1
|
Elder AM, Fairchild HR, Kines KT, Cozzens LM, Becks AR, Slansky JE, Anderson SM, Lyons TR. Semaphorin7A and PD-L1 cooperatively drive immunosuppression during mammary involution and breast cancer. Cell Rep 2025; 44:115676. [PMID: 40333186 DOI: 10.1016/j.celrep.2025.115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Postpartum mammary gland remodeling after a pregnancy/lactation cycle is characterized by mechanisms of cell death and inflammation. Here, we show that SEMA7A promotes PD-L1 expression in immune cells of the mammary tissue during involution. These same phenotypes are mimicked in the microenvironment of SEMA7A-expressing tumors, which partially respond to αPD-1/αPD-L1 treatments in vivo. However, cells that remain after treatment are enriched for SEMA7A expression. Therefore, we tested a monoclonal antibody that directly targets SEMA7A-expressing tumors, in part, by reducing SEMA7A-mediated upregulation of PD-L1. In vivo, the SEMA7A monoclonal antibody reduces tumor growth and/or promotes complete regression of mouse mammary tumors, reduces some immunosuppressive phenotypes in the tumor microenvironment, and restores cytotoxic T cells, suggesting that SEMA7A may be a candidate for immune-based therapy for breast cancer patients.
Collapse
Affiliation(s)
- Alan M Elder
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heather R Fairchild
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren M Cozzens
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria R Becks
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill E Slansky
- University of Colorado Cancer Center, Aurora, CO, USA; Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Cancer Center, Aurora, CO, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Liu S, Cao H, Wang Z, Zhu J, An X, Zhang L, Song Y. Single-cell transcriptomics reveals extracellular matrix remodeling and collagen dynamics during lactation in sheep mammary gland. Int J Biol Macromol 2025:143669. [PMID: 40319976 DOI: 10.1016/j.ijbiomac.2025.143669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The mammary gland is a dynamic organ with diverse cell populations that maintain glandular homeostasis, particularly during lactation. However, the cellular architecture and molecular mechanisms underlying lactational remodeling in the sheep mammary gland remain incompletely understood. Given similarities in mammary stromal structure, sheep serve as a valuable model for studying lactational changes relevant to the human breast, which experiences collagen loss and sagging during lactation. Utilizing single-cell transcriptomics (scRNA-seq), we mapped the sheep mammary gland's cellular landscape at postpartum days 60 and 150, identifying seven major cell types, including six distinct epithelial clusters. These clusters revealed differentiation among luminal progenitors, hormone-sensing, and myoepithelial cells across peak and late lactation stages. Transcriptomic analysis highlighted pivotal roles for epithelial integrity and ECM remodeling, with myoepithelial cells centrally involved in these processes. We observed significant collagen remodeling driven by fibroblast-epithelial crosstalk and ECM reorganization during late lactation. Comparative analysis with human mammary epithelial cells showed conserved basal and myoepithelial cell populations, while luminal cells diverged across species. This study provides insights into lactation biology and ECM remodeling, offering a framework to inform future studies on lactational adaptation and its implications for human health.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junru Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Verstichel G, Cheroutre H. T cells with a taste for tissue remodeling. Immunity 2025; 58:781-783. [PMID: 40203807 DOI: 10.1016/j.immuni.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
Specialized T cells can support tissue remodeling, but how T cells contribute to mammary gland remodeling during pregnancy is not fully understood. In a recent Cell issue, Corral et al. demonstrate that self-sensing T cells migrate to the mammary gland where they optimize milk production.
