1
|
Mori K, Togo A, Yamashita K, Sakuragi S, Bannai H, Umezawa T, Ohta K, Asahi T, Nozaki C, Kataoka K. Mitochondrial damage and ER stress in CB1 receptor antagonist-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neuropharmacology 2025; 273:110440. [PMID: 40185361 DOI: 10.1016/j.neuropharm.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Cannabinoid receptor type 1 (CB1R) is the key modulator of neuronal viability. CB1R antagonists provide neuroprotective effects on neurotoxicity caused by e.g. neuronal injury. However, the underlying mechanisms and potential limitations of CB1R antagonism remain unclear. Here we investigated the impact of environmental conditions on CB1R antagonist effects. We have found that cell-permeable CB1R antagonists, rimonabant and AM251, induced cell death in human neuroblastoma SH-SY5Y cells under serum-free conditions. Mitochondrial morphological analysis revealed mitochondrial swelling characterized by their network fragmentation and cristae reduction. Phosphoproteomics analysis showed the ER stress signaling pathway PERK/eIF2α/ATF4/CHOP, leading to caspase-dependent apoptosis. These results suggest that CB1R antagonists promote apoptosis via mitochondrial damage and ER stress under serum-free conditions in SH-SY5Y cells. Our findings indicate that while CB1R antagonists may be neuroprotective in certain conditions, they may also pose a neurotoxic risk in environments characterized by cellular stress or nutrient deprivation.
Collapse
Affiliation(s)
- Kazuaki Mori
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-cho, Kurume-shi, Fukuoka, 830-0011, Japan
| | - Kota Yamashita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shigeo Sakuragi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroko Bannai
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-cho, Kurume-shi, Fukuoka, 830-0011, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Comprehensive Research Organization, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Chihiro Nozaki
- Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan; Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
Lavanco G, Castelli V, D'Amico C, Vaccaro F, Tringali G, Clementi ME, Bottoni P, Kuchar M, Palivec P, Engmann O, Brancato A, Cannizzaro C. Gestational THC exposure perturbates hippocampal mitochondrial respiration in the memory-impaired adolescent progeny: Is there a role for mitochondrial CB1 receptor? Biomed Pharmacother 2025; 187:118144. [PMID: 40339229 DOI: 10.1016/j.biopha.2025.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
Mitochondria are central to cellular energy metabolism, contributing to synaptic transmission and plasticity. The mitochondrial membranes present the cannabinoid type-1 receptor (mito-CB1R), which has been functionally linked to neuronal energy supply and cognitive processing. Prenatal exposure to Δ9-tetrahydrocannabinol (pTHC) has been associated with cognitive impairments associated with molecular cellular and functional abnormalities in several brain regions, including the hippocampus. This study aims at assessing whether, besides the memory impairment, pTHC exposure may result in mitochondrial molecular and functional alterations in the hippocampus of the offspring. Moreover, the assessment of CB1R expression is also carried out as a proxy of CB1 signalling in pTHC-exposed offspring. THC (2 mg/Kg), or vehicle, was administered to the dams from gestational day (GD) 5 to GD20, and the offspring were tested for declarative memory using the Novel Object Recognition test in the L-maze. We also assessed: mitochondrial respiration by high-resolution respirometry; mitochondrial respiratory complex-I subunit NDUFS1 protein levels, and mito-CB1R expression by ELISA. Our results revealed: significant memory impairment in pTHC-exposed offspring; attenuated mitochondrial respiration in the hippocampus alongside a marked reduction in complex-I-subunit NDUFS1; a significant increase in mito-CB1R expression. This is the first evidence of pTHC exposure-induced impairment in memory processing in the offspring that suggests a functional link between an attenuation in mitochondrial bioenergetics and abnormal CB1R signalling in the hippocampus.
Collapse
Affiliation(s)
- Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Cesare D'Amico
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Francesca Vaccaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Maria Elisabetta Clementi
- CNR‑ICRM Institute of 'Chemistry of Molecular Recognition', Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, Rome, Italy
| | - Patrizia Bottoni
- Department of Basic Biotechnology Sciences, Intensive Care and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia; Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia; Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Olivia Engmann
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany; Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, Jena 07747, Germany
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| |
Collapse
|
3
|
Li X, Ding L, Nie H, Deng DYB. Calcium Signaling in Astrocytes and Its Role in the Central Nervous System Injury. Mol Neurobiol 2025:10.1007/s12035-025-05055-5. [PMID: 40419752 DOI: 10.1007/s12035-025-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS). Due to their extensive processes, they can interconnect with many neighboring cells and play critical roles in regulating synaptic plasticity, integrating neuronal signals, and maintaining the stability of the extracellular environment. These functions are largely dependent on calcium (Ca2+) signaling. In light of these considerations, the powerful functions of Ca2+ signaling in astrocytes have been actively studied in recent years. This review summarizes the mechanisms related to Ca2+ waves in astrocytes as well as their physiological and pathological functions mediated by various calcium signaling, the characteristics of calcium waves, and the role of Ca2+ in astrocytes in the CNS injuries of spinal cord injury (SCI) and traumatic brain injury (TBI) recently. However, inhibited L-type voltage-gated Ca2+ channels (LTCCs) activity and reduced Ca2+ concentration result in an opposite phenomenon that promoting or reducing astrogliosis. This highlights the importance of focusing not only on Ca2⁺ concentration but also on the downstream signaling pathways initiated by Ca2⁺. Therefore, we summarize diverse signaling pathways in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Xinyue Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Yang X, Chen Y, Zheng G, Nie Q, Zhang P. Mitochondrial Calcium Uniporter (MCU)-Mediated Calcium Overload in Psychoactive Drug Neurotoxicity: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2025; 26:4732. [PMID: 40429873 PMCID: PMC12111645 DOI: 10.3390/ijms26104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
With rapid societal changes and increasing stress levels, the abuse of psychoactive substances has emerged as a global health crisis. Studies indicate that the mitochondrial calcium uniporter (MCU) plays a pivotal role in neurotoxic damage induced by psychoactive substances. As the primary channel for mitochondrial Ca2+ uptake, MCU dysfunction can lead to Ca2+ overload, oxidative stress, and apoptosis, representing a crucial mechanism underlying neurotoxic damage. Psychoactive substances such as 3,4-Methylenedioxymethamphetamine (MDMA), cocaine, and morphine influence MCU function through multiple pathways, resulting in excessive Ca2+ accumulation and mitochondrial dysfunction, ultimately leading to neuronal injury. Although MCU inhibitors have demonstrated potential in alleviating Ca2+ overload and improving neural function in preliminary studies, their selectivity and long-term safety require further evaluation. Future research should explore the precise regulatory mechanisms of MCU in neurotoxic damage induced by psychoactive substances and develop more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xinyan Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Forensic Medicine, Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China; (X.Y.); (Y.C.); (G.Z.)
