1
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
2
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
3
|
Takeuchi LE, Kalia LV, Simmons CA. Vascular models of Alzheimer's disease: An overview of recent in vitro models of the blood-brain barrier. Neurobiol Dis 2025; 208:106864. [PMID: 40089165 DOI: 10.1016/j.nbd.2025.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) remains an overwhelming epidemiologic and economic burden on our healthcare systems, affecting an estimate of 11 % of individuals aged 65 years and older. Increasing evidence of the role of the blood-brain barrier (BBB) in AD pathology lends support to the vascular hypothesis of AD, which posits that damage to cerebral vasculature and impairments to cerebral blood flow are major contributors to neurodegeneration in AD. While the question remains whether the dysfunction of the BBB is the cause or consequence of the disease, understanding of the relationship between vascular pathology and AD is growing increasingly complex, warranting the need for better tools to study vasculature in AD. This review provides an overview of AD models in the context of studying vascular impairments and their relevance in pathology. Specifically, we summarize opportunities in in vitro models, cell sources, and phenotypic observations in sporadic and familial forms of AD. Further, we describe recent advances in generating models which recapitulate in vivo characteristics of the BBB in AD through the use of microfluidics, induced pluripotent stem cells (iPSC), and organoid technologies. Finally, we provide a searchable database of reported cell-based models of pathogenic AD gene variants.
Collapse
Affiliation(s)
- Lily E Takeuchi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Lorraine V Kalia
- Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada; Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
4
|
Fumagalli L, Nazlie Mohebiany A, Premereur J, Polanco Miquel P, Bijnens B, Van de Walle P, Fattorelli N, Mancuso R. Microglia heterogeneity, modeling and cell-state annotation in development and neurodegeneration. Nat Neurosci 2025:10.1038/s41593-025-01931-4. [PMID: 40195564 DOI: 10.1038/s41593-025-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Within the CNS, microglia execute various functions associated with brain development, maintenance of homeostasis and elimination of pathogens and protein aggregates. This wide range of activities is closely associated with a plethora of cellular states, which may reciprocally influence or be influenced by their functional dynamics. Advancements in single-cell RNA sequencing have enabled a nuanced exploration of the intricate diversity of microglia, both in health and disease. Here, we review our current understanding of microglial transcriptional heterogeneity. We provide an overview of mouse and human microglial diversity encompassing aspects of development, neurodegeneration, sex and CNS regions. We offer an insight into state-of-the-art technologies and model systems that are poised to improve our understanding of microglial cell states and functions. We also provide suggestions and a tool to annotate microglial cell states on the basis of gene expression.
Collapse
Affiliation(s)
- Laura Fumagalli
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alma Nazlie Mohebiany
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jessie Premereur
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paula Polanco Miquel
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Baukje Bijnens
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Nicola Fattorelli
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
King MW, Jacob S, Sharma A, Lawrence JH, Weaver DR, Musiek ES. Circadian rhythms and the light-dark cycle interact to regulate amyloid plaque accumulation and tau phosphorylation in 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645805. [PMID: 40236233 PMCID: PMC11996435 DOI: 10.1101/2025.03.31.645805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Circadian disruption has long been appreciated as a downstream consequence of Alzheimer's Disease in humans. However, an upstream role for behavioral circadian disruption in regulating AD pathology remains an open question. Methods To determine the role of the central circadian clock in the suprachiasmatic nucleus (SCN) in regulating amyloid pathology, we crossed the 5xFAD amyloid mouse model with mice harboring deletion of the critical clock gene Bmal1 in GABAergic neurons using VGAT-iCre, which is expressed in >95% of SCN cells. To examine the role the light-dark cycle in this process, we aged these mice in either regular 12:12 light-dark (LD) or constant darkness (DD) conditions. Transcriptional, behavioral, and physiological rhythms were examined in VGAT-iCre; 5xFAD; Bmal1 fl/fl (VGAT-BMAL1KO;5xFAD) mice under varying light conditions. Amyloid plaque deposition, peri-plaque tau phosphorylation, and other pathology was examined by immunohistochemistry, and transcriptomic changes were examined by high-throughput qPCR. Results VGAT-BMAL1KO;5xFAD mice showed loss of SCN BMAL1 expression and severe disruption of behavioral rhythms in both LD and DD, with loss of day-night rhythms in consolidated sleep and blunting of rhythmic clock gene expression in the brain. Surprisingly, VGAT-BMAL1KO;5xFAD mice kept under LD showed reduced total plaque accumulation and peri-plaque tau phosphorylation, compared to Cre-negative controls. These changes were gated by the light-dark cycle, as they were absent in VGAT-BMAL1KO;5xFAD mice kept in DD conditions. Total plaque accumulation was also reduced in control 5xFAD mice kept in DD as compared to LD, suggesting a general effect of light-dark cycle on amyloid aggregation. Expression of murine presenilin 1 (Psen1) -- which catalyzes the processing of sAPPβ into Aβ -- as well as APP cleavage to C-terminal fragments, were suppressed in VGAT-BMAL1KO;5xFAD under LD conditions. Conclusions These studies elucidated an interaction between the circadian clock in GABAergic neurons and the light-dark cycle in regulating amyloid pathology and suggest that decoupling the central clock form the light-dark cycle may reduce APP cleavage and plaque formation. These results call into question the proposed simple positive feedback loop between circadian rhythm disruption and Alzheimer's Disease pathology.