Collapse
Affiliation(s)
- Greet Verstichel
- Center for Autoimmune Disease and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Hilde Cheroutre
- Center for Autoimmune Disease and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Lee HK, Jankowski J, Liu C, Hennighausen L. Disease-Associated Mutations of the STAT5B SH2 Domain Regulate Cytokine-Driven Enhancer Function and Mammary Development. J Mammary Gland Biol Neoplasia 2025; 30:7. [PMID: 40163145 PMCID: PMC11958444 DOI: 10.1007/s10911-025-09582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Mammary gland development during pregnancy is controlled by lactogenic hormones via the JAK2-STAT5 pathway. Gene deletion studies in mice have revealed the crucial roles of both STAT5A and STAT5B in establishing the genetic programs necessary for the development of mammary epithelium and successful lactation. Several hundred single nucleotide polymorphisms (SNPs) have been identified in human STAT5B, although their pathophysiological significance remains largely unknown. The SH2 domain is vital for STAT5B activation, and this study focuses on the impact of two specific missense mutations identified in T cell leukemias, the substitution of tyrosine 665 with either phenylalanine (Y665F) or histidine (Y665H). By introducing these human mutations into the mouse genome, we uncovered distinct and opposite functions. Mice harboring the STAT5BY665H mutation failed to develop functional mammary tissue, resulting in lactation failure, while STAT5BY665F mice exhibited accelerated mammary development during pregnancy. Transcriptomic and epigenomic analyses identified STAT5BY665H as Loss-Of-Function (LOF) mutation, impairing enhancer establishment and alveolar differentiation, whereas STAT5BY665F acted as a Gain-Of-Function (GOF) mutation, elevating enhancer formation. Persistent hormonal stimulation through two pregnancies led to the establishment of enhancer structures, gene expression and successful lactation in STAT5BY665H mice. Lastly, we demonstrate that Olah, a gene known to drive life-threatening viral disease in humans, is regulated by STAT5B through a candidate four-partite super-enhancer. In conclusion, our findings underscore the role of human STAT5B variants in modulating mammary gland homeostasis and their critical impact on lactation.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Section of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jakub Jankowski
- Section of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Jaquish A, Phung E, Gong X, Baldominos P, Galvan-Pena S, Bursulaya I, Magill I, Marina E, Bertrand K, Chambers C, Muñoz-Rojas AR, Agudo J, Mathis D, Benoist C, Ramanan D. Expansion of mammary intraepithelial lymphocytes and intestinal inputs shape T cell dynamics in lactogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602739. [PMID: 39026711 PMCID: PMC11257640 DOI: 10.1101/2024.07.09.602739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Pregnancy brings about profound changes in the mammary gland to prepare for lactation, yet immunocyte changes that accompany this rapid remodeling are incompletely understood. We comprehensively analyzed mammary T cells, revealing a marked increase in CD4+ and CD8+ T effector cells, including an expansion of TCRαβ+CD8αα+ cells, in pregnancy and lactation. T cells were localized in the mammary epithelium, resembling intraepithelial lymphocytes (IELs) typically found in mucosal tissues. Similarity to mucosal tissues was substantiated by demonstrating partial dependence on microbial cues, T cell migration from the intestine to the mammary gland in late pregnancy, and shared TCR clonotypes between intestinal and mammary tissues, including intriguing public TCR families. Putative counterparts of mammary IELs were found in human breast and milk. Mammary T cells are thus poised to manage the transition from a non-mucosal tissue to a mucosal barrier during lactogenesis.
