1
|
Li Y, Zhang X, Wang Y, Mu X, Tu Y, Sun P, Wang Y, Yang G, Kang L, Wu C, Zhang J. Photoactivated Nanowires as In Situ Transmembrane Electron Tunnels for Dual-Model Monitoring of Intracellular Biomarkers. Anal Chem 2025. [PMID: 40237383 DOI: 10.1021/acs.analchem.4c06279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The insertion of a single nanoelectrode into the cell or fluorescence detection has enabled the nondestructive tracking of intracellular biomarkers. However, the reliance on extremely expensive micromanipulators or intricate fluorescent probes has limited their widespread application. To address this challenge, we propose a novel strategy that employs modified multiwalled carbon nanotubes (MWCNTs) as artificial transmembrane electron tunnels. These MWCNTs can be spontaneously and nondestructively semiembedded within cells while exhibiting remarkable conductivity. When the photosensitive electrodes on the cell surface are illuminated, photogenerated electron-hole pairs are produced. The holes can enter the cell through the nanowires, thus promoting oxidation reactions with target molecules and generating real-time electrical signals for monitoring intracellular biomarkers. Meanwhile, the engineered recognition element on the nanowire transitions to an excited state and subsequently returns to the ground state through electrochemiluminescence (ECL), enabling in situ visualization of intracellular biomarkers. This groundbreaking approach not only eliminates the need for micromanipulators and fluorescent probes but also enables simultaneous electrical and optical monitoring of intracellular biomarker levels, significantly reducing false-positive risks. This innovation was validated to be feasible using NADH as an intracellular target molecule, marking a shift in intracellular sensing strategies.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Xiwen Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yiyu Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Mu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanbo Tu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Sun
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yaolong Wang
- KPC Biotechnology (Lufeng) Co., Ltd., Kunming 650106, China
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
3
|
Chin Sang C, Moore G, Tereshchenko M, Zhang H, Nosella ML, Dasovich M, Alderson TR, Leung AKL, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. EMBO Rep 2024; 25:5635-5666. [PMID: 39496836 PMCID: PMC11624282 DOI: 10.1038/s44319-024-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it remains unclear how exactly PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human single-strand repair proteins in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain length-dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments, which correlates with PARP1 clusters compacting long DNA and bridging DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities of DNA repair factors, which may inform on how PARPs function in DNA repair foci and other PAR-driven condensates in cells.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael L Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Green Centre for Reproductive Biology Sciences, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - T Reid Alderson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Sukhanova MV, Anarbaev RO, Naumenko KN, Hamon L, Singatulina AS, Pastré D, Lavrik OI. Phase Separation of FUS with Poly(ADP-ribosyl)ated PARP1 Is Controlled by Polyamines, Divalent Metal Cations, and Poly(ADP-ribose) Structure. Int J Mol Sci 2024; 25:12445. [PMID: 39596510 PMCID: PMC11594298 DOI: 10.3390/ijms252212445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Fused in sarcoma (FUS) is involved in the formation of nuclear biomolecular condensates associated with poly(ADP-ribose) [PAR] synthesis catalyzed by a DNA damage sensor such as PARP1. Here, we studied FUS microphase separation induced by poly(ADP-ribosyl)ated PARP1WT [PAR-PARP1WT] or its catalytic variants PARP1Y986S and PARP1Y986H, respectively, synthesizing (short PAR)-PARP1Y986S or (short hyperbranched PAR)-PARP1Y986H using dynamic light scattering, fluorescence microscopy, turbidity assays, and atomic force microscopy. We observed that biologically relevant cations such as Mg2+, Ca2+, or Mn2+ or polyamines (spermine4+ or spermidine3+) were essential for the assembly of FUS with PAR-PARP1WT and FUS with PAR-PARP1Y986S in vitro. We estimated the range of the FUS-to-PAR-PARP1 molar ratio and the cation concentration that are favorable for the stability of the protein's microphase-separated state. We also found that FUS microphase separation induced by PAR-PARP1Y986H (i.e., a PARP1 variant attaching short hyperbranched PAR to itself) can occur in the absence of cations. The dependence of PAR-PARP1-induced FUS microphase separation on cations and on the branching of the PAR structure points to a potential role of the latter in the regulation of the formation of FUS-related biological condensates and requires further investigation.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Rashid O. Anarbaev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Loic Hamon
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - David Pastré
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| |
Collapse
|
5
|
Paradkar S, Purcell J, Cui A, Friedman S, Noronha KJ, Murray MA, Sundaram RK, Bindra RS, Jensen RB. PARG inhibition induces nuclear aggregation of PARylated PARP1. Structure 2024; 32:2083-2093.e5. [PMID: 39406247 DOI: 10.1016/j.str.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 11/10/2024]
Abstract
Poly (ADP-ribose) glycohydrolase (PARG) inhibitors are currently under clinical development for the treatment of DNA repair-deficient cancers; however, their precise mechanism of action is still unclear. Here, we report that PARG inhibition leads to excessive PARylated poly (ADP-ribose) polymerase 1 (PARP1) reducing the ability of PARP1 to properly localize to sites of DNA damage. Strikingly, the mis-localized PARP1 accumulates as aggregates throughout the nucleus. Abrogation of the catalytic activity of PARP1 prevents aggregate formation, indicating that PAR chains play a key role in this process. Finally, we find that PARP1 nuclear aggregates were highly persistent and were associated with cleaved cytoplasmic PARP1, ultimately leading to cell death. Overall, our data uncover an unexpected mechanism of PARG inhibitor cytotoxicity, which will shed light on the use of these drugs as anti-cancer therapeutics.