Collapse
|
6
|
Rao C, Semrau S, Fossati V. Decoding microglial functions in Alzheimer's disease: insights from human models. Trends Immunol 2025; 46:310-323. [PMID: 40113535 PMCID: PMC11993344 DOI: 10.1016/j.it.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Microglia, key orchestrators of the brain's immune responses, play a pivotal role in the progression of Alzheimer's disease (AD). Emerging human models, including stem cell-derived microglia and cerebral organoids, are transforming our understanding of microglial contributions to AD pathology. In this review, we highlight how these models have uncovered human-specific microglial responses to amyloid plaques and their regulation of neuroinflammation, which are not recapitulated in animal models. We also illustrate how advanced human models that better mimic brain physiology and AD pathology are providing unprecedented insights into the multifaceted roles of microglia. These innovative approaches, combined with sophisticated technologies for cell editing and analysis, are shaping AD research and opening new avenues for therapeutic interventions targeting microglia.
Collapse
Affiliation(s)
- Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Stefan Semrau
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, USA.
| |
Collapse
|
7
|
He S, Li X, Mittra N, Bhattacharjee A, Wang H, Song S, Zhao S, Liu F, Han X. Microglial cGAS Deletion Preserves Intercellular Communication and Alleviates Amyloid-β-Induced Pathogenesis of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410910. [PMID: 39908354 PMCID: PMC11948024 DOI: 10.1002/advs.202410910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Innate immune activation plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and related dementias (ADRD). The cytosolic DNA sensing pathway, involving cGAMP synthase (cGAS) and Stimulator of Interferon Genes (STING), has emerged as a key mediator of neurodegenerative diseases. However, the precise mechanisms through which cGAS activation influences AD progression remain poorly understood. In this study, we observed significant up-regulation of cGAS-STING signaling pathway in AD. Notably, this increase is primarily attributed to microglia, rather than non-microglial cell types. Using an inducible, microglia-specific cGAS knockout mouse model in the 5xFAD background, we demonstrated that deleting microglial cGAS at the onset of amyloid-β (Aβ) pathology profoundly restricts plaque accumulation and protects mice from Aβ-induced cognitive impairment. Mechanistically, our study revealed cGAS promotes plaque-associated microglia accumulation and is essential for inflammasome activation. Moreover, we showed that restricting cGAS-mediated innate immunity is crucial for preserving inter-cellular communication in the brain and induces pleiotrophin, a neuroprotective factor. These findings offer novel insights into the specific roles of the innate immune system in AD employing a cell-type-specific approach. The conclusions provide a foundation for targeted interventions to modulate the microglial cGAS-STING signaling pathway, offering promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Sijia He
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Xin Li
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Namrata Mittra
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shujie Song
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shangang Zhao
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Division of EndocrinologyDepartment of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Feng Liu
- Metabolic Syndrome Research CenterThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| |
Collapse
|
8
|
Arnanz MA, Ferrer M, Grande MT, de Martín Esteban SR, Ruiz-Pérez G, Cravatt BF, Mostany R, Lobo VJSA, Romero J, Martínez-Relimpio AM. Fatty acid amide hydrolase gene inactivation induces hetero-cellular potentiation of microglial function in the 5xFAD mouse model of Alzheimer's disease. Glia 2025; 73:352-367. [PMID: 39474846 DOI: 10.1002/glia.24638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/22/2024]
Abstract
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aβ uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- María Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - María Ferrer
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology, The Scripps Research Institute, San Diego, California, USA
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, San Diego, California, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Víctor Javier Sánchez-Arévalo Lobo
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | |
Collapse
|
9
|
Foley KE, Weekman EM, Krick KE, Johnson SN, Sudduth TL, Wilcock DM. Acute Communication Between Microglia and Nonparenchymal Immune Cells in the Anti-Aβ Antibody-Injected Cortex. J Neurosci 2025; 45:e1456242024. [PMID: 39741000 PMCID: PMC11780351 DOI: 10.1523/jneurosci.1456-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Anti-Aβ immunotherapy use to treat Alzheimer's disease is on the rise. While anti-Aβ antibodies provide hope in targeting Aβ plaques in the brain, there still remains a lack of understanding regarding the cellular responses to these antibodies in the brain. In this study, we sought to identify the acute effects of anti-Aβ antibodies on immune responses. To determine cellular changes due to anti-Aβ antibody exposure, we intracranially injected 14 mo APP male and female mice with anti-Aβ IgG1 (6E10) or control IgG1 into the cortex. After 24 h or 3 d, we harvested the cortex and performed a glial cell-enriched preparation for single-cell sequencing. Cell types, proportions, and cell-to-cell signaling were evaluated between the two injection conditions and two acute timepoints. We identified 23 unique cell clusters including microglia, astrocytes, endothelial cells, neurons, oligos/OPCs, immune cells, and unknown. The anti-Aβ antibody-injected cortices revealed more ligand-receptor (L-R) communications between cell types, as well as stronger communications at only 24 h. At 3 d, while there were more L-R communications for the anti-Aβ antibody condition, the strength of these connections was stronger in the control IgG condition. We also found evidence of an initial and strong communication emphasis in microglia-to-nonparenchymal immune cells at 24 h, specifically in the TGFβ signaling pathway. We identify several pathways that are specific to anti-Aβ antibody exposure at acute timepoints. These data lay the groundwork for understanding the brain's unique response to anti-Aβ antibodies.