| | - Yinyu Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Forensic Medicine, Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China; (X.Y.); (Y.C.); (G.Z.)
| | - Gaolin Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Forensic Medicine, Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China; (X.Y.); (Y.C.); (G.Z.)
| | - Qianyun Nie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Forensic Medicine, Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China; (X.Y.); (Y.C.); (G.Z.)
- Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Peng Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Forensic Medicine, Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China; (X.Y.); (Y.C.); (G.Z.)
| |
Collapse
|
5
|
Mariani Y, Dalla-Tor T, Garavaldi T, Julio-Kalajzić F, Gisquet D, Gomez-Sotres P, Cannich A, Gambino G, Drago F, Serrat R, Hurel I, Chaouloff F, Pouvreau S, Bellocchio L, Marsicano G, Covelo A. Astroglial CB 1 Reveal Sex-Specific Synaptic Effects of Amphetamine. Glia 2025. [PMID: 40289768 DOI: 10.1002/glia.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
The Nucleus Accumbens (NAc) is a critical brain region for the effects of psychostimulant drugs. Type-1 cannabinoid receptors (CB1), the main elements of the endocannabinoid system (ECS) in the brain, participate in these effects and modulate synaptic functions in the NAc. Besides their neuronal expression, CB1 receptors are also present in astrocytes, where they contribute to the regulation of synaptic plasticity and behavior. However, the impact of astroglial CB1 receptors on synaptic plasticity in the NAc and on psychostimulant-induced synaptic and behavioral effects is currently unknown. This study shows that the psychostimulant amphetamine impairs a form of astroglial CB1 receptor-dependent synaptic plasticity in the NAc of male, but not female mice. Consistently, locomotor effects of amphetamine require astroglial CB1 receptors in male, but not female mice. These results, by revealing unforeseen mechanisms underlying sex-dependent effects of amphetamine, pave the way to a better understanding of the diverse impact of psychostimulants in women and men.
Collapse
Affiliation(s)
- Yamuna Mariani
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Tommaso Dalla-Tor
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tommaso Garavaldi
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | | | - Doriane Gisquet
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Paula Gomez-Sotres
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Astrid Cannich
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Roman Serrat
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
- INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Université de Bordeaux, Bordeaux, France
| | - Imane Hurel
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Francis Chaouloff
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Sandrine Pouvreau
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Ana Covelo
- INSERM, U1215 Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
- CINBIO, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IISGS), Laboratory of Neuroscience, Vigo, Spain
| |
Collapse
|
6
|
Dempster EL, Wong CCY, Burrage J, Hannon E, Quattrone D, Trotta G, Rodriguez V, Alameda L, Spinazzola E, Tripoli G, Austin-Zimmerman I, Li Z, Gayer-Anderson C, Freeman TP, Johnson EC, Jongsma HE, Stilo S, La Cascia C, Ferraro L, La Barbera D, Lasalvia A, Tosato S, Tarricone I, D'Andrea G, Galatolo M, Tortelli A, Pompili M, Selten JP, de Haan L, Menezes PR, Del Ben CM, Santos JL, Arrojo M, Bobes J, Sanjuán J, Bernardo M, Arango C, Jones PB, Breen G, Mondelli V, Dazzan P, Iyegbe C, Vassos E, Morgan C, Mukherjee D, van Os J, Rutten B, O'Donovan MC, Sham P, Mill J, Murray R, Di Forti M. Methylomic signature of current cannabis use in two first-episode psychosis cohorts. Mol Psychiatry 2025; 30:1277-1286. [PMID: 39406996 PMCID: PMC11919776 DOI: 10.1038/s41380-024-02689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 03/20/2025]
Abstract
The rising prevalence and legalisation of cannabis worldwide have underscored the need for a comprehensive understanding of its biological impact, particularly on mental health. Epigenetic mechanisms, specifically DNA methylation, have gained increasing recognition as vital factors in the interplay between risk factors and mental health. This study aimed to explore the effects of current cannabis use and high-potency cannabis on DNA methylation in two independent cohorts of individuals experiencing first-episode psychosis (FEP) compared to control subjects. The combined sample consisted of 682 participants (188 current cannabis users and 494 never users). DNA methylation profiles were generated on blood-derived DNA samples using the Illumina DNA methylation array platform. A meta-analysis across cohorts identified one CpG site (cg11669285) in the CAVIN1 gene that showed differential methylation with current cannabis use, surpassing the array-wide significance threshold, and independent of the tobacco-related epigenetic signature. Furthermore, a CpG site localised in the MCU gene (cg11669285) achieved array-wide significance in an analysis of the effect of high-potency (THC = > 10%) current cannabis use. Pathway and regional analyses identified cannabis-related epigenetic variation proximal to genes linked to immune and mitochondrial function, both of which are known to be influenced by cannabinoids. Interestingly, a model including an interaction term between cannabis use and FEP status identified two sites that were significantly associated with current cannabis use with a nominally significant interaction suggesting that FEP status might moderate how cannabis use affects DNA methylation. Overall, these findings contribute to our understanding of the epigenetic impact of current cannabis use and highlight potential molecular pathways affected by cannabis exposure.