Collapse
Affiliation(s)
- Sateja Paradkar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510-8034, USA.
| | - Julia Purcell
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA
| | - Annie Cui
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA
| | - Sam Friedman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA
| | - Katelyn J Noronha
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA
| | - Matthew A Murray
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510-8034, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510-8034, USA.
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510-8034, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510-8034, USA.
| |
Collapse
|
6
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:315-337. [PMID: 39221603 PMCID: PMC11604531 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
7
|
Sukhanova MV, Anarbaev RO, Maltseva EA, Kutuzov MM, Lavrik OI. Divalent and multivalent cations control liquid-like assembly of poly(ADP-ribosyl)ated PARP1 into multimolecular associates in vitro. Commun Biol 2024; 7:1148. [PMID: 39278937 PMCID: PMC11402994 DOI: 10.1038/s42003-024-06811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase β (Pol β) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol β-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Ekaterina A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia.
| |
Collapse
|
8
|
Chudy P, Kochan J, Wawro M, Nguyen P, Gorczyca M, Varanko A, Retka A, Ghadei SS, Napieralska E, Grochot-Przęczek A, Szade K, Berendes LS, Park J, Sokołowski G, Yu Q, Józkowicz A, Nowak WN, Krzeptowski W. Heme oxygenase-1 protects cells from replication stress. Redox Biol 2024; 75:103247. [PMID: 39047636 PMCID: PMC11321372 DOI: 10.1016/j.redox.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Collapse
Affiliation(s)
- Patryk Chudy
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Phu Nguyen
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gorczyca
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aliaksandra Varanko
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Retka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Swati Sweta Ghadei
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilija Napieralska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lea-Sophie Berendes
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julien Park
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Grzegorz Sokołowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia, Chorzów, Poland.
| | - Wojciech Krzeptowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Much C, Lasda EL, Pereira IT, Vallery TK, Ramirez D, Lewandowski JP, Dowell RD, Smallegan MJ, Rinn JL. The temporal dynamics of lncRNA Firre-mediated epigenetic and transcriptional regulation. Nat Commun 2024; 15:6821. [PMID: 39122712 PMCID: PMC11316132 DOI: 10.1038/s41467-024-50402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024] Open
Abstract
Numerous studies have now demonstrated that lncRNAs can influence gene expression programs leading to cell and organismal phenotypes. Typically, lncRNA perturbations and concomitant changes in gene expression are measured on the timescale of many hours to days. Thus, we currently lack a temporally grounded understanding of the primary, secondary, and tertiary relationships of lncRNA-mediated transcriptional and epigenetic regulation-a prerequisite to elucidating lncRNA mechanisms. To begin to address when and where a lncRNA regulates gene expression, we genetically engineer cell lines to temporally induce the lncRNA Firre. Using this approach, we are able to monitor lncRNA transcriptional regulatory events from 15 min to four days. We observe that upon induction, Firre RNA regulates epigenetic and transcriptional states in trans within 30 min. These early regulatory events result in much larger transcriptional changes after 12 h, well before current studies monitor lncRNA regulation. Moreover, Firre-mediated gene expression changes are epigenetically remembered for days. Overall, this study suggests that lncRNAs can rapidly regulate gene expression by establishing persistent epigenetic and transcriptional states.
Collapse
Affiliation(s)
- Christian Much
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Erika L Lasda
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Isabela T Pereira
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tenaya K Vallery
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA.
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
10
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
11
|
Acharya G, Mani C, Sah N, Saamarthy K, Young R, Reedy MB, Sobol RW, Palle K. CHK1 inhibitor induced PARylation by targeting PARG causes excessive replication and metabolic stress and overcomes chemoresistance in ovarian cancer. Cell Death Discov 2024; 10:278. [PMID: 38862485 PMCID: PMC11166985 DOI: 10.1038/s41420-024-02040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+ levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+ dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+ levels. These decreased NAD+ levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+ to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Ganesh Acharya
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert Young
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mark B Reedy
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
12
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
13
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
14
|
Inanc B, Fang Q, Andrews JF, Zeng X, Clark J, Li J, Dey NB, Ibrahim M, Sykora P, Yu Z, Braganza A, Verheij M, Jonkers J, Yates NA, Vens C, Sobol RW. TRIP12 governs DNA Polymerase β involvement in DNA damage response and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588474. [PMID: 38645048 PMCID: PMC11030427 DOI: 10.1101/2024.04.08.588474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase β (Polβ), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polβ. Required for Polβ foci formation, TRIP12 regulates Polβ involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polβ affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polβ-directed BER, optimizes DNA repair pathway choice at complex lesion sites.