Collapse
Affiliation(s)
- Kate E Foley
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Neurology, School of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Erica M Weekman
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Neurology, School of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Katelynn E Krick
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sherika N Johnson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Neurology, School of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Neurology, School of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
10
|
Penati S, Brioschi S, Cai Z, Han CZ, Colonna M. Mechanisms and environmental factors shaping the ecosystem of brain macrophages. Front Immunol 2025; 16:1539988. [PMID: 39925814 PMCID: PMC11802581 DOI: 10.3389/fimmu.2025.1539988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Brain macrophages encompass two major populations: microglia in the parenchyma and border-associated macrophages (BAMs) in the extra-parenchymal compartments. These cells play crucial roles in maintaining brain homeostasis and immune surveillance. Microglia and BAMs are phenotypically and epigenetically distinct and exhibit highly specialized functions tailored to their environmental niches. Intriguingly, recent studies have shown that both microglia and BAMs originate from the same myeloid progenitor during yolk sac hematopoiesis, but their developmental fates diverge within the brain. Several works have partially unveiled the mechanisms orchestrating the development of microglia and BAMs in both mice and humans; however, many questions remain unanswered. Defining the molecular underpinnings controlling the transcriptional and epigenetic programs of microglia and BAMs is one of the upcoming challenges for the field. In this review, we outline current knowledge on ontogeny, phenotypic diversity, and the factors shaping the ecosystem of brain macrophages. We discuss insights garnered from human studies, highlighting similarities and differences compared to mice. Lastly, we address current research gaps and potential future directions in the field. Understanding how brain macrophages communicate with their local environment and how the tissue instructs their developmental trajectories and functional features is essential to fully comprehend brain physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Claudia Z. Han
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
11
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Fenson L, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded Spatial Biology Identifies Amyloid Plaque-Age-Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. RESEARCH SQUARE 2025:rs.3.rs-5829037. [PMID: 39975899 PMCID: PMC11838767 DOI: 10.21203/rs.3.rs-5829037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding how amyloid beta (Aβ) plaques form and progress to neurotoxicity in Alzheimer's disease remains a significant challenge. This study aims to elucidate the processes involved in Aβ plaque formation and maturation using a knock-in Aβ mouse model (App NL-F/NL-F ). By employing mass spectrometry imaging and stable isotope labeling, we timestamped Aβ plaques from their initial deposition, enabling the spatial tracking of plaque aging. Correlating single-plaque spatial transcriptomics with time since seeding, allowed us to track gene-expression changes specifically associated with plaque age, independent of chronological age of the mouse or disease severity. We found that plaque age, within sections from individual mice aged from 10 to 18 months, negatively correlates with synaptic gene expression. Further, correlation with hyperspectral confocal microscopy using structure-specific dyes revealed a positive link between plaque age and structural maturity, with older plaques identified as more compact and associated with significantly greater synapse loss and toxicity.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Lydia Fenson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, PR China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Brandao W, Jain N, Yin Z, Kleemann KL, Carpenter M, Bao X, Serrano JR, Tycksen E, Durao A, Barry JL, Baufeld C, Guneykaya D, Zhang X, Litvinchuk A, Jiang H, Rosenzweig N, Pitts KM, Aronchik M, Yahya T, Cao T, Takahashi MK, Krishnan R, Davtyan H, Ulrich JD, Blurton-Jones M, Ilin I, Weiner HL, Holtzman DM, Butovsky O. Inhaled xenon modulates microglia and ameliorates disease in mouse models of amyloidosis and tauopathy. Sci Transl Med 2025; 17:eadk3690. [PMID: 39813317 DOI: 10.1126/scitranslmed.adk3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression. Thus, a major question is how to modulate the phenotype and function of microglia to treat AD. Xenon (Xe) gas is a noble gas used in human patients as an anesthetic and a neuroprotectant used for treating brain injuries. Xe penetrates the blood-brain barrier, which could make it an effective therapeutic. To assess the effect of Xe on microglia and AD pathology, we designed a custom Xe inhalation chamber and treated several mouse models of AD with Xe gas. Xe treatment induced mouse microglia to adopt an intermediate activation state that we have termed pre-neurodegenerative microglia (pre-MGnD). This microglial phenotypic transition was observed in mouse models of acute neurodegeneration and amyloidosis (APP/PS1 and 5xFAD mice) and tauopathy (P301S mice). This microglial state enhanced amyloid plaque compaction and reduced dystrophic neurites in the APP/PS1 and 5xFAD mouse models. Moreover, Xe inhalation reduced brain atrophy and neuroinflammation and improved nest-building behavior in P301S mice. Mechanistically, Xe inhalation induced homeostatic brain microglia toward a pre-MGnD state through IFN-γ signaling that maintained the microglial phagocytic response in APP/PS1 and 5xFAD mice while suppressing the microglial proinflammatory phenotype in P301S mice. These results support the translation of Xe inhalation as an approach for treating AD.
