuclear localization, which further elevated the expression of STAT-targeting immune effector genes and enhanced the antiviral immunity of shrimp. Therefore, this study suggests a PTPN6-mediated regulatory approach from IRF to the JAK/STAT signaling pathway in shrimp, which provides new insights into the regulatory roles of PTPs in the JAK/STAT signaling pathway and contributes to the further understanding of the mechanisms of antiviral immunity in invertebrates.
Collapse
Affiliation(s)
- Mengting Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Li Z, Xie L, Wang H, Wang S, Wu J. Clinical Observation of Reduning Combined with Recombinant Human Interferon α-2b in the Treatment of Children with Viral Pneumonia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1739561. [PMID: 35747380 PMCID: PMC9213134 DOI: 10.1155/2022/1739561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Purpose To observe the clinical efficacy of Reduning injection combined with recombinant human interferon α-2b spray in the treatment of children with viral pneumonia. Methods A total of 200 children with viral pneumonia over 2 years old who were admitted to the Pediatrics Department of the Cangzhou Central Hospital from September 2018 to November 2020 were recruited and randomized into the control group and observation group at a ratio of 1 : 1, with 100 cases in each group. The children in the control group were given recombinant human interferon α-2b spray, and the children in the observation group were given Reduning injection on the basis of the control group. The clinical symptoms and signs, clinical efficacy, levels of inflammatory mediators, and drug safety were compared between the two groups. Results The t-test results showed that the disappearance time of body temperature, respiratory rate, pulmonary rales, and cough in the observation group was significantly shorter than that in the control group. The chi-square revealed a significantly higher total effective rate in the observation group vs. the control group. After treatment, the levels of IL-1, IL-6, TNF-α, and CRP in the two groups were lower than the corresponding values before treatment, and greater reduction was observed in the observation group in relative to the control group (both p < 0.05). The two groups have a similar safety profile. Conclusion Reduning combined with recombinant human interferon α-2b produces a remarkable effect in the treatment of children with viral pneumonia, and it ameliorates clinical symptoms and reduces inflammatory response with a good safety profile.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Lingling Xie
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - He Wang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Shugen Wang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Jinguang Wu
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| |
Collapse
|
38
|
Zang S, Lv LX, Liu CF, Zhang P, Li C, Wang JX. Metabolomic Investigation of Ultraviolet Ray-Inactivated White Spot Syndrome Virus-Induced Trained Immunity in Marsupenaeus japonicus. Front Immunol 2022; 13:885782. [PMID: 35693782 PMCID: PMC9178177 DOI: 10.3389/fimmu.2022.885782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Trained immunity is driven by metabolism and epigenetics in innate immune cells in mammals. The phenomenon of trained immunity has been identified in invertebrates, including shrimp, but the underlying mechanisms remain unclear. To elucidate mechanisms of trained immunity in shrimp, the metabolomic changes in hemolymph of Marsupenaeus japonicus trained by the UV-inactivated white spot syndrome virus (UV-WSSV) were analyzed using tandem gas chromatography-mass/mass spectrometry. The metabolomic profiles of shrimp trained with UV-WSSV followed WSSV infection showed significant differences comparison with the control groups, PBS injection followed WSSV infection. 16 differential metabolites in total of 154 metabolites were identified, including D-fructose-6-phosphate, D-glucose-6-phosphate, and D-fructose-6-phosphate, and metabolic pathways, glycolysis, pentose phosphate pathway, and AMPK signaling pathway were enriched in the UV-WSSV trained groups. Further study found that histone monomethylation and trimethylation at H3K4 (H3K4me1 and H3K4me3) were involved in the trained immunity. Our data suggest that the UV-WSSV induced trained immunity leads to metabolism reprogramming in the shrimp and provide insights for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Shaoqing Zang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chen-Fei Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Peng Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
39
|
Cai H, Meignin C, Imler JL. cGAS-like receptor-mediated immunity: the insect perspective. Curr Opin Immunol 2022; 74:183-189. [PMID: 35149240 DOI: 10.1016/j.coi.2022.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The cGAS-STING pathway plays a central role in the detection of DNA in the cytosol of mammalian cells and activation of immunity. Although the early evolutionary origin of this pathway in animals has been noted, its ancestral functions have remained elusive so far. We review here new findings in invertebrates establishing a role in sensing and signaling infection, triggering potent transcriptional responses, in addition to autophagy. Results from flies and moths/butterflies point to the importance of STING signaling in antiviral immunity in insects. The recent characterization of cGAS-like receptors in Drosophila reveals the plasticity of this family of pattern-recognition receptors, able to accommodate ligands different from DNA and to produce cyclic dinucleotides beyond 2'3'-cGAMP.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|