Collapse
|
15
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
16
|
Sang CC, Moore G, Tereshchenko M, Nosella ML, Zhang H, Alderson TR, Dasovich M, Leung A, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.575817. [PMID: 38328070 PMCID: PMC10849519 DOI: 10.1101/2024.01.20.575817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - T. Reid Alderson
- Division of Molecular Biology and Biochemistry, Medizinische Universität Graz, Graz, 8010, Austria
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
17
|
Al-Rahahleh RQ, Saville KM, Andrews JF, Wu Z, Koczor CA, Sobol RW. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573650. [PMID: 38234836 PMCID: PMC10793466 DOI: 10.1101/2023.12.29.573650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F. Andrews
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02912
| | - Christopher A. Koczor
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
18
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Simpson D, Ling J, Jing Y, Adamson B. Mapping the Genetic Interaction Network of PARP inhibitor Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553986. [PMID: 37645833 PMCID: PMC10462155 DOI: 10.1101/2023.08.19.553986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Genetic interactions have long informed our understanding of the coordinated proteins and pathways that respond to DNA damage in mammalian cells, but systematic interrogation of the genetic network underlying that system has yet to be achieved. Towards this goal, we measured 147,153 pairwise interactions among genes implicated in PARP inhibitor (PARPi) response. Evaluating genetic interactions at this scale, with and without exposure to PARPi, revealed hierarchical organization of the pathways and complexes that maintain genome stability during normal growth and defined changes that occur upon accumulation of DNA lesions due to cytotoxic doses of PARPi. We uncovered unexpected relationships among DNA repair genes, including context-specific buffering interactions between the minimally characterized AUNIP and BRCA1-A complex genes. Our work thus establishes a foundation for mapping differential genetic interactions in mammalian cells and provides a comprehensive resource for future studies of DNA repair and PARP inhibitors.
Collapse
Affiliation(s)
- Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jia Ling
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
20
|
Wiciński M, Erdmann J, Nowacka A, Kuźmiński O, Michalak K, Janowski K, Ohla J, Biernaciak A, Szambelan M, Zabrzyński J. Natural Phytochemicals as SIRT Activators-Focus on Potential Biochemical Mechanisms. Nutrients 2023; 15:3578. [PMID: 37630770 PMCID: PMC10459499 DOI: 10.3390/nu15163578] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Sirtuins are a family of proteins with enzymatic activity. There are seven mammalian sirtuins (SIRT1-SIRT7) that are found in different cellular compartments. They are a part of crucial cellular pathways and are regulated by many factors, such as chemicals, environmental stress, and phytochemicals. Several in vitro and in vivo studies have presented their involvement in anti-inflammatory, antioxidant, and antiapoptotic processes. Recent findings imply that phytochemicals such as resveratrol, curcumin, quercetin, fisetin, berberine, and kaempferol may regulate the activity of sirtuins. Resveratrol mainly activates SIRT1 and indirectly activates AMPK. Curcumin influences mainly SIRT1 and SIRT3, but its activity is broad, and many pathways in different cells are affected. Quercetin mainly modulates SIRT1, which triggers antioxidant and antiapoptotic responses. Fisetin, through SIRT1 regulation, modifies lipid metabolism and anti-inflammatory processes. Berberine has a wide spectrum of effects and a significant impact on SIRT1 signaling pathways. Finally, kaempferol triggers anti-inflammatory and antioxidant effects through SIRT1 induction. This review aims to summarize recent findings on the properties of phytochemicals in the modulation of sirtuin activity, with a particular focus on biochemical aspects.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Agnieszka Nowacka
- Department of Neurosurgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Kuźmiński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Klaudia Michalak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Kacper Janowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Adrian Biernaciak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
21
|
Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, Li J, Ono K, Qin Y, Churas C, Chen J, Pillich RT, Park J, Modak M, Collier R, Licon K, Pratt D, Sobol RW, Krogan NJ, Ideker T. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst 2023; 14:447-463.e8. [PMID: 37220749 PMCID: PMC10330685 DOI: 10.1016/j.cels.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).
Collapse
Affiliation(s)
- Anton Kratz
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Minkyu Kim
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA; University of Texas Health Science Center San Antonio, Department of Biochemistry and Structural Biology, San Antonio, TX 78229, USA
| | - Marcus R Kelly
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Fan Zheng
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Christopher A Koczor
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Jianfeng Li
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Keiichiro Ono
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Yue Qin
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Christopher Churas
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jing Chen
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Rudolf T Pillich
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jisoo Park
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Rachel Collier
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Kate Licon
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Dexter Pratt
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Robert W Sobol
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA; Brown University, Department of Pathology and Laboratory Medicine and Legorreta Cancer Center, Providence, RI 02903, USA.