Collapse
Affiliation(s)
- Wesley Brandao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nimansha Jain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kilian L Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Madison Carpenter
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Bao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Javier R Serrano
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- McDonnell Genome Institute, Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Durao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jen-Li Barry
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Baufeld
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dilansu Guneykaya
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Litvinchuk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Cao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Kenzo Takahashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Rajesh Krishnan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hayk Davtyan
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Jason D Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ilya Ilin
- General Biophysics LLC, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Subirana Slotos R, Nguyen TT, Fiska L, Friedland K, Endres K. A subcellular sampling instrument allows spatial resolution of amyloid deposit-derived organelle-specific effects in microglia. Commun Biol 2025; 8:3. [PMID: 39753747 PMCID: PMC11699115 DOI: 10.1038/s42003-024-07405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Methodological developments in biomedical research are currently moving towards single-cell approaches. This allows for a much better spatial and functional characterization of, for example, the deterioration of cells within a tissue in response to noxae. However, subcellular resolution is also essential to elucidate whether observed impairments are driven by an explicit organelle. Here, we use the Single Cellome™ System SS2000 (Yokogawa) to investigate the local effects of Aβ plaque-like deposits (characteristic for Alzheimer's disease) on mitochondria in the mouse microglial cell line SIM-A9. First, the specificity of subcellular extraction is demonstrated by detecting subcellular staining and RT-qPCR concerning marker genes by comparing nuclear and mitochondrial samples. Oxygen consumption and gene expression is then assessed in cells near and far from peptide deposits. Mostly, all analyses confirm the high specificity and integrity of the sampled material. In addition, impact of the peptide deposits occur concerning spatial distribution of the cells: e.g., oxygen consumption is only reduced in cells close to Aβ deposits but not in proximity to deposits of biologically inactive Aβ (scrambled) or in far distance. Moreover, a distance-related gene expression pattern occurs, demonstrating the local initiation of mitochondrial changes of microglia when approaching toxic peptide deposits.
Collapse
Affiliation(s)
- Robert Subirana Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tinh Thi Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Ledjona Fiska
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristina Friedland
- Institute of Pharmacy, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Zweibrücken, Germany.
| |
Collapse
|
14
|
Bijnen M, Sridhar S, Keller A, Greter M. Brain macrophages in vascular health and dysfunction. Trends Immunol 2025; 46:46-60. [PMID: 39732528 DOI: 10.1016/j.it.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease. We discuss that, in addition to microglia, BAMs, including perivascular macrophages, play roles in supporting vascular integrity and maintaining blood flow. We highlight recent advancements in understanding how these macrophages are implicated in protecting against vascular dysfunction and modulating the progression of cerebrovascular diseases, as seen in vessel-associated neurodegeneration.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Sridhar S, Zhou Y, Ibrahim A, Bertazzo S, Wyss T, Swain A, Maheshwari U, Huang SF, Colonna M, Keller A. Targeting TREM2 signaling shows limited impact on cerebrovascular calcification. Life Sci Alliance 2025; 8:e202402796. [PMID: 39467636 PMCID: PMC11519321 DOI: 10.26508/lsa.202402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Brain calcification, the ectopic mineral deposits of calcium phosphate, is a frequent radiological finding and a diagnostic criterion for primary familial brain calcification. We previously showed that microglia curtail the growth of small vessel calcification via the triggering receptor expressed in myeloid 2 (TREM2) in the Pdgfb ret/ret mouse model of primary familial brain calcification. Because boosting TREM2 function using activating antibodies has been shown to be beneficial in other disease conditions by aiding in microglial clearance of diverse pathologies, we investigated whether administration of a TREM2-activating antibody could mitigate vascular calcification in Pdgfb ret/ret mice. Single-nucleus RNA-sequencing analysis showed that calcification-associated microglia share transcriptional similarities to disease-associated microglia and exhibited activated TREM2 and TGFβ signaling. Administration of a TREM2-activating antibody increased TREM2-dependent microglial deposition of cathepsin K, a collagen-degrading protease, onto calcifications. However, this did not ameliorate the calcification load or alter the mineral composition and the microglial phenotype around calcification. We therefore conclude that targeting microglia with TREM2 agonistic antibodies is insufficient to demineralize and clear vascular calcifications.