Collapse
|
6
|
Yi DY, Park HJ, Shin MS, Kim H, Lee SJ, Kang I. Differences in immune cells and gene expression in human milk by parity on integrated scRNA sequencing. Clin Exp Pediatr 2025; 68:141-152. [PMID: 39810510 PMCID: PMC11825117 DOI: 10.3345/cep.2024.01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Human breast milk (HBM) is an important source of tolerogenic immune mediators that influence the infant immune system. HBM-derived immune components are affected by various factors; however, few studies have examined the relationship between parity and immune cell profiles of HBM. PURPOSE This study aimed to clarify the effects of parity on HBM immune cell heterogeneity and gene expression by integrating and analyzing publicly available single-cell RNAsequencing (scRNA-seq) datasets. METHODS We clarified the effects of parity on HBM immune cell heterogeneity and gene expression by integrating and analyzing publicly available scRNA-seq datasets. RESULTS The proportion of innate immune cells was significantly higher in the primiparous versus multiparous group, whereas the proportion of adaptive immune cells was significantly higher in the multiparous group (P=0.021). The 2 immune clusters were reannotated and classified into monocyte, T/B cell, and CD45¯ groups. The proportions of monocytes and T/B cells were higher in the primiparous and multiparous groups, respectively. In a gene set enrichment analysis of monocytes, genes with a direct role in the infant immune system and immune response-related genes were more highly expressed in the primiparous group. CONCLUSION Our results support the parity-dependent differences in gene expression between innate and adaptive immune cells.
Collapse
Affiliation(s)
- Dae Yong Yi
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hong-Jai Park
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Min Sun Shin
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Hyoungsu Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Sang Jin Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Insoo Kang
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Angarola BL, Sharma S, Katiyar N, Kang HG, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukόw O. Comprehensive single-cell aging atlas of healthy mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. NATURE AGING 2025; 5:122-143. [PMID: 39587369 PMCID: PMC11754115 DOI: 10.1038/s43587-024-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. In this study, we investigated how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single-cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory and cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveals co-localization of aged immune and epithelial cells in situ. Lastly, we found transcriptional signatures of aging mammary cells in human breast tumors, suggesting possible links between aging and cancer. Together, these data uncover that epithelial, immune and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| | - Olga Anczukόw
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
8
|
Corbishley C, Rainford P, Reed A, Khaled W. Single-Cell Analysis in the Mouse and Human Mammary Gland. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:45-73. [PMID: 39821020 DOI: 10.1007/978-3-031-70875-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The mammary gland is a complex organ, host to a rich array of different cell types. As the only organ to complete its development in adulthood, it delicately balances both cell intrinsic and external signalling from hormones, growth factors and other stimulants. The gland can undergo vast proliferation, restructuring and functional maturation during pregnancy and undo these gross changes to a nearly identical resting state during involution. The adaptive nature of the mammary gland underpins its function but also increases its susceptibility to cancer. While already characterised at a macro scale, understanding the complexities of mammary gland morphogenesis, development and tumorigenesis requires interrogation of cellular and molecular mechanisms. As outlined below, single-cell analysis is a key approach for this, allowing us to unbiasedly explore and characterise the functions and properties of individual cells from the genome to the proteome. Here, we introduce key single-cell analysis methods and give brief introductions to their respective workflows. We then discuss the structure, cell types and development of the mammary gland from birth, puberty and through pregnancy, as well as cancer formation. Additionally, we highlight the benefits and caveats of implementing single-cell methodologies and mouse models for studying critical time points of human development and disease. Finally, we highlight some limitations and future directions of single-cell techniques. This chapter provides a starting point for users hoping to further their understanding of mammary gland development and its link to cancer as explained by single-cell analysis studies.
Collapse
Affiliation(s)
- Catriona Corbishley
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Patrick Rainford
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Austin Reed
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Walid Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Lewis SM, Dos Santos C. Epigenetic scars of Brca1 loss point toward breast cancer cell of origin. Nat Genet 2024; 56:2594-2595. [PMID: 39567745 DOI: 10.1038/s41588-024-02021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
10
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch C, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024; 56:2763-2775. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Vickers RR, Wyatt GL, Sanchez L, VanPortfliet JJ, West AP, Porter WW. Loss of STING impairs lactogenic differentiation. Development 2024; 151:dev202998. [PMID: 39399905 PMCID: PMC11528151 DOI: 10.1242/dev.202998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Heightened energetic and nutrient demand during lactogenic differentiation of the mammary gland elicits upregulation of various stress responses to support cellular homeostasis. Here, we identify the stimulator of interferon genes (STING) as an immune supporter of the functional development of mouse mammary epithelial cells (MECs). An in vitro model of MEC differentiation revealed that STING is activated in a cGAS-independent manner to produce both type I interferons and proinflammatory cytokines in response to the accumulation of mitochondrial reactive oxygen species. Induction of STING activity was found to be dependent on the breast tumor suppressor gene single-minded 2 (SIM2). Using mouse models of lactation, we discovered that loss of STING activity results in early involution of #3 mammary glands, severely impairing lactational performance. Our data suggest that STING is required for successful functional differentiation of the mammary gland and bestows a differential lactogenic phenotype between #3 mammary glands and the traditionally explored inguinal 4|9 pair. These findings affirm unique development of mammary gland pairs that is essential to consider in future investigations into normal development and breast cancer initiation.