| | - Nevan J Krogan
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| | - Trey Ideker
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| |
Collapse
|
22
|
Zhao ML, Stefanick DF, Nadalutti CA, Beard WA, Wilson SH, Horton JK. Temporal recruitment of base excision DNA repair factors in living cells in response to different micro-irradiation DNA damage protocols. DNA Repair (Amst) 2023; 126:103486. [PMID: 37028218 PMCID: PMC10133186 DOI: 10.1016/j.dnarep.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Laser micro-irradiation across the nucleus rapidly generates localized chromatin-associated DNA lesions permitting analysis of repair protein recruitment in living cells. Recruitment of three fluorescently-tagged base excision repair factors [DNA polymerase β (pol β), XRCC1 and PARP1], known to interact with one another, was compared in gene-deleted mouse embryonic fibroblasts and in those expressing the endogenous factor. A low energy micro-irradiation (LEMI) forming direct single-strand breaks and a moderate energy (MEMI) protocol that additionally creates oxidized bases were compared. Quantitative characterization of repair factor recruitment and sensitivity to clinical PARP inhibitors (PARPi) was dependent on the micro-irradiation protocol. PARP1 recruitment was biphasic and generally occurred prior to pol β and XRCC1. After LEMI, but not after MEMI, pol β and XRCC1 recruitment was abolished by the PARPi veliparib. Consistent with this, pol β and XRCC1 recruitment following LEMI was considerably slower in PARP1-deficient cells. Surprisingly, the recruitment half-times and amplitudes for pol β were less affected by PARPi than were XRCC1 after MEMI suggesting there is a XRCC1-independent component for pol β recruitment. After LEMI, but not MEMI, pol β dissociation was more rapid than that of XRCC1. Unexpectedly, PARP1 dissociation was slowed in the absence of XRCC1 as well with a PARPi after LEMI but not MEMI, suggesting that XRCC1 facilitates PARP1 dissociation from specific DNA lesions. XRCC1-deficient cells showed pronounced hypersensitivity to the PARPi talazoparib correlating with its known cytotoxic PARP1 trapping activity. In contrast to DNA methylating agents, PARPi only minimally sensitized pol β and XRCC1-deficient cells to oxidative DNA damage suggesting differential binding of PARP1 to alternate repair intermediates. In summary, pol β, XRCC1, and PARP1 display recruitment kinetics that exhibit correlated and unique properties that depend on the DNA lesion and PARP activity revealing that there are multiple avenues utilized in the repair of chromatin-associated DNA.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
23
|
Svetlova M, Solovjeva L, Kropotov A, Nikiforov A. The Impact of NAD Bioavailability on DNA Double-Strand Break Repair Capacity in Human Dermal Fibroblasts after Ionizing Radiation. Cells 2023; 12:1518. [PMID: 37296639 PMCID: PMC10252650 DOI: 10.3390/cells12111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as a substrate for protein deacetylases sirtuins and poly(ADP-ribose) polymerases, which are involved in the regulation of DNA double-strand break (DSB) repair molecular machinery by various mechanisms. However, the impact of NAD bioavailability on DSB repair remains poorly characterized. Herein, using immunocytochemical analysis of γH2AX, a marker for DSB, we investigated the effect of the pharmacological modulation of NAD levels on DSB repair capacity in human dermal fibroblasts exposed to moderate doses of ionizing radiation (IR). We demonstrated that NAD boosting with nicotinamide riboside did not affect the efficiency of DSB elimination after the exposure of cells to IR at 1 Gy. Moreover, even after irradiation at 5 Gy, we did not observe any decrease in intracellular NAD content. We also showed that, when the NAD pool was almost completely depleted by inhibition of its biosynthesis from nicotinamide, cells were still able to eliminate IR-induced DSB, though the activation of ATM kinase, its colocalization with γH2AX and DSB repair capacity were reduced in comparison to cells with normal NAD levels. Our results suggest that NAD-dependent processes, such as protein deacetylation and ADP-ribosylation, are important but not indispensable for DSB repair induced by moderate doses of IR.