Collapse
Affiliation(s)
- Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tania Wyss
- TDS-facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Bondy SC, Wu M. The Critical Role of Autophagy and Phagocytosis in the Aging Brain. Int J Mol Sci 2024; 26:57. [PMID: 39795916 PMCID: PMC11720579 DOI: 10.3390/ijms26010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
As the organism ages, there is a decline in effective energy supply, and this retards the ability to elaborate new proteins. The consequences of this are especially marked in the gradual decline in brain function. The senescence of cells and their constituent organelles is ultimately the cause of aging of the entire nervous system. What is less immediately obvious is that brain aging is also accompanied by the failure of catabolic events that lead to the removal of non-functional cells and ineffective subcellular components. The removal of non-working cellular and subcellular elements within the brain is essential in order to allow the appearance of fresh cells and organelles with a full range of capacities. Thus, the maintenance of operative mechanisms for the dispersal of failed tissue components is important, and its diminished capacity with aging is a significant contributory factor to the onset and progression of age-related neurological disorder. This report discusses the mechanisms underlying autophagy and phagocytosis and how these can be adversely modulated as aging proceeds. The means by which the effective recycling of cellular components may be reinstated in the aged brain are considered.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Occupational and Environmental Health and Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Meixia Wu
- Evergreen World ADHC, Westminster, CA 92844, USA;
| |
Collapse
|
17
|
Baligács N, Albertini G, Borrie SC, Serneels L, Pridans C, Balusu S, De Strooper B. Homeostatic microglia initially seed and activated microglia later reshape amyloid plaques in Alzheimer's Disease. Nat Commun 2024; 15:10634. [PMID: 39639016 PMCID: PMC11621353 DOI: 10.1038/s41467-024-54779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The role of microglia in the amyloid cascade of Alzheimer's disease (AD) is debated due to conflicting findings. Using a genetic and a pharmacological approach we demonstrate that depletion of microglia before amyloid-β (Aβ) plaque deposition, leads to a reduction in plaque numbers and neuritic dystrophy, confirming their role in plaque initiation. Transplanting human microglia restores Aβ plaque formation. While microglia depletion reduces insoluble Aβ levels, soluble Aβ concentrations stay consistent, challenging the view that microglia clear Aβ. In later stages, microglial depletion decreases plaque compaction and increases neuritic dystrophy, suggesting a protective role. Human microglia with the TREM2R47H/R47H mutation exacerbate plaque pathology, emphasizing the importance of non-reactive microglia in the initiation of the amyloid cascade. Adaptive immune depletion (Rag2-/-) does not affect microglia's impact on plaque formation. These findings clarify conflicting reports, identifying microglia as key drivers of amyloid pathology, and raise questions about optimal therapeutic strategies for AD.
Collapse
Affiliation(s)
- Nóra Baligács
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giulia Albertini
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sarah C Borrie
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sriram Balusu
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
18
|
Stables J, Pal R, Bradford BM, Carter-Cusack D, Taylor I, Pridans C, Khan N, Woodruff TM, Irvine KM, Summers KM, Mabbott NA, Hume DA. The effect of a dominant kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy on brain development and neuropathology. Neurobiol Dis 2024; 203:106743. [PMID: 39581554 DOI: 10.1016/j.nbd.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Amino acid substitutions in the kinase domain of the human CSF1R protein are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (Glu631Lys; E631K) in the mouse Csf1r locus. Previous analysis demonstrated that heterozygous mutation (Csf1rE631K/+) had a dominant inhibitory effect on CSF1R signaling in vitro and in vivo but did not recapitulate human disease pathology. We speculated that leukoencephalopathy in humans requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles. Here we examine the Csf1rE631K/+ mutation impact on microglial phenotype, postnatal brain development, age-related changes in gene expression and on prion disease and experimental autoimmune encephalitis (EAE), two pathologies in which microgliosis is a prominent feature. The Csf1rE631K/+ mutation reduced microglial abundance and the expression of microglial-associated transcripts relative to wild-type controls at 12 and 43 weeks of age. There was no selective effect on homeostatic markers e.g. P2ry12, or age-related changes in gene expression in striatum and hippocampus. An epistatic interaction was demonstrated between Csf1rE631K/+ and Cx3cr1EGFP/+ genotypes leading to dysregulated microglial and neuronal gene expression in hippocampus and striatum. Heterozygous Csf1rE631K mutation reduced the microgliosis associated with both diseases. There was no significant impact on disease severity or progression in prion disease. In EAE, inflammation-associated transcripts in the hippocampus and striatum were suppressed in parallel with microglia-specific transcripts. The results support a dominant inhibitory model of CSF1R-related leukoencephalopathy and likely contributions of an environmental trigger and/or genetic background to neuropathology.
Collapse
Affiliation(s)
- Jennifer Stables
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Reiss Pal
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Isis Taylor
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Nemat Khan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Neil A Mabbott
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
19
|
van den Brink H, Voigt S, Kozberg M, van Etten ES. The role of neuroinflammation in cerebral amyloid angiopathy. EBioMedicine 2024; 110:105466. [PMID: 39608058 DOI: 10.1016/j.ebiom.2024.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease characterized by vascular amyloid-β (Aβ) deposition. CAA is often seen in the brains of elderly individuals and in a majority of patients with Alzheimer's disease. The molecular pathways triggered by vascular Aβ, causing vessel wall breakdown and ultimately leading to intracerebral haemorrhage and cognitive decline, remain poorly understood. The occurrence of CAA-related inflammation (CAA-ri) and Amyloid-Related Imaging Abnormalities (ARIA) have sparked interest for a role of neuroinflammation in CAA pathogenesis. This review discusses prior studies of neuroinflammation in CAA and outlines potential future research directions targeting candidates such as matrix metalloproteinases, complement activation, microglial activation, reactive astrocytes and parenchymal border macrophages. Understanding the role of neuroinflammation in CAA pathogenesis could help identify new therapeutic strategies.