Collapse
Affiliation(s)
- Emma L Dempster
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK.
| | - Chloe C Y Wong
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joe Burrage
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Diego Quattrone
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giulia Trotta
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Giada Tripoli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Isabelle Austin-Zimmerman
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Zhikun Li
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Charlotte Gayer-Anderson
- Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah E Jongsma
- Centre for Transcultural Psychiatry 'Veldzicht', Balkbrug, The Netherlands
| | - Simona Stilo
- Department of Mental Health and Addiction Services, ASP Crotone, Crotone, Italy
| | - Caterina La Cascia
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Laura Ferraro
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Daniele La Barbera
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Antonio Lasalvia
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sarah Tosato
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Tarricone
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe D'Andrea
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Michela Galatolo
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | | | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Jean-Paul Selten
- Rivierduinen Institute for Mental Health Care, Leiden, The Netherlands
| | - Lieuwe de Haan
- Early Psychosis Section, Amsterdam UMC, Academic Medical Centre, University of Amsterdam, Meibergdreef 5, 1105, AZ, Amsterdam, The Netherlands
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade of São Paulo, São Paulo, Brazil
| | - Cristina M Del Ben
- Department of Preventive Medicine, Faculdade de Medicina, Universidade of São Paulo, São Paulo, Brazil
| | - Jose Luis Santos
- Department of Psychiatry, Servicio de Psiquiatría Hospital "Virgen de la Luz", Cuenca, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago, Spain
| | - Julio Bobes
- Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Oviedo, Spain
| | - Julio Sanjuán
- Department of Psychiatry, School of Medicine, Universidad de Valencia, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Valencia, Spain
| | - Miguel Bernardo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Biomedical Research Networking Centre in Mental Health (CIBERSAM), Barcelona, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gerome Breen
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Kings College London, London, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Kings College London, London, UK
| | - Conrad Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evangelos Vassos
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Craig Morgan
- Department of Psychological Medicine, Kings College London, London, UK
| | - Diptendu Mukherjee
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Jim van Os
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Bart Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michael C O'Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Pak Sham
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marta Di Forti
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Hou L, Yang X, Liu C, Yu J, Wu Z, Wang Y, Zeng P, Guo J, Shi Y, Zhou J, Liu J. Seneca Valley virus induces mitochondrial apoptosis by activating ER stress or the PERK pathway based on Ca 2+ transfer from ER to mitochondria. J Virol 2025; 99:e0217724. [PMID: 39912666 PMCID: PMC11915807 DOI: 10.1128/jvi.02177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Seneca Valley virus (SVV), also known as Senecavirus A, a porcine pathogen that causes vesicular diseases, is prevalent in pig herds worldwide. SVV infection induces endoplasmic reticulum (ER) stress in PK-15 and BHK-21 cells, accompanied by activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) pathways, which in turn facilitates SVV replication. ER stress is associated with the regulation of Ca2+ homeostasis and mitochondrial apoptosis. However, the precise role of Ca2+ in SVV-induced apoptosis remains unclear. In this study, western blotting, flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) detection revealed that either ER stress or the PERK pathway is involved in the apoptosis of SVV-infected cells treated with specific inhibitors. Furthermore, SVV-mediated ER stress markedly contributed to the transfer of Ca2+ from the ER to mitochondria. The subsequent increase in mitochondrial Ca2+ content was accompanied by an increased number of ER membranes near the mitochondria. Finally, the inhibition of mitochondrial Ca2+ overload, ER stress, and the PERK pathway substantially attenuated SVV-mediated mitochondrial dysfunction, as evidenced by analyzing mitochondrial membrane potential (MMP), mitochondrial permeability transition poremPTP, reactive oxygen speciesROS, and adenosine 5'-triphosphate ATP, and the levels of mitochondrial apoptosis. These findings demonstrate that SVV induces mitochondrial apoptosis, which is dependent on ER stress-mediated transmission of Ca2+ from the ER to the mitochondria. IMPORTANCE Viruses have developed multiple mechanisms to facilitate their proliferation or persistence through manipulating various organelles in cells. Seneca Valley virus (SVV), as a novel emerging pathogen associated with vesicular disease, is clinically and economically important infections that affect farm animals. Previously, we had confirmed that SVV-induced endoplasmic reticulum (ER) stress benefited for viral replication. Ca2+, as an intracellular signaling messenger mainly stored in the ER, is regulated by ER stress and then involved in apoptosis. However, the precise mechanism that Ca2+ transfer induced by SVV infection triggered apoptosis remained unclear. Here, we found that SVV infection triggered the Ca2+ transform from ER to mitochondria, resulting in mitochondrial dysfunction, and finally induced mitochondrial apoptosis. Our study shed light on a novel mechanism revealing how ER stress manipulates Ca2+ homeostasis to induce mitochondrial apoptosis and regulate viral proliferation.
Collapse
Affiliation(s)
- Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ju Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Mazzantini C, Curti L, Lana D, Masi A, Giovannini MG, Magni G, Pellegrini-Giampietro DE, Landucci E. Prolonged incubation with Δ 9-tetrahydrocannabinol but not with cannabidiol induces synaptic alterations and mitochondrial impairment in immature and mature rat organotypic hippocampal slices. Biomed Pharmacother 2025; 183:117797. [PMID: 39787967 DOI: 10.1016/j.biopha.2024.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations. Rat organotypic hippocampal slices were cultured for 2 days (immature) or 10 days (mature) in vitro and then exposed for 7 days to THC (1 µM) or CBD (1 µM). At the end of the treatment, slices were analyzed by Western blotting, electrophysiological recordings, RT-PCR, and fluorescence microscopy to explore the molecular and functional changes in the hippocampus. A prolonged (7-day) exposure to THC reduced the expression levels of pre- (synaptophysin, vGlut1) and post-synaptic (PSD95) proteins in both immature and mature slices, whereas CBD significantly increased the expression levels of PSD95 only in immature slices. In addition, THC significantly reduced the passive properties and the intrinsic excitability of membranes and increased sEPSCs in CA1 pyramidal cells of immature but not mature slices. Exposure to both cannabinoids impaired mitochondrial function as detected by the reduction of mRNA expression levels of mitobiogenesis genes such as VDAC1, UCP2, and TFAM. Finally, THC but not CBD caused tissue disorganization and morphological modifications in CA1 pyramidal neurons, astrocytes and microglia in both immature and mature slices. These results are helpful to explain the specific vulnerability of adolescent brain to the effects of psychotropic cannabinoids.