Collapse
Affiliation(s)
- Ramiah R. Vickers
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Garhett L. Wyatt
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Lilia Sanchez
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | - Weston W. Porter
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia 2024; 29:16. [PMID: 39177859 PMCID: PMC11343902 DOI: 10.1007/s10911-024-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
Collapse
Affiliation(s)
- Ramiah Vickers
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Linscott MP, Ren JR, Gestl SA, Gunther EJ. Different Oncogenes and Reproductive Histories Shape the Progression of Distinct Premalignant Clones in Multistage Mouse Breast Cancer Models. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1329-1345. [PMID: 38537934 PMCID: PMC11220927 DOI: 10.1016/j.ajpath.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 04/10/2024]
Abstract
A remote carcinogen exposure can predispose to breast cancer onset decades later, suggesting that carcinogen-induced mutations generate long-lived premalignant clones. How subsequent events influence the progression of specific premalignant clones remains poorly understood. Herein, multistage mouse models of mammary carcinogenesis were generated by combining chemical carcinogen exposure [using 7,12-dimethylbenzanthracene (DMBA)] with transgenes that enable inducible expression of one of two clinically relevant mammary oncogenes: c-MYC (MYC) or PIK3CAH1047R (PIK). In prior work, DMBA exposure generated mammary clones bearing signature HrasQ61L mutations, which only progressed to mammary cancer after inducible Wnt1 oncogene expression. Here, after an identical DMBA exposure, MYC versus PIK drove cancer progression from mammary clones bearing mutations in distinct Ras family paralogs. For example, MYC drove cancer progression from either Kras- or Nras-mutant clones, whereas PIK transformed Kras-mutant clones only. These Ras mutation patterns were maintained whether oncogenic transgenes were induced within days of DMBA exposure or months later. Completing a full-term pregnancy (parity) failed to protect against either MYC- or PIK-driven tumor progression. Instead, a postpartum increase in mammary tumor predisposition was observed in the context of PIK-driven progression. However, parity decreased the overall prevalence of tumors bearing Krasmut, and the magnitude of this decrease depended on both the number and timing of pregnancies. These multistage models may be useful for elucidating biological features of premalignant mammary neoplasia.