Collapse
Affiliation(s)
- Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| | | | | | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| |
Collapse
|
24
|
Dasovich M, Leung AK. Molecular tools unveil distinct waves of ADP-ribosylation during DNA repair. CELL REPORTS METHODS 2023; 3:100484. [PMID: 37323576 PMCID: PMC10261921 DOI: 10.1016/j.crmeth.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ADP-ribosylation is a complex post-translation modification involved in DNA repair. In a recent Molecular Cell publication, Longarini and colleagues measured ADP-ribosylation dynamics with unprecedented specificity, revealing how the monomeric and polymeric forms of ADP-ribosylation regulate the timing of DNA repair events following strand breaks.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K.L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Dasovich M, Leung AKL. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools. Mol Cell 2023; 83:1552-1572. [PMID: 37119811 PMCID: PMC10202152 DOI: 10.1016/j.molcel.2023.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
PARPs catalyze ADP-ribosylation-a post-translational modification that plays crucial roles in biological processes, including DNA repair, transcription, immune regulation, and condensate formation. ADP-ribosylation can be added to a wide range of amino acids with varying lengths and chemical structures, making it a complex and diverse modification. Despite this complexity, significant progress has been made in developing chemical biology methods to analyze ADP-ribosylated molecules and their binding proteins on a proteome-wide scale. Additionally, high-throughput assays have been developed to measure the activity of enzymes that add or remove ADP-ribosylation, leading to the development of inhibitors and new avenues for therapy. Real-time monitoring of ADP-ribosylation dynamics can be achieved using genetically encoded reporters, and next-generation detection reagents have improved the precision of immunoassays for specific forms of ADP-ribosylation. Further development and refinement of these tools will continue to advance our understanding of the functions and mechanisms of ADP-ribosylation in health and disease.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Longarini EJ, Dauben H, Locatelli C, Wondisford AR, Smith R, Muench C, Kolvenbach A, Lynskey ML, Pope A, Bonfiglio JJ, Jurado EP, Fajka-Boja R, Colby T, Schuller M, Ahel I, Timinszky G, O'Sullivan RJ, Huet S, Matic I. Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling. Mol Cell 2023; 83:1743-1760.e11. [PMID: 37116497 PMCID: PMC10205078 DOI: 10.1016/j.molcel.2023.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023]
Abstract
PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.
Collapse
Affiliation(s)
- Edoardo José Longarini
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Helen Dauben
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Carolina Locatelli
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000 Rennes, France
| | - Charlotte Muench
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Andreas Kolvenbach
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis Pope
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Juan José Bonfiglio
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Eva Pinto Jurado
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000 Rennes, France; Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6276 Szeged, Hungary
| | - Roberta Fajka-Boja
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary; Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Thomas Colby
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000 Rennes, France; Institut Universitaire de France, Paris, France.
| | - Ivan Matic
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
27
|
Fairlamb MS, Spies M, Washington MT, Freudenthal BD. Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair. J Biol Chem 2023; 299:104636. [PMID: 36963489 PMCID: PMC10148159 DOI: 10.1016/j.jbc.2023.104636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Base excision repair (BER) is carried out by a series of proteins that function in a step-by-step process to identify, remove, and replace DNA damage. During BER, the DNA transitions through various intermediate states as it is processed by each DNA repair enzyme. Left unrepaired, these BER intermediates can transition into double-stranded DNA breaks and promote genome instability. Previous studies have proposed a short-lived complex consisting of the BER intermediate, the incoming enzyme, and the outgoing enzyme at each step of the BER pathway to protect the BER intermediate. The transfer of BER intermediates between enzymes, known as BER coordination or substrate channeling, remains poorly understood. Here, we utilize single-molecule total internal reflection fluorescence microscopy to investigate the mechanism of BER coordination between apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase β (Pol β). When preformed complexes of APE1 and the incised abasic site product (APE1 product and Pol β substrate) were subsequently bound by Pol β, the Pol β enzyme dissociated shortly after binding in most of the observations. In the events where Pol β binding was followed by APE1 dissociation during substrate channeling, Pol β remained bound for a longer period of time to allow disassociation of APE1. Our results indicate that transfer of the BER intermediate from APE1 to Pol β during BER is dependent on the dissociation kinetics of APE1 and the duration of the ternary complex on the incised abasic site.
Collapse
Affiliation(s)
- Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - M Todd Washington
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; University of Kansas Cancer Center, Kansas City, Kansas, USA.
| |
Collapse
|
28
|
Koczor CA, Thompson MK, Sharma N, Prakash A, Sobol RW. Polβ/XRCC1 heterodimerization dictates DNA damage recognition and basal Polβ protein levels without interfering with mouse viability or fertility. DNA Repair (Amst) 2023; 123:103452. [PMID: 36702010 PMCID: PMC9992099 DOI: 10.1016/j.dnarep.2023.103452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
DNA Polymerase β (Polβ) performs two critical enzymatic steps during base excision repair (BER) - gap filling (nucleotidyl transferase activity) and gap tailoring (dRP lyase activity). X-ray repair cross complementing 1 (XRCC1) facilitates the recruitment of Polβ to sites of DNA damage through an evolutionarily conserved Polβ/XRCC1 interaction interface, the V303 loop. While previous work describes the importance of the Polβ/XRCC1 interaction for human Polβ protein stability and recruitment to sites of DNA damage, the impact of disrupting the Polβ/XRCC1 interface on animal viability, physiology, and fertility is unknown. Here, we characterized the effect of disrupting Polβ/XRCC1 heterodimerization in mice and mouse cells by complimentary approaches. First, we demonstrate, via laser micro-irradiation, that mouse Polβ amino acid residues L301 and V303 are critical to facilitating Polβ recruitment to sites of DNA damage. Next, we solved the crystal structures of mouse wild type Polβ and a mutant protein harboring alterations in residues L301 and V303 (L301R/V303R). Our structural analyses suggest that Polβ amino acid residue V303 plays a role in maintaining an interaction with the oxidized form of XRCC1. Finally, we created CRISPR/Cas9-modified Polb mice with homozygous L301R/V303R mutations (PolbL301R-V303R/L301R-V303R) that are fertile yet exhibit 15% reduced body weight at 17 weeks of age, as compared to heterozygous mice. Fibroblasts derived from PolbL301R-V303R/L301R-V303R mice demonstrate that mutation of mouse Polβ's XRCC1 interaction domain leads to an ∼85% decrease in Polβ protein levels. In all, these studies are consistent with a role for the oxidized form of XRCC1 in providing stability to the Polβ protein through Polβ/XRCC1 heterodimer formation.