Collapse
Affiliation(s)
- Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Lorenzo Curti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giada Magni
- Cnr, Istituto di Fisica Applicata "Nello Carrara", Sesto Fiorentino, Italy
| | | | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| |
Collapse
|
9
|
Veiga A, Abreu DS, Dias JD, Azenha P, Barsanti S, Oliveira JF. Calcium-Dependent Signaling in Astrocytes: Downstream Mechanisms and Implications for Cognition. J Neurochem 2025; 169:e70019. [PMID: 39992167 DOI: 10.1111/jnc.70019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Astrocytes are glial cells recognized for their diverse roles in regulating brain circuit structure and function. They can sense and adapt to changes in the microenvironment due to their unique structural and biochemical properties. A key aspect of astrocytic function involves calcium (Ca2+)-dependent signaling, which serves as a fundamental mechanism for their interactions with neurons and other cells in the brain. However, while significant progress has been made in understanding the spatio-temporal properties of astrocytic Ca2+ signals, the downstream molecular pathways and exact mechanisms through which astrocytes decode these signals to regulate homeostatic and physiological processes remain poorly understood. To address this topic, we review here the available literature on the sources of intracellular Ca2+, as well as its downstream mechanisms and signaling pathways. We review the well-studied Ca2+-dependent exocytosis but draw attention to additional intracellular Ca2+-dependent mechanisms that are less understood and are, most likely, highly influential for many other cellular functions. Finally, we review how intracellular Ca2+ is thought to underlie neuron-astrocyte signaling in brain regions involved in cognitive processing.
Collapse
Affiliation(s)
- Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Azenha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Moreno-García A, Serrat R, Julio-Kalajzic F, Bernal-Chico A, Baraibar AM, Matute C, Marsicano G, Mato S. In Vivo Assessment of Cortical Astrocyte Network Dysfunction During Autoimmune Demyelination: Correlation With Disease Severity. J Neurochem 2025; 169:e16305. [PMID: 39957272 DOI: 10.1111/jnc.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/18/2025]
Abstract
Cortical damage and dysfunction is a pathological hallmark of multiple sclerosis (MS) that correlates with the severity of physical and cognitive disability. Astrocytes participate in MS pathobiology through a variety of mechanisms, and abnormal astrocytic calcium signaling has been pointed as a pathogenic mechanism of cortical dysfunction in MS. However, in vivo evidence supporting deregulation of astrocyte calcium-dependent mechanisms in cortical MS is still limited. Here, we applied fiber photometry to the longitudinal analysis of spontaneous and sensory-evoked astrocyte network activity in the somatosensory cortex of mice in an experimental autoimmune encephalomyelitis (EAE). We found that freely moving EAE mice exhibit spontaneously occurring astrocyte calcium signals of increased duration and reduced amplitude. Concomitantly, cortical astrocytes in EAE mice responded to sensory stimulation with calcium events of decreased amplitude. The emergence of aberrant astrocyte calcium signals in the somatosensory cortex paralleled the onset of neurological symptomatology, and changes in the amplitude of both spontaneous and evoked responses were selectively correlated to the severity of neurological deficits. These results highlight the imbalance of astrocyte network activity in the brain cortex during autoimmune inflammation and further support the relevance of astrocyte-based pathobiology as an underlying mechanism of cortical dysfunction in MS.
Collapse
Affiliation(s)
- A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - R Serrat
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - F Julio-Kalajzic
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- University of Bordeaux, Bordeaux, France
| | - G Marsicano
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
11
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
12
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Yang Y, Chen S, Zhang L, Zhang G, Liu Y, Li Y, Zou L, Meng L, Tian Y, Dai L, Xiong M, Pan L, Xiong J, Chen L, Hou H, Yu Z, Zhang Z. The PM20D1-NADA pathway protects against Parkinson's disease. Cell Death Differ 2024; 31:1545-1560. [PMID: 39174646 PMCID: PMC11519464 DOI: 10.1038/s41418-024-01356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hua Hou
- Department of Polymer Science, College of Chemistry and Molecular Sciences of Wuhan University, Wuhan, 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
14
|
Baraibar AM, Colomer T, Moreno-García A, Bernal-Chico A, Sánchez-Martín E, Utrilla C, Serrat R, Soria-Gómez E, Rodríguez-Antigüedad A, Araque A, Matute C, Marsicano G, Mato S. Autoimmune inflammation triggers aberrant astrocytic calcium signaling to impair synaptic plasticity. Brain Behav Immun 2024; 121:192-210. [PMID: 39032542 PMCID: PMC11415231 DOI: 10.1016/j.bbi.2024.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Cortical pathology involving inflammatory and neurodegenerative mechanisms is a hallmark of multiple sclerosis and a correlate of disease progression and cognitive decline. Astrocytes play a pivotal role in multiple sclerosis initiation and progression but astrocyte-neuronal network alterations contributing to gray matter pathology remain undefined. Here we unveil deregulation of astrocytic calcium signaling and astrocyte-to-neuron communication as key pathophysiological mechanisms of cortical dysfunction in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Using two-photon imaging ex vivo and fiber photometry in freely behaving mice, we found that acute EAE was associated with the emergence of spontaneously hyperactive cortical astrocytes exhibiting dysfunctional responses to cannabinoid, glutamate and purinoreceptor agonists. Abnormal astrocyte signaling by Gi and Gq protein coupled receptors was observed in the inflamed cortex. This was mirrored by treatments with pro-inflammatory factors both in vitro and ex vivo, suggesting cell-autonomous effects of the cortical neuroinflammatory environment. Finally, deregulated astrocyte calcium activity was associated with an enhancement of glutamatergic gliotransmission and a shift of astrocyte-mediated short-term and long-term plasticity mechanisms towards synaptic potentiation. Overall, our data identify astrocyte-neuronal network dysfunctions as key pathological features of gray matter inflammation in multiple sclerosis and potentially additional neuroimmunological disorders.