Collapse
Affiliation(s)
- Maryknoll P Linscott
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jerry R Ren
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Shelley A Gestl
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Edward J Gunther
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
14
|
Gray GK, Girnius N, Kuiken HJ, Henstridge AZ, Brugge JS. Single-cell and spatial analyses reveal a tradeoff between murine mammary proliferation and lineage programs associated with endocrine cues. Cell Rep 2023; 42:113293. [PMID: 37858468 PMCID: PMC10840493 DOI: 10.1016/j.celrep.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Although distinct epithelial cell types have been distinguished in glandular tissues such as the mammary gland, the extent of heterogeneity within each cell type and the degree of endocrine control of this diversity across development are incompletely understood. By combining mass cytometry and cyclic immunofluorescence, we define a rich array of murine mammary epithelial cell subtypes associated with puberty, the estrous cycle, and sex. These subtypes are differentially proliferative and spatially segregate distinctly in adult versus pubescent glands. Further, we identify systematic suppression of lineage programs at the protein and RNA levels as a common feature of mammary epithelial expansion during puberty, the estrous cycle, and gestation and uncover a pervasive enrichment of ribosomal protein genes in luminal cells elicited specifically during progesterone-dominant expansionary periods. Collectively, these data expand our knowledge of murine mammary epithelial heterogeneity and connect endocrine-driven epithelial expansion with lineage suppression.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; The Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aylin Z Henstridge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Rocha AS, Collado-Solé A, Graña-Castro O, Redondo-Pedraza J, Soria-Alcaide G, Cordero A, Santamaría PG, González-Suárez E. Luminal Rank loss decreases cell fitness leading to basal cell bipotency in parous mammary glands. Nat Commun 2023; 14:6213. [PMID: 37813842 PMCID: PMC10562464 DOI: 10.1038/s41467-023-41741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.
| | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | | | | | - Alex Cordero
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | | | - Eva González-Suárez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.
- Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
16
|
Kumar T, Nee K, Wei R, He S, Nguyen QH, Bai S, Blake K, Pein M, Gong Y, Sei E, Hu M, Casasent AK, Thennavan A, Li J, Tran T, Chen K, Nilges B, Kashikar N, Braubach O, Ben Cheikh B, Nikulina N, Chen H, Teshome M, Menegaz B, Javaid H, Nagi C, Montalvan J, Lev T, Mallya S, Tifrea DF, Edwards R, Lin E, Parajuli R, Hanson S, Winocour S, Thompson A, Lim B, Lawson DA, Kessenbrock K, Navin N. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 2023; 620:181-191. [PMID: 37380767 PMCID: PMC11443819 DOI: 10.1038/s41586-023-06252-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.
Collapse
Affiliation(s)
- Tapsi Kumar
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Runmin Wei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Siyuan He
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Shanshan Bai
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kerrigan Blake
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Emi Sei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Min Hu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anna K Casasent
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jianzhuo Li
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Tuan Tran
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Hui Chen
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mediget Teshome
- Department of Breast Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Menegaz
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Huma Javaid
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Jessica Montalvan
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Tatyana Lev
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Sharmila Mallya
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Delia F Tifrea
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Robert Edwards
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Erin Lin
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Ritesh Parajuli
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Summer Hanson
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | | | | | - Bora Lim
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Nicholas Navin
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Callaway MK, Dos Santos CO. Gestational Breast Cancer - a Review of Outcomes, Pathophysiology, and Model Systems. J Mammary Gland Biol Neoplasia 2023; 28:16. [PMID: 37450228 PMCID: PMC10348943 DOI: 10.1007/s10911-023-09546-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
The onset of pregnancy marks the start of offspring development, and represents the key physiological event that induces re-organization and specialization of breast tissue. Such drastic tissue remodeling has also been linked to epithelial cell transformation and the establishment of breast cancer (BC). While patient outcomes for BC overall continue to improve across subtypes, prognosis remains dismal for patients with gestational breast cancer (GBC) and post-partum breast cancer (PPBC), as pregnancy and lactation pose additional complications and barriers to several gold standard clinical approaches. Moreover, delayed diagnosis and treatment, coupled with the aggressive time-scale in which GBC metastasizes, inevitably contributes to the higher incidence of disease recurrence and patient mortality. Therefore, there is an urgent and evident need to better understand the factors contributing to the establishment and spreading of BC during pregnancy. In this review, we provide a literature-based overview of the diagnostics and treatments available to patients with BC more broadly, and highlight the treatment deficit patients face due to gestational status. Further, we review the current understanding of the molecular and cellular mechanisms driving GBC, and discuss recent advances in model systems that may support the identification of targetable approaches to block BC development and dissemination during pregnancy. Our goal is to provide an updated perspective on GBC, and to inform critical areas needing further exploration to improve disease outcome.