Collapse
Affiliation(s)
- Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Marlo K Thompson
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Nidhi Sharma
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Koczor CA, Saville KM, Al-Rahahleh RQ, Andrews JF, Li J, Sobol RW. Quantitative Analysis of Nuclear Poly(ADP-Ribose) Dynamics in Response to Laser-Induced DNA Damage. Methods Mol Biol 2023; 2609:43-59. [PMID: 36515828 PMCID: PMC9920208 DOI: 10.1007/978-1-0716-2891-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poly(ADP-ribose) (PAR), catalyzed by members of the poly(ADP-ribose) polymerase family of enzymes, is a posttranslational modification with a critical role in most mechanisms of DNA repair. Upon activation of poly(ADP-ribose) polymerase isoforms 1 and 2 (PARP-1 and PARP-2), the proteins of the base excision repair (BER) and single-strand break repair (SSBR) pathways form DNA lesion-dependent, transient complexes to facilitate repair. PAR is central to the temporal dynamics of BER/SSBR complex assembly and disassembly. To enhance cellular PAR analysis, we developed LivePAR, a fluorescently tagged PAR-binding fusion protein and genetically encoded imaging probe for live cell, quantitative analysis of PAR in mammalian cells. LivePAR has the advantage that it enables real-time imaging of PAR formation in cells and significantly overcomes limitations of immunocytochemistry for PAR analysis. This chapter describes the protocols needed to develop cells expressing LivePAR or EGFP-tagged BER proteins and to evaluate laser-induced formation of PAR and comparison to the assembly of the BER proteins XRCC1 and DNA polymerase-β.
Collapse
Affiliation(s)
- Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Kate M Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Rasha Q Al-Rahahleh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pathology and Laboratory Medicine & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
- Department of Pathology and Laboratory Medicine & Legorreta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
30
|
Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF, Dai HB. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Front Pharmacol 2023; 14:1137151. [PMID: 36909172 PMCID: PMC9995695 DOI: 10.3389/fphar.2023.1137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a key DNA damage sensor that is recruited to damaged sites after DNA strand breaks to initiate DNA repair. This is achieved by catalyzing attachment of ADP-ribose moieties, which are donated from NAD+, on the amino acid residues of itself or other acceptor proteins. PARP inhibitors (PARPi) that inhibit PARP catalytic activity and induce PARP trapping are commonly used for treating BRCA1/2-deficient breast and ovarian cancers through synergistic lethality. Unfortunately, resistance to PARPi frequently occurs. In this review, we present the novel substrates and regulators of the PARP1-catalyzed poly (ADP-ribosyl)ation (PARylatison) that have been identified in the last 3 years. The overall aim is the presentation of protein interactions of potential therapeutic intervention for overcoming the resistance to PARPi.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju-Yan Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Wang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di-Fei Yao
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Bin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Wang S, Li L, Liang Q, Ye Y, Lan Z, Dong Q, Chen A, Fu M, Li Y, Liu X, Ou JS, Lu L, Yan J. Deletion of SIRT6 in vascular smooth muscle cells facilitates vascular calcification via suppression of DNA damage repair. J Mol Cell Cardiol 2022; 173:154-168. [PMID: 36367517 DOI: 10.1016/j.yjmcc.2022.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Vascular calcification is an important risk factor for cardiovascular events, accompanied by DNA damage during the process. The sirtuin 6 (SIRT6) has been reported to alleviate atherosclerosis, which is related to the reduction of DNA damage. However, whether smooth muscle cell SIRT6 mediates vascular calcification involving DNA damage remains unclear. Western blot and immunofluorescence revealed that SIRT6 expression was decreased in human vascular smooth muscle cells (HVSMCs), human and mouse arteries during vascular calcification. Alizarin red staining and calcium content assay showed that knockdown or deletion of SIRT6 significantly promoted HVSMC calcification induced by high phosphorus and calcium, accompanied by upregulation of osteogenic differentiation markers including Runx2 and BMP2. By contrast, adenovirus-mediated SIRT6 overexpression attenuated osteogenic differentiation and calcification of HVSMCs. Moreover, ex vivo study revealed that SIRT6 overexpression inhibited calcification of mouse and human arterial rings. Of note, smooth muscle cell-specific knockout of SIRT6 markedly aggravated Vitamin D3-induced aortic calcification in mice. Mechanistically, overexpression of SIRT6 reduced DNA damage and upregulated p-ATM during HVSMCs calcification, whereas knockdown of SIRT6 showed the opposite effects. Knockdown of ATM in HVSMCs abrogated the inhibitory effect of SIRT6 overexpression on calcification and DNA damage. This study for the first time demonstrates that vascular smooth muscle cell-specific deletion of SIRT6 facilitates vascular calcification via suppression of DNA damage repair. Therefore, modulation of SIRT6 and DNA damage repair may represent a therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510665, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou 510280, China.