Collapse
Affiliation(s)
- A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - T Colomer
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - E Sánchez-Martín
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - C Utrilla
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - R Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - E Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
| | - A Rodríguez-Antigüedad
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, 55455 MN, USA
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - G Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain.
| |
Collapse
|
15
|
Cosentino L, Urbinati C, Lanzillotta C, De Rasmo D, Valenti D, Pellas M, Quattrini MC, Piscitelli F, Kostrzewa M, Di Domenico F, Pietraforte D, Bisogno T, Signorile A, Vacca RA, De Filippis B. Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome. Mol Autism 2024; 15:39. [PMID: 39300547 PMCID: PMC11414047 DOI: 10.1186/s13229-024-00617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Mattia Pellas
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | | | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Tiziana Bisogno
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy.
| |
Collapse
|
16
|
Maya-López M, Monsalvo-Maraver LA, Delgado-Arzate AL, Olivera-Pérez CI, El-Hafidi M, Silva-Palacios A, Medina-Campos O, Pedraza-Chaverri J, Aschner M, Tinkov AA, Túnez I, Retana-Márquez S, Zazueta C, Santamaría A. Anandamide and WIN 55212-2 Afford Protection in Rat Brain Mitochondria in a Toxic Model Induced by 3-Nitropropionic Acid: an In Vitro Study. Mol Neurobiol 2024; 61:6435-6452. [PMID: 38307967 PMCID: PMC11338978 DOI: 10.1007/s12035-024-03967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity. Although there is evidence suggesting that some cannabinoids may induce protective effects on isolated mitochondria, substantial evidence on the role of cannabinoids in mitochondria remains to be explored. In this work, we developed a toxic model of mitochondrial dysfunction induced by exposure of brain mitochondria to the succinate dehydrogenase inhibitor 3-nitropropionic acid (3-NP). Mitochondria were also pre-incubated with the endogenous agonist anandamide (AEA) and the synthetic CB1R agonist WIN 55212-2 to evaluate their protective effects. Mitochondrial reduction capacity, reactive oxygen species (ROS) formation, and mitochondrial swelling were assessed as toxic markers. While 3-NP decreased the mitochondrial reduction capacity and augmented mitochondrial ROS formation and swelling, both AEA and WIN 55212-2 ameliorated these toxic effects. To explore the possible involvement of mitCB1R activation on the protective effects of AEA and WIN 55212-2, mitochondria were also pre-incubated in the presence of the selective CB1R antagonist AM281, which completely reverted the protective effects of the cannabinoids to levels similar to those evoked by 3-NP. These results show partial protective effects of cannabinoids, suggesting that mitCB1R activation may be involved in the recovery of compromised mitochondrial activity, related to reduction of ROS formation and further prevention of mitochondrial swelling.
Collapse
Affiliation(s)
- Marisol Maya-López
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, 09310, Mexico City, Mexico.
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | | | | | | | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, SSA, 14080, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, SSA, 14080, Mexico City, Mexico
| | - Omar Medina-Campos
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Autónoma de México, 04510, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Autónoma de México, 04510, Mexico City, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Isaac Túnez
- Instituto de Investigaciones Biomedicas Maimónides de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
- Red Española de Excelencia en Estimulación Cerebral (REDESTIM), 14071, Córdoba, Spain
| | - Socorro Retana-Márquez
- Departamento de Biología de La Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09310, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, SSA, 14080, Mexico City, Mexico.
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
17
|
Gómez-Sotres P, Skupio U, Dalla Tor T, Julio-Kalajzic F, Cannich A, Gisquet D, Bonilla-Del Rio I, Drago F, Puente N, Grandes P, Bellocchio L, Busquets-Garcia A, Bains JS, Marsicano G. Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice. Nat Commun 2024; 15:7103. [PMID: 39155299 PMCID: PMC11330966 DOI: 10.1038/s41467-024-51416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Emotions and behavior can be affected by social chemosignals from conspecifics. For instance, olfactory signals from stressed individuals induce stress-like physiological and synaptic changes in naïve partners. Direct stress also alters cognition, but the impact of socially transmitted stress on memory processes is currently unknown. Here we show that exposure to chemosignals produced by stressed individuals is sufficient to impair memory retrieval in unstressed male mice. This requires astrocyte control of information in the olfactory bulb mediated by mitochondria-associated CB1 receptors (mtCB1). Targeted genetic manipulations, in vivo Ca2+ imaging and behavioral analyses reveal that mtCB1-dependent control of mitochondrial Ca2+ dynamics is necessary to process olfactory information from stressed partners and to define their cognitive consequences. Thus, olfactory bulb astrocytes provide a link between social odors and their behavioral meaning.