Collapse
Affiliation(s)
| | - Camila O Dos Santos
- , Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY, USA.
| |
Collapse
|
18
|
Brune Z, Li D, Song S, Li DI, Castro I, Rasquinha R, Rice MR, Guo Q, Kampta K, Moss M, Lallo M, Pimenta E, Somerville C, Lapan M, Nelson V, Dos Santos CO, Blanc L, Pruitt K, Barnes BJ. Loss of IRF5 increases ribosome biogenesis leading to alterations in mammary gland architecture and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538998. [PMID: 37292919 PMCID: PMC10246023 DOI: 10.1101/2023.05.01.538998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.
Collapse
|
19
|
Kumar T, Nee K, Wei R, He S, Nguyen QH, Bai S, Blake K, Gong Y, Pein M, Sei E, Hu M, Casasent A, Thennavan A, Li J, Tran T, Chen K, Nilges B, Kashikar N, Braubach O, Cheikh BB, Nikulina N, Chen H, Teshome M, Menegaz B, Javaid H, Nagi C, Montalvan J, Tifrea DF, Edwards R, Lin E, Parajuli R, Winocour S, Thompson A, Lim B, Lawson DA, Kessenbrock K, Navin N. A spatially resolved single cell genomic atlas of the adult human breast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537946. [PMID: 37163043 PMCID: PMC10168262 DOI: 10.1101/2023.04.22.537946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics data profiled 535,941 cells from 62 women, and 120,024 nuclei from 20 women, identifying 11 major cell types and 53 cell states. These data revealed abundant pericyte, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Our spatial mapping using three technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells in the ducts and lobules, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide an unprecedented reference of adult normal breast tissue for studying mammary biology and disease states such as breast cancer.
Collapse
|
20
|
Su Y, Dang NM, Depypere H, Santucci-Pereira J, Gutiérrez-Díez PJ, Kanefsky J, Janssens JP, Russo J. Recombinant human chorionic gonadotropin induces signaling pathways towards cancer prevention in the breast of BRCA1/2 mutation carriers. Eur J Cancer Prev 2023; 32:126-138. [PMID: 35881946 PMCID: PMC9800649 DOI: 10.1097/cej.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Strategies for breast cancer prevention in women with germline BRCA1/2 mutations are limited. We previously showed that recombinant human chorionic gonadotropin (r-hCG) induces mammary gland differentiation and inhibits mammary tumorigenesis in rats. The present study investigated hCG-induced signaling pathways in the breast of young nulliparous women carrying germline BRCA1/2 mutations. METHODS We performed RNA-sequencing on breast tissues from 25 BRCA1/2 mutation carriers who received r-hCG treatment for 3 months in a phase II clinical trial, we analyzed the biological processes, reactome pathways, canonical pathways, and upstream regulators associated with genes differentially expressed after r-hCG treatment, and validated genes of interest. RESULTS We observed that r-hCG induces remarkable transcriptomic changes in the breast of BRCA1/2 carriers, especially in genes related to cell development, cell differentiation, cell cycle, apoptosis, DNA repair, chromatin remodeling, and G protein-coupled receptor signaling. We revealed that r-hCG inhibits Wnt/β-catenin signaling, MYC, HMGA1 , and HOTAIR , whereas activates TGFB/TGFBR-SMAD2/3/4, BRCA1, TP53, and upregulates BRCA1 protein. CONCLUSION Our data suggest that the use of r-hCG at young age may reduce the risk of breast cancer in BRCA1/2 carriers by inhibiting pathways associated with stem/progenitor cell maintenance and neoplastic transformation, whereas activating genes crucial for breast epithelial differentiation and lineage commitment, and DNA repair.