Collapse
Affiliation(s)
- Hilde van den Brink
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariel Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
20
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
21
|
Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, Damkou A, Hosang L, Depp C, Kamp F, Scholz P, Ewers D, Giera M, Ischebeck T, Wurst W, Wefers B, Schifferer M, Willem M, Nave KA, Haass C, Arzberger T, Jäkel S, Wirths O, Saher G, Simons M. Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis. Immunity 2024; 57:2651-2668.e12. [PMID: 39419029 DOI: 10.1016/j.immuni.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
Collapse
Affiliation(s)
- Seiji Kaji
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lennart Schlaphoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew O Sasmita
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Simona Vitale
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Zirngibl
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Taisiia Nazarenko
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, Göttingen, Germany
| | - Constanze Depp
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Frits Kamp
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - David Ewers
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany; Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Klaus-Armin Nave
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Gesine Saher
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
22
|
Huang CC, Tsai SF, Liu SC, Yeh MC, Hung HC, Lee CW, Cheng CL, Hsu PL, Kuo YM. Insulin Mediates Lipopolysaccharide-Induced Inflammatory Responses and Oxidative Stress in BV2 Microglia. J Inflamm Res 2024; 17:7993-8008. [PMID: 39507265 PMCID: PMC11539848 DOI: 10.2147/jir.s481101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Insulin, the key hormone for glucose regulation, has garnered attention for its role as an immune modulator. Impaired insulin signaling in the central nervous system is linked to neuroinflammation and neurodegenerative diseases. Microglia, the resident macrophage-like immune cells in the brain, are key regulators of neuroinflammation. However, the mechanisms by which insulin influences microglial immune responses remain relatively unknown. Methods This study aimed to assess the effects of post-treatment with insulin [30 minutes after lipopolysaccharide (LPS) exposure] on LPS-induced inflammatory responses in BV2 microglial cells. Results Post-treatment with insulin potentiated LPS-induced production of nitric oxide and pro-inflammatory cytokines, such as TNF and IL-6, through activation of the Akt/NF-κB pathway. Insulin also enhanced the ability of BV2 cells to phagocytose bacteria particles and β-amyloid fibrils. Conversely, insulin inhibited activation of NADPH oxidase and reduced intracellular levels of reactive oxygen species in LPS-treated BV2 cells. Conclusion Insulin enhances microglial immune competence when challenged by endotoxins but mitigates oxidative stress in these cells.
Collapse
Affiliation(s)
- Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Cheng Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Mei-Chen Yeh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, 700007, Taiwan
| | - Ching-Li Cheng
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, 700007, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
23
|
Zhang Y, Guo X, Zhao J, Gao X, Zhang L, Huang T, Wang Y, Niu Q, Zhang Q. The downregulation of TREM2 exacerbates toxicity of development and neurobehavior induced by aluminum chloride and nano-alumina in adult zebrafish. Toxicol Appl Pharmacol 2024; 492:117107. [PMID: 39288838 DOI: 10.1016/j.taap.2024.117107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
To investigate the difference in the development and neurobehavior between aluminum chloride (AlCl3) and nano-alumina (AlNPs) in adult zebrafish and the role of triggering receptor expressed on myeloid cells (TREM2) in this process. Zebrafish embryos were randomly administered with control, negative control, TREM2 knockdown, AlCl3, TREM2 knockdown + AlCl3, AlNPs, and TREM2 knockdown + AlNPs, wherein AlCl3 and AlNPs were 50 mg/L and TREM2 knockdown was achieved by microinjecting lentiviral-containing TREM2 inhibitors into the yolk sac. We assessed development, neurobehavior, histopathology, ultrastructural structure, neurotransmitters (AChE, DA), SOD, genes of TREM2 and neurodevelopment (α1-tubulin, syn2a, mbp), and AD-related proteins and genes. AlCl3 significantly lowered the malformation rate than AlNPs, and further increased rates of malformation and mortality following TREM2 knockdown. The locomotor ability, learning and memory were similar between AlCl3 and AlNPs. TREM2 deficiency further exacerbated their impairment in panic reflex, microglia decrease, and nerve fibers thickening and tangling. AlCl3, rather than AlNPs, significantly elevated AChE activity and p-tau content while decreasing TREM2 and syn2a levels than the control. TREM2 loss further aggravated impairment in the AChE and SOD activity, and psen1 and p-tau levels. Therefore, AlCl3 induces greater developmental toxicity but equivalent neurobehavior toxicity than AlNPs, while their toxicity was intensified by TREM2 deficiency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, China
| | - Xinyue Guo
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Business Management, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, China
| | - Jinjin Zhao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaocheng Gao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Lan Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Huang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanhong Wang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qiao Niu
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qinli Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS 39216, United States of America.