Collapse
Affiliation(s)
- Paula Gómez-Sotres
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Urszula Skupio
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Tommaso Dalla Tor
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | | | - Astrid Cannich
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Doriane Gisquet
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | - Itziar Bonilla-Del Rio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, 95124, Italy
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Luigi Bellocchio
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France
| | | | - Jaideep S Bains
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Hotchkiss Brain Institute and Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.
| | - Giovanni Marsicano
- Universite de Bordeaux, INSERM, U1215 Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
18
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
19
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
20
|
Fernández-Moncada I, Rodrigues RS, Fundazuri UB, Bellocchio L, Marsicano G. Type-1 cannabinoid receptors and their ever-expanding roles in brain energy processes. J Neurochem 2024; 168:693-703. [PMID: 37515372 DOI: 10.1111/jnc.15922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The brain requires large quantities of energy to sustain its functions. At the same time, the brain is isolated from the rest of the body, forcing this organ to develop strategies to control and fulfill its own energy needs. Likely based on these constraints, several brain-specific mechanisms emerged during evolution. For example, metabolically specialized cells are present in the brain, where intercellular metabolic cycles are organized to separate workload and optimize the use of energy. To orchestrate these strategies across time and space, several signaling pathways control the metabolism of brain cells. One of such controlling systems is the endocannabinoid system, whose main signaling hub in the brain is the type-1 cannabinoid (CB1) receptor. CB1 receptors govern a plethora of different processes in the brain, including cognitive function, emotional responses, or feeding behaviors. Classically, the mechanisms of action of CB1 receptors on brain function had been explained by its direct targeting of neuronal synaptic function. However, new discoveries have challenged this view. In this review, we will present and discuss recent data about how a small fraction of CB1 receptors associated to mitochondrial membranes (mtCB1), are able to exert a powerful control on brain functions and behavior. mtCB1 receptors impair mitochondrial functions both in neurons and astrocytes. In the latter cells, this effect is linked to an impairment of astrocyte glycolytic function, resulting in specific behavioral outputs. Finally, we will discuss the potential implications of (mt)CB1 expression on oligodendrocytes and microglia metabolic functions, with the aim to encourage interdisciplinary approaches to better understand the role of (mt)CB1 receptors in brain function and behavior.
Collapse
Affiliation(s)
| | - Rui S Rodrigues
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Unai B Fundazuri
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | |
Collapse
|
21
|
Cinquina V, Keimpema E, Pollak DD, Harkany T. Adverse effects of gestational ω-3 and ω-6 polyunsaturated fatty acid imbalance on the programming of fetal brain development. J Neuroendocrinol 2023; 35:e13320. [PMID: 37497857 PMCID: PMC10909496 DOI: 10.1111/jne.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Erik Keimpema
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Daniela D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Deaprtment of NeuroscienceBiomedicum 7D, Karolinska InstitutetStockholmSweden
| |
Collapse
|
22
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
23
|
Skupio U, Welte J, Serrat R, Eraso-Pichot A, Julio-Kalajzić F, Gisquet D, Cannich A, Delcasso S, Matias I, Fundazuri UB, Pouvreau S, Pagano Zottola AC, Lavanco G, Drago F, Ruiz de Azua I, Lutz B, Bellocchio L, Busquets-Garcia A, Chaouloff F, Marsicano G. Mitochondrial cannabinoid receptors gate corticosterone impact on novel object recognition. Neuron 2023; 111:1887-1897.e6. [PMID: 37098353 DOI: 10.1016/j.neuron.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
Corticosteroid-mediated stress responses require the activation of complex brain circuits involving mitochondrial activity, but the underlying cellular and molecular mechanisms are scantly known. The endocannabinoid system is implicated in stress coping, and it can directly regulate brain mitochondrial functions via type 1 cannabinoid (CB1) receptors associated with mitochondrial membranes (mtCB1). In this study, we show that the impairing effect of corticosterone in the novel object recognition (NOR) task in mice requires mtCB1 receptors and the regulation of mitochondrial calcium levels in neurons. Different brain circuits are modulated by this mechanism to mediate the impact of corticosterone during specific phases of the task. Thus, whereas corticosterone recruits mtCB1 receptors in noradrenergic neurons to impair NOR consolidation, mtCB1 receptors in local hippocampal GABAergic interneurons are required to inhibit NOR retrieval. These data reveal unforeseen mechanisms mediating the effects of corticosteroids during different phases of NOR, involving mitochondrial calcium alterations in different brain circuits.
Collapse
Affiliation(s)
- Urszula Skupio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Julia Welte
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Roman Serrat
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Abel Eraso-Pichot
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Francisca Julio-Kalajzić
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Doriane Gisquet
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | | | - Isabelle Matias
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Unai B Fundazuri
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Antonio C Pagano Zottola
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France; Institute for Cellular Biochemistry and Genetics, UMR 5095, Bordeaux 33077, France
| | - Gianluca Lavanco
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy
| | - Inigo Ruiz de Azua
- Institute of Physiological Chemistry, University Medical Center, Mainz 55131 Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Mainz 55131 Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Arnau Busquets-Garcia
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Program, IMIM Hospital del Mar Medical Research Institute, Barcelona 08003, Spain
| | - Francis Chaouloff
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux 33077, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
24
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
25
|
Winters ND, Kondev V, Loomba N, Delpire E, Grueter BA, Patel S. Opposing retrograde and astrocyte-dependent endocannabinoid signaling mechanisms regulate lateral habenula synaptic transmission. Cell Rep 2023; 42:112159. [PMID: 36842084 PMCID: PMC10846612 DOI: 10.1016/j.celrep.2023.112159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
The lateral habenula (LHb) encodes aversive states, and its dysregulation is implicated in neuropsychiatric disorders, including depression. The endocannabinoid (eCB) system is a neuromodulatory signaling system that broadly serves to counteract the adverse effects of stress; however, CB1 receptor signaling within the LHb can paradoxically promote anxiogenic- and depressive-like effects. Current reports of synaptic actions of eCBs in the LHb are conflicting and lack systematic investigation of eCB regulation of excitatory and inhibitory transmission. Here, we report that eCBs differentially regulate glutamatergic and GABAergic transmission in the LHb, exhibiting canonical and circuit-specific inhibition of both systems and an opposing potentiation of synaptic glutamate release mediated via activation of CB1 receptors on astrocytes. Moreover, simultaneous depression of GABA and potentiation of glutamate release increases the net excitation-inhibition ratio onto LHb neurons, suggesting a potential cellular mechanism by which cannabinoids may promote LHb activity and subsequent anxious- and depressive-like aversive states.