Collapse
Affiliation(s)
- Yanrong Su
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Nhi M. Dang
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Herman Depypere
- Department of Gynecology, Breast and Menopause clinic, University Hospital of Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Julia Santucci-Pereira
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | - Joice Kanefsky
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jaak Ph. Janssens
- European Cancer Prevention Organization, University of Hasselt, Klein Hilststraat 5, 3500 Hasselt, Belgium
| | - Jose Russo
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- Dr. Russo conceived the study and supervised the work. Dr. Russo passed away on September 24, 2021
| |
Collapse
|
21
|
Chen S, Liu J. Associations between endometriosis and allergy-related diseases as well as different specific immunoglobulin E allergy: A cross-sectional study. J Obstet Gynaecol Res 2023; 49:665-674. [PMID: 36419221 DOI: 10.1111/jog.15506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
AIM To explore the associations between endometriosis and different kinds of allergy-related diseases as well as different specific immunoglobulin E (IgE) allergy. METHODS This cross-sectional study included 1332 female participants ≥20 years and divided them into the endometriosis group (n = 97) and the nonendometriosis group (n = 1235). The confounders were obtained by comparing the differences of variables in groups. Univariate and multivariate logistic regression analyses were performed to analyze the associations between endometriosis and allergy-related diseases as well as different specific IgE allergy. Subgroup analysis were performed in age, body mass index (BMI), and pregnancy history. RESULTS After adjusting for confounders, increased risk of allergy (odd ratios [OR] = 2.13, 95% confidence interval [CI]: 1.31-3.47), hay fever (OR = 2.31, 95%CI: 1.32-4.06), and dog-specific IgE (OR = 2.13, 95%CI: 1.03-4.41) were observed in females with endometriosis. Among females aged between 30 and 39 years, the risk of allergy (OR = 3.51, 95%CI: 1.07-11.56), hay fever (OR = 3.26, 95%CI: 1.08-9.83), and dog-specific IgE (OR = 4.39, 95%CI: 1.02-18.88) was increased in patients with endometriosis compared with those without. In terms of females aged 40 to 49 years, the risk of hay fever was increased in patients with endometriosis. For females with BMI of 25-30 kg/m2 , the risk of allergy was increased in patients with endometriosis. Increased risk of allergy, hay fever, and dog-specific IgE was observed in females with a history of pregnancy. CONCLUSION Endometriosis was associated with higher risk of allergy, hay fever, and dog dander. Special care should be provided for patients with endometriosis for the potential risk of allergy.
Collapse
Affiliation(s)
- Shuozhen Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Lewis SM, Callaway MK, dos Santos CO. Clinical applications of 3D normal and breast cancer organoids: A review of concepts and methods. Exp Biol Med (Maywood) 2022; 247:2176-2183. [PMID: 36408534 PMCID: PMC9899987 DOI: 10.1177/15353702221131877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While mouse models and two-dimensional (2D) cell culture systems have dominated as research tools for cancer biology, three-dimensional (3D) cultures have gained traction as a new approach that retains features of in vivo biology within an in vitro system. Over time, 3D culture systems have evolved from spheroids and tumorspheres to organoids, and by doing so, they have become more complex and representative of original tissue. Such technological improvements have mostly benefited the study of heterogeneous solid tumors, like those found in breast cancer (BC), by providing an attractive avenue for scalable drug testing and biobank generation. Experimentally, organoids have been used in the BC field to dissect mechanisms related to cellular invasion and metastasis-and through co-culture methods-epithelial interactions with stromal and immune cells. In addition, organoid studies of wild-type mouse models and healthy donor samples have provided insight into the basic developmental cellular and molecular biology of the mammary gland, which may inform one's understanding of the initial stages of cancer development and progression.