| |
Collapse
|
32
|
Li J, Beiser A, Dey NB, Takeda S, Saha L, Hirota K, Parker L, Carter M, Arrieta M, Sobol R. A high-throughput 384-well CometChip platform reveals a role for 3-methyladenine in the cellular response to etoposide-induced DNA damage. NAR Genom Bioinform 2022; 4:lqac065. [PMID: 36110898 PMCID: PMC9469923 DOI: 10.1093/nargab/lqac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 01/31/2023] Open
Abstract
The Comet or single-cell gel electrophoresis assay is a highly sensitive method to measure cellular, nuclear genome damage. However, low throughput can limit its application for large-scale studies. To overcome these limitations, a 96-well CometChip platform was recently developed that increases throughput and reduces variation due to simultaneous processing and automated analysis of 96 samples. To advance throughput further, we developed a 384-well CometChip platform that allows analysis of ∼100 cells per well. The 384-well CometChip extends the capacity by 4-fold as compared to the 96-well system, enhancing application for larger DNA damage analysis studies. The overall sensitivity of the 384-well CometChip is consistent with that of the 96-well system, sensitive to genotoxin exposure and to loss of DNA repair capacity. We then applied the 384-well platform to screen a library of protein kinase inhibitors to probe each as enhancers of etoposide induced DNA damage. Here, we found that 3-methyladenine significantly increased levels of etoposide-induced DNA damage. Our results suggest that a 384-well CometChip is useful for large-scale DNA damage analyses, which may have increased potential in the evaluation of chemotherapy efficacy, compound library screens, population-based analyses of genome damage and evaluating the impact of environmental genotoxins on genome integrity.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nupur B Dey
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Liton Kumar Saha
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - L Lynette Parker
- Center for Healthy Communities, College of Medicine, University of South Alabama Mobile, AL 36604, USA
| | - Mariah Carter
- Center for Healthy Communities, College of Medicine, University of South Alabama Mobile, AL 36604, USA
| | - Martha I Arrieta
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
- Center for Healthy Communities, College of Medicine, University of South Alabama Mobile, AL 36604, USA
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
33
|
A Double-Edged Sword: The Two Faces of PARylation. Int J Mol Sci 2022; 23:ijms23179826. [PMID: 36077221 PMCID: PMC9456079 DOI: 10.3390/ijms23179826] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Poly ADP-ribosylation (PARylation) is a post-translational modification process. Following the discovery of PARP-1, numerous studies have demonstrated the role of PARylation in the DNA damage and repair responses for cellular stress and DNA damage. Originally, studies on PARylation were confined to PARP-1 activation in the DNA repair pathway. However, the interplay between PARylation and DNA repair suggests that PARylation is important for the efficiency and accuracy of DNA repair. PARylation has contradicting roles; however, recent evidence implicates its importance in inflammation, metabolism, and cell death. These differences might be dependent on specific cellular conditions or experimental models used, and suggest that PARylation may play two opposing roles in cellular homeostasis. Understanding the role of PARylation in cellular function is not only important for identifying novel therapeutic approaches; it is also essential for gaining insight into the mechanisms of unexplored diseases. In this review, we discuss recent reports on the role of PARylation in mediating diverse cellular functions and homeostasis, such as DNA repair, inflammation, metabolism, and cell death.
Collapse
|
34
|
Koczor CA, Haider AJ, Saville KM, Li J, Andrews JF, Beiser AV, Sobol RW. Live Cell Detection of Poly(ADP-Ribose) for Use in Genetic and Genotoxic Compound Screens. Cancers (Basel) 2022; 14:3676. [PMID: 35954352 PMCID: PMC9367489 DOI: 10.3390/cancers14153676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(ADP-ribose) (PAR) is a molecular scaffold that aids in the formation of DNA repair protein complexes. Tools to sensitively quantify PAR in live cells have been lacking. We recently described the LivePAR probe (EGFP fused to the RNF146-encoded WWE PAR binding domain) to measure PAR formation at sites of laser micro-irradiation in live cells. Here, we present two methods that expand on the use of LivePAR and its WWE domain. First, LivePAR enriches in the nucleus of cells following genotoxic challenge. Image quantitation can identify single-cell PAR formation following genotoxic stress at concentrations lower than PAR ELISA or PAR immunoblot, with greater sensitivity to genotoxic stress than CometChip. In a second approach, we used the RNF146-encoded WWE domain to develop a split luciferase probe for analysis in a 96-well plate assay. We then applied these PAR analysis tools to demonstrate their broad applicability. First, we show that both approaches can identify genetic modifications that alter PARylation levels, such as hyper-PARylation in BRCA2-deficient cancer cells. Second, we demonstrate the utility of the WWE split luciferase assay to characterize the cellular response of genotoxins, PARP inhibitors, and PARG inhibitors, thereby providing a screening method to identify PAR modulating compounds.