Collapse
Affiliation(s)
- Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Veronika Kondev
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Manninen T, Aćimović J, Linne ML. Analysis of Network Models with Neuron-Astrocyte Interactions. Neuroinformatics 2023; 21:375-406. [PMID: 36959372 PMCID: PMC10085960 DOI: 10.1007/s12021-023-09622-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/25/2023]
Abstract
Neural networks, composed of many neurons and governed by complex interactions between them, are a widely accepted formalism for modeling and exploring global dynamics and emergent properties in brain systems. In the past decades, experimental evidence of computationally relevant neuron-astrocyte interactions, as well as the astrocytic modulation of global neural dynamics, have accumulated. These findings motivated advances in computational glioscience and inspired several models integrating mechanisms of neuron-astrocyte interactions into the standard neural network formalism. These models were developed to study, for example, synchronization, information transfer, synaptic plasticity, and hyperexcitability, as well as classification tasks and hardware implementations. We here focus on network models of at least two neurons interacting bidirectionally with at least two astrocytes that include explicitly modeled astrocytic calcium dynamics. In this study, we analyze the evolution of these models and the biophysical, biochemical, cellular, and network mechanisms used to construct them. Based on our analysis, we propose how to systematically describe and categorize interaction schemes between cells in neuron-astrocyte networks. We additionally study the models in view of the existing experimental data and present future perspectives. Our analysis is an important first step towards understanding astrocytic contribution to brain functions. However, more advances are needed to collect comprehensive data about astrocyte morphology and physiology in vivo and to better integrate them in data-driven computational models. Broadening the discussion about theoretical approaches and expanding the computational tools is necessary to better understand astrocytes' roles in brain functions.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| |
Collapse
|
27
|
New discoveries in ER-mitochondria communication. Biochem Soc Trans 2023; 51:571-577. [PMID: 36892405 DOI: 10.1042/bst20221305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The study of endoplasmic reticulum (ER)-mitochondria communication is a vast and expanding field with many novel developments in the past few years. In this mini-review, we focus on several recent publications that identify novel functions of tether complexes, in particular autophagy regulation and lipid droplet biogenesis. We review novel findings that shed light on the role of triple contacts between ER and mitochondria with peroxisomes or lipid droplets as the third player. We also summarize recent findings on the role of ER-mitochondria contacts in human neurodegenerative diseases, which implicate either enhanced or reduced ER-mitochondria contacts in neurodegeneration. Taken together, the discussed studies highlight the need for further research into the role of triple organelle contacts, as well as into the exact mechanisms of increased and decreased ER-mitochondria contacts in neurodegeneration.
Collapse
|
28
|
Pintori N, Caria F, De Luca MA, Miliano C. THC and CBD: Villain versus Hero? Insights into Adolescent Exposure. Int J Mol Sci 2023; 24:ijms24065251. [PMID: 36982327 PMCID: PMC10048857 DOI: 10.3390/ijms24065251] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis is the most used drug of abuse worldwide. It is well established that the most abundant phytocannabinoids in this plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These two compounds have remarkably similar chemical structures yet vastly different effects in the brain. By binding to the same receptors, THC is psychoactive, while CBD has anxiolytic and antipsychotic properties. Lately, a variety of hemp-based products, including CBD and THC, have become widely available in the food and health industry, and medical and recreational use of cannabis has been legalized in many states/countries. As a result, people, including youths, are consuming CBD because it is considered “safe”. An extensive literature exists evaluating the harmful effects of THC in both adults and adolescents, but little is known about the long-term effects of CBD exposure, especially in adolescence. The aim of this review is to collect preclinical and clinical evidence about the effects of cannabidiol.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-6758633
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Mitochondrial Ca2+ handling as a cell signaling hub: lessons from astrocyte function. Essays Biochem 2023; 67:63-75. [PMID: 36636961 DOI: 10.1042/ebc20220094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Astrocytes are a heterogenous population of macroglial cells spread throughout the central nervous system with diverse functions, expression signatures, and intricate morphologies. Their subcellular compartments contain a distinct range of mitochondria, with functional microdomains exhibiting widespread activities, such as controlling local metabolism and Ca2+ signaling. Ca2+ is an ion of utmost importance, both physiologically and pathologically, and participates in critical central nervous system processes, including synaptic plasticity, neuron-astrocyte integration, excitotoxicity, and mitochondrial physiology and metabolism. The mitochondrial Ca2+ handling system is formed by the mitochondrial Ca2+ uniporter complex (MCUc), which mediates Ca2+ influx, and the mitochondrial Na+/Ca2+ exchanger (NCLX), responsible for most mitochondrial Ca2+ efflux, as well as additional components, including the mitochondrial permeability transition pore (mtPTP). Over the last decades, mitochondrial Ca2+ handling has been shown to be key for brain homeostasis, acting centrally in physiopathological processes such as astrogliosis, astrocyte-neuron activity integration, energy metabolism control, and neurodegeneration. In this review, we discuss the current state of knowledge regarding the mitochondrial Ca2+ handling system molecular composition, highlighting its impact on astrocytic homeostasis.
Collapse
|
30
|
Astroglial CB1 receptors, energy metabolism, and gliotransmission: an integrated signaling system? Essays Biochem 2023; 67:49-61. [PMID: 36645029 DOI: 10.1042/ebc20220089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/17/2023]
Abstract
Astrocytes are key players in brain homeostasis and function. During the last years, several studies have cemented this notion by showing that these cells respond to neuronal signals and, via the release of molecules that modulate and support synaptic activity (gliotransmission) participates in the functions of the so-called tripartite synapse. Thus, besides their established control of brain metabolism, astrocytes can also actively control synaptic activity and behavior. Among the signaling pathways that shape the functions of astrocyte, the cannabinoid type-1 (CB1) receptor is emerging as a critical player in the control of both gliotransmission and the metabolic cooperation between astrocytes and neurons. In the present short review, we describe known and newly discovered properties of the astroglial CB1 receptors and their role in modulating brain function and behavior. Based on this evidence, we finally discuss how the functions and mode of actions of astrocyte CB1 receptors might represent a clear example of the inextricable relationship between energy metabolism and gliotransmission. These tight interactions will need to be taken into account for future research in astrocyte functions and call for a reinforcement of the theoretical and experimental bridges between studies on metabolic and synaptic functions of astrocytes.