| |
Collapse
|
24
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded chemical Imaging Identifies Amyloid Plaque Age Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617019. [PMID: 39416086 PMCID: PMC11482761 DOI: 10.1101/2024.10.08.617019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is of critical importance to our understanding of Alzheimer's disease (AD) pathology to determine how key pathological factors are interconnected and implicated in nerve cell death, clinical symptoms, and disease progression. The formation of extracellular beta-amyloid (Aβ) plaques is the major pathological hallmark of AD and Aβ has been suggested to be a critical inducer of AD, driving disease pathogenesis. Exactly how Aβ plaque formation begins and how ongoing plaque deposition proceeds and initiates subsequent neurotoxic mechanisms is not well understood. The primary aim of our research is to elucidate the biochemical processes underlying early Aβ plaque formation in brain tissue. We recently introduced a chemical imaging paradigm based on mass spectrometry imaging (MSI) and metabolic isotope labelling to follow stable isotope labelling kinetics (iSILK) in vivo to track the in vivo build-up and deposition of Aβ. Herein, knock-in Aβ mouse models (App NL-F ) that develop Aβ pathology gradually are metabolically labeled with stable isotopes. This chemical imaging approach timestamps amyloid plaques during the period of initial deposition allowing the fate of aggregating Aβ species from before and during the earliest events of plaque pathology through plaque maturation to be tracked. To identify the molecular and cellular response to plaque maturation, we integrated iSILK with single plaque transcriptomics performed on adjacent tissue sections. This enabled changes in gene expression to be tracked as a function of plaque age (as encoded in the Aβ peptide isotopologue pattern) distinct from changes due to the chronological age or pathological severity. This approach identified that plaque age correlates negatively with gene expression patterns associated with synaptic function as early as in 10-month-old animals but persists into 18 months. Finally, we integrated hyperspectral confocal microscopy into our multiomic approach to image amyloid structural isomers, revealing a positive correlation between plaque age and amyloid structural maturity. This analysis identified three categories of plaques, each with a distinct impact on the surrounding microenvironment. Here, we identified that older, more compact plaques were associated with the most significant synapse loss and toxicity. These data show how isotope-encoded MS imaging can be used to delineate Aβ toxicity dynamics in vivo. Moreover, we show for the first time a functional integration of dynamic MSI, structural plaque imaging and whole genome-wide spatial transcriptomics at the single plaque level. This multiomic approach offers an unprecedented combination of temporal and spatial resolution enabling a description of the earliest events of precipitating amyloid pathology and how Aβ modulates synaptotoxic mechanisms.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
25
|
Gu H, Liu LL, Wu A, Yu Y, Emir U, Sawiak SJ, Territo PR, Farlow MR, Zheng W, Du Y. Lead Acetate Exposure and Cerebral Amyloid Accumulation: Mechanistic Evaluations in APP/PS1 Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107004. [PMID: 39412896 PMCID: PMC11482597 DOI: 10.1289/ehp14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The role of environmental factors in Alzheimer's disease (AD) pathogenesis remains elusive. Mounting evidence suggests that acute and past exposure to the environmental toxicant lead (Pb) is associated with longitudinal decline in cognitive function, brain atrophy, and greater brain β -amyloid (A β ) deposition. However, the nature of Pb-induced amyloid deposition and how it contributes to AD development remain unclear. OBJECTIVES This study investigates the role of Pb in the pathogenesis of cerebral amyloid angiopathy (CAA) and whether plasminogen activator inhibitor-1 (PAI-1) contributes to this process in the APP/PS1 mouse model. METHODS Female APP/PS1 mice at 8 wk of age were administered either 50 mg / kg Pb-acetate (PbAc) (i.e., 27 mg Pb / kg ) or an equivalent molar concentration of sodium acetate (NaAc) via oral gavage once daily for 8 wk. Amyloid deposition and vascular amyloid were determined by immunostaining. In addition, A β perivascular drainage, vascular binding assay, and microglial endocytosis were examined to determine underlying mechanisms. Furthermore, magnetic resonance imaging demyelination imaging was performed in vivo measure the level of demyelination. Finally, Y-maze and Morris water maze tests were assessed to evaluate the cognitive function of mice. RESULTS APP/PS1 mice (an AD mice model) exposed to PbAc demonstrated more vascular amyloid deposition less neocortical myelination, and lower cognitive function, as well as greater vascular binding to A β 40 , higher A β 40 / A β 42 ratios, strikingly lower A β 40 levels in the perivascular drainage, and microglial endocytosis. Importantly, exposure to a specific PAI-1 inhibitor, tiplaxtinin, which previously was reported to lower CAA pathology in mice, resulted in less CAA-related outcomes following PbAc exposure. DISCUSSION Our findings suggest that PbAc induced CAA/AD pathogenesis via the PAI-1 signaling in the APP/PS1 mouse model, and the inhibition of PAI-1 could be a potential therapeutic target for PbAc-mediated CAA/AD disorders. https://doi.org/10.1289/EHP14384.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Luqing L. Liu
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Alanna Wu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yongqi Yu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Uzay Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Stephen J. Sawiak
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Paul R. Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Samuels JD, Lukens JR, Price RJ. Emerging roles for ITAM and ITIM receptor signaling in microglial biology and Alzheimer's disease-related amyloidosis. J Neurochem 2024; 168:3558-3573. [PMID: 37822118 PMCID: PMC11955997 DOI: 10.1111/jnc.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Microglia are critical responders to amyloid beta (Aβ) plaques in Alzheimer's disease (AD). Therefore, the therapeutic targeting of microglia in AD is of high clinical interest. While previous investigation has focused on the innate immune receptors governing microglial functions in response to Aβ plaques, how microglial innate immune responses are regulated is not well understood. Interestingly, many of these microglial innate immune receptors contain unique cytoplasmic motifs, termed immunoreceptor tyrosine-based activating and inhibitory motifs (ITAM/ITIM), that are commonly known to regulate immune activation and inhibition in the periphery. In this review, we summarize the diverse functions employed by microglia in response to Aβ plaques and also discuss the innate immune receptors and intracellular signaling players that guide these functions. Specifically, we focus on the role of ITAM and ITIM signaling cascades in regulating microglia innate immune responses. A better understanding of how microglial innate immune responses are regulated in AD may provide novel therapeutic avenues to tune the microglial innate immune response in AD pathology.