Collapse
Affiliation(s)
- Christopher A. Koczor
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Aaron J. Haider
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Kate M. Saville
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Jianfeng Li
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Alison V. Beiser
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Robert W. Sobol
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| |
Collapse
|
35
|
Li J, Koczor CA, Saville KM, Hayat F, Beiser A, McClellan S, Migaud ME, Sobol RW. Overcoming Temozolomide Resistance in Glioblastoma via Enhanced NAD + Bioavailability and Inhibition of Poly-ADP-Ribose Glycohydrolase. Cancers (Basel) 2022; 14:3572. [PMID: 35892832 PMCID: PMC9331395 DOI: 10.3390/cancers14153572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an incurable brain cancer with an average survival of approximately 15 months. Temozolomide (TMZ) is a DNA alkylating agent for the treatment of GBM. However, at least 50% of the patients treated with TMZ show poor response, primarily due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or due to defects in the mismatch repair (MMR) pathway. These resistance mechanisms are either somatic or arise in response to treatment, highlighting the need to uncover treatments to overcome resistance. We found that administration of the NAD+ precursor dihydronicotinamide riboside (NRH) to raise cellular NAD+ levels combined with PARG inhibition (PARGi) triggers hyperaccumulation of poly(ADP-ribose) (PAR), resulting from both DNA damage-induced and replication-stress-induced PARP1 activation. Here, we show that the NRH/PARGi combination enhances the cytotoxicity of TMZ. Specifically, NRH rapidly increases NAD+ levels in both TMZ-sensitive and TMZ-resistant GBM-derived cells and enhances the accumulation of PAR following TMZ treatment. Furthermore, NRH promotes hyperaccumulation of PAR in the presence of TMZ and PARGi. This combination strongly suppresses the cell growth of GBM cells depleted of MSH6 or cells expressing MGMT, suggesting that this regimen may improve the efficacy of TMZ to overcome treatment resistance in GBM.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Christopher A. Koczor
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Steven McClellan
- Mitchell Cancer Institute Flow Cytometry SRL, University of South Alabama, Mobile, AL 36604, USA;
| | - Marie E. Migaud
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
36
|
Longarini EJ, Matic I. The fast-growing business of Serine ADP-ribosylation. DNA Repair (Amst) 2022; 118:103382. [DOI: 10.1016/j.dnarep.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|
37
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Yang X, Feng J, Liang W, Zhu Z, Chen Z, Hu J, Yang D, Ding G. Roles of SIRT6 in kidney disease: a novel therapeutic target. Cell Mol Life Sci 2021; 79:53. [PMID: 34950960 PMCID: PMC11072764 DOI: 10.1007/s00018-021-04061-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
SIRT6 is an NAD+ dependent deacetylase that belongs to the mammalian sirtuin family. SIRT6 is mainly located in the nucleus and regulates chromatin remodeling, genome stability, and gene transcription. SIRT6 extensively participates in various physiological activities such as DNA repair, energy metabolism, oxidative stress, inflammation, and fibrosis. In recent years, the role of epigenetics such as acetylation modification in renal disease has gradually received widespread attention. SIRT6 reduces oxidative stress, inflammation, and renal fibrosis, which is of great importance in maintaining cellular homeostasis and delaying the chronic progression of kidney disease. Here, we review the structure and biological function of SIRT6 and summarize the regulatory mechanisms of SIRT6 in kidney disease. Moreover, the role of SIRT6 as a potential therapeutic target for the progression of kidney disease will be discussed. SIRT6 plays an important role in kidney disease. SIRT6 regulates mitochondrial dynamics and mitochondrial biogenesis, induces G2/M cycle arrest, and plays an antioxidant role in nephrotoxicity, IR, obstructive nephropathy, and sepsis-induced AKI. SIRT6 prevents and delays progressive CKD induced by hyperglycemia, kidney senescence, hypertension, and lipid accumulation by regulating mitochondrial biogenesis, and has antioxidant, anti-inflammatory, and antifibrosis effects. Additionally, hypoxia, inflammation, and fibrosis are the main mechanisms of the AKI-to-CKD transition. SIRT6 plays a critical role in the AKI-to-CKD transition and kidney repair through anti-inflammatory, antifibrotic, and mitochondrial quality control mechanisms. AKI Acute kidney injury, CKD Chronic kidney disease.
Collapse
Affiliation(s)
- Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Dingping Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Li J, M. Saville K, Ibrahim M, Zeng X, McClellan S, Angajala A, Beiser A, Andrews JF, Sun M, Koczor CA, Clark J, Hayat F, Makarov MV, Wilk A, Yates NA, Migaud ME, Sobol RW. NAD + bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 2021; 3:zcab044. [PMID: 34806016 PMCID: PMC8600031 DOI: 10.1093/narcan/zcab044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- To whom correspondence should be addressed. Tel: +1 251 445 9846;
| |
Collapse
|