Collapse
|
31
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
Costas‐Insua C, Guzmán M. Endocannabinoid signaling in glioma. Glia 2023; 71:127-138. [PMID: 35322459 PMCID: PMC9790654 DOI: 10.1002/glia.24173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
High-grade gliomas constitute the most frequent and aggressive form of primary brain cancer in adults. These tumors express cannabinoid CB1 and CB2 receptors, as well as other elements of the endocannabinoid system. Accruing preclinical evidence supports that pharmacological activation of cannabinoid receptors located on glioma cells exerts overt anti-tumoral effects by modulating key intracellular signaling pathways. The mechanism of this cannabinoid receptor-evoked anti-tumoral activity in experimental models of glioma is intricate and may involve an inhibition not only of cancer cell survival/proliferation, but also of invasiveness, angiogenesis, and the stem cell-like properties of cancer cells, thereby affecting the complex tumor microenvironment. However, the precise biological role of the endocannabinoid system in the generation and progression of glioma seems very context-dependent and remains largely unknown. Increasing our basic knowledge on how (endo)cannabinoids act on glioma cells could help to optimize experimental cannabinoid-based anti-tumoral therapies, as well as the preliminary clinical testing that is currently underway.
Collapse
Affiliation(s)
- Carlos Costas‐Insua
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Department of Biochemistry and Molecular BiologyInstituto Universitario de Investigación Neuroquímica (IUIN), Complutense UniversityMadridSpain,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Department of Biochemistry and Molecular BiologyInstituto Universitario de Investigación Neuroquímica (IUIN), Complutense UniversityMadridSpain,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| |
Collapse
|
33
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
34
|
Zhang LY, Kim AY, Cheer JF. Regulation of glutamate homeostasis in the nucleus accumbens by astrocytic CB1 receptors and its role in cocaine-motivated behaviors. ADDICTION NEUROSCIENCE 2022; 3:100022. [PMID: 36419922 PMCID: PMC9681119 DOI: 10.1016/j.addicn.2022.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabinoid type 1 receptors (CB1Rs) orchestrate brain reward circuitry and are prevalent neurobiological targets for endocannabinoids and cannabis in the mammalian brain. Decades of histological and electrophysiological studies have established CB1R as presynaptic G-protein coupled receptors (GPCRs) that inhibit neurotransmitter release through retrograde signaling mechanisms. Recent seminal work demonstrates CB1R expression on astrocytes and the pivotal function of glial cells in endocannabinoid-mediated modulation of neuron-astrocyte signaling. Here, we review key facets of CB1R-mediated astroglia regulation of synaptic glutamate transmission in the nucleus accumbens with a specific emphasis on cocaine-directed behaviors.
Collapse
Affiliation(s)
- Lan-Yuan Zhang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Y. Kim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
35
|
Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 2022; 110:2386-2408. [PMID: 35561676 PMCID: PMC9357093 DOI: 10.1016/j.neuron.2022.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Busquets-García A, Bolaños JP, Marsicano G. Metabolic Messengers: endocannabinoids. Nat Metab 2022; 4:848-855. [PMID: 35817852 DOI: 10.1038/s42255-022-00600-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Arnau Busquets-García
- Cell-type mechanisms in normal and pathological behavior Research Group. IMIM-Hospital del Mar Medical Research Institute, PRBB, Barcelona, Spain.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.
- University of Bordeaux, Bordeaux, France.
| |
Collapse
|
37
|
Covelo A, Badoual A, Denizot A. Reinforcing Interdisciplinary Collaborations to Unravel the Astrocyte "Calcium Code". J Mol Neurosci 2022; 72:1443-1455. [PMID: 35543801 PMCID: PMC9293817 DOI: 10.1007/s12031-022-02006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we present the major insights from and challenges faced in the acquisition, analysis and modeling of astrocyte calcium activity, aiming at bridging the gap between those fields to crack the complex astrocyte "Calcium Code". We then propose strategies to reinforce interdisciplinary collaborative projects to unravel astrocyte function in health and disease.
Collapse
Affiliation(s)
- Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215, NeuroCentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, Bordeaux, 33077, France
| | - Anaïs Badoual
- SERPICO Project-Team, Inria Centre Rennes-Bretagne Atlantique, Rennes Cedex, 35042, France
- SERPICO/STED Team, UMR144 CNRS Institut Curie, PSL Research University, Sorbonne Universités, Paris, 75005, France
| | - Audrey Denizot
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna, 904-0495, Japan.
| |
Collapse
|
38
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
39
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
40
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
41
|
Ramon-Duaso C, Conde-Moro AR, Busquets-Garcia A. Astroglial cannabinoid signaling and behavior. Glia 2022; 71:60-70. [PMID: 35293647 DOI: 10.1002/glia.24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
In neuroscience, the explosion of innovative and advanced technical accomplishments is fundamental to understanding brain functioning. For example, the possibility to distinguish glial and neuronal activities at the synaptic level and/or the appearance of new genetic tools to specifically monitor and manipulate astroglial functions revealed that astrocytes are involved in several facets of behavioral control. In this sense, the discovery of functional presence of type-1 cannabinoid receptors in astrocytes has led to identify important behavioral responses mediated by this specific pool of cannabinoid receptors. Thus, astroglial type-1 cannabinoid receptors are in the perfect place to play a role in a complex scenario in which astrocytes sense neuronal activity, release gliotransmitters and modulate the activity of other neurons, ultimately controlling behavioral responses. In this review, we will describe the known behavioral implications of astroglial cannabinoid signaling and highlight exciting unexplored research avenues on how astroglial cannabinoid signaling could affect behavior.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ana Rocio Conde-Moro
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Arnau Busquets-Garcia
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|