Collapse
Affiliation(s)
- Steven M Lewis
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Graduate Program in Genetics, Stony
Brook University, Stony Brook, NY 11794, USA
| | | | - Camila O dos Santos
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Camila O dos Santos.
| |
Collapse
|
23
|
Lin D, Liu Y, Tobias DK, Sturgeon K. Physical activity from menarche-to-first pregnancy and risk of breast cancer: the California teachers study. Cancer Causes Control 2022; 33:1343-1353. [PMID: 35987978 PMCID: PMC10440155 DOI: 10.1007/s10552-022-01617-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE A longer menarche-to-first pregnancy window of susceptibility (WOS) is associated with increased breast cancer risk. Whether physical activity, an established preventive risk factor, during the menarche-to-first pregnancy WOS offsets breast cancer risk overall or for specific molecular subtypes is unclear. METHODS We examined the prospective association between physical activity during the menarche-to-first pregnancy WOS and breast cancer risk in the California Teachers Study (N = 78,940). Recreational physical activity at multiple timepoints were recalled at cohort entry, and converted to metabolic equivalent of task hours per week (MET-hrs/wk). We used multivariable Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS We observed 5,157 invasive breast cancer cases over 21.6 years of follow-up. Longer menarche-to-first pregnancy WOS (≥ 20 vs. < 15 years) was associated with higher breast cancer risk (HR = 1.23, 95% CI = 1.13-1.34). Women with higher physical activity level during menarche-to-first pregnancy had lower risk of invasive breast cancer (≥ 40 vs. < 9 MET-hrs/wk: HR = 0.89, 95% CI = 0.83-0.97) and triple-negative subtype (≥ 40 vs. < 9 MET-hrs/wk: HR = 0.53, 95% CI = 0.32-0.87). No association was observed for luminal A-like and luminal B-like subtypes. Higher physical activity level was associated with lower breast cancer risk among women with moderate (15-19 years) menarche-to-first pregnancy intervals (≥ 40 vs. < 9 MET-hrs/wk: HR = 0.80, 95% CI = 0.69-0.92), but not with short (< 15 years) or long (≥ 20 years) intervals. CONCLUSION Physical activity during a WOS was associated with lower breast cancer risk in our cohort. Understanding timing of physical activity throughout the life course in relationship with breast cancer risk maybe important for cancer prevention strategies.
Collapse
Affiliation(s)
- Dan Lin
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ying Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Deirdre K Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kathleen Sturgeon
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
24
|
Meggyes M, Nagy DU, Feik T, Boros A, Polgar B, Szereday L. Examination of the TIGIT-CD226-CD112-CD155 Immune Checkpoint Network during a Healthy Pregnancy. Int J Mol Sci 2022; 23:10776. [PMID: 36142692 PMCID: PMC9502426 DOI: 10.3390/ijms231810776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The importance of immune checkpoint molecules is well known in tumor and transplantation immunology; however, much less information is available regarding human pregnancy. Despite the significant amount of information about the TIGIT and CD226 immune checkpoint receptors in immune therapies, very little research has been conducted to study the possible role of these surface molecules and their ligands (CD112 and CD155) during the three trimesters of pregnancy. Methods: From peripheral blood, immune cell subpopulations were studied, and the surface expression of immune checkpoint molecules was analyzed by flow cytometry. Soluble immune checkpoint molecule levels were measured by ELISA. Results: Notable changes were observed regarding the percentage of monocyte subpopulation and the expression of CD226 receptor by CD4+ T and NKT cells. Elevated granzyme B content by the intermediate and non-classical monocytes was assessed as pregnancy proceeded. Furthermore, we revealed an important relationship between the CD226 surface expression by NKT cells and the serum CD226 level in the third trimester of pregnancy. Conclusions: Our results confirm the importance of immune checkpoint molecules in immunoregulation during pregnancy. CD226 seems to be a significant regulator, especially in the case of CD4+ T and NKT cells, contributing to the maternal immune tolerance in the late phase of pregnancy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle, Germany
| | - Timoteus Feik
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Akos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
25
|
Harjes U. Parity modulates epithelial-immune cell communication. Nat Rev Cancer 2022; 22:130. [PMID: 35110730 DOI: 10.1038/s41568-022-00449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|