Collapse
Affiliation(s)
- Joshua D. Samuels
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J. Price
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
de Deus JL, Faborode OS, Nandi S. Synaptic Pruning by Microglia: Lessons from Genetic Studies in Mice. Dev Neurosci 2024:1-21. [PMID: 39265565 DOI: 10.1159/000541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Neural circuits are subjected to refinement throughout life. The dynamic addition and elimination (pruning) of synapses are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response. SUMMARY This review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically localized molecules, neuronally or glial-derived diffusible factors, and their respective cognate receptors in microglia provide critical evidence in support of a direct role of microglia in synaptic pruning. KEY MESSAGE We discuss microglial contact-dependent "eat-me," "don't-eat-me," and "find-me" signals, as well as recently identified noncontact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.
Collapse
Affiliation(s)
- Junia Lara de Deus
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | | | - Sayan Nandi
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
28
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
29
|
Piccioni G, Maisto N, d'Ettorre A, Strimpakos G, Nisticò R, Triaca V, Mango D. Switch to phagocytic microglia by CSFR1 inhibition drives amyloid-beta clearance from glutamatergic terminals rescuing LTP in acute hippocampal slices. Transl Psychiatry 2024; 14:338. [PMID: 39179543 PMCID: PMC11344079 DOI: 10.1038/s41398-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nunzia Maisto
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Asia d'Ettorre
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy.
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
30
|
Chadarevian JP, Hasselmann J, Lahian A, Capocchi JK, Escobar A, Lim TE, Le L, Tu C, Nguyen J, Kiani Shabestari S, Carlen-Jones W, Gandhi S, Bu G, Hume DA, Pridans C, Wszolek ZK, Spitale RC, Davtyan H, Blurton-Jones M. Therapeutic potential of human microglia transplantation in a chimeric model of CSF1R-related leukoencephalopathy. Neuron 2024; 112:2686-2707.e8. [PMID: 38897209 DOI: 10.1016/j.neuron.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Alina Lahian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Lauren Le
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - William Carlen-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sunil Gandhi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Guojun Bu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - David A Hume
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Clare Pridans
- University of Edinburgh, University of Edinburgh Center for Inflammation Research, Edinburgh, UK
| | | | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
31
|
Munro DAD, Bestard-Cuche N, McQuaid C, Chagnot A, Shabestari SK, Chadarevian JP, Maheshwari U, Szymkowiak S, Morris K, Mohammad M, Corsinotti A, Bradford B, Mabbott N, Lennen RJ, Jansen MA, Pridans C, McColl BW, Keller A, Blurton-Jones M, Montagne A, Williams A, Priller J. Microglia protect against age-associated brain pathologies. Neuron 2024; 112:2732-2748.e8. [PMID: 38897208 DOI: 10.1016/j.neuron.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.
Collapse
Affiliation(s)
- David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | - Nadine Bestard-Cuche
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Conor McQuaid
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Audrey Chagnot
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Szymkowiak
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Kim Morris
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Mehreen Mohammad
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Andrea Corsinotti
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Barry Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Neil Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Ross J Lennen
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Maurits A Jansen
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Axel Montagne
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Anna Williams
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Josef Priller
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Department of Psychiatry and Psychotherapy, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, and German Center for Mental Health (DZPG), 81675 Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin and DZNE, 10117 Berlin, Germany.
| |
Collapse
|
32
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
33
|
Sierra A, Miron VE, Paolicelli RC, Ransohoff RM. Microglia in Health and Diseases: Integrative Hubs of the Central Nervous System (CNS). Cold Spring Harb Perspect Biol 2024; 16:a041366. [PMID: 38438189 PMCID: PMC11293550 DOI: 10.1101/cshperspect.a041366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Microglia are usually referred to as "the innate immune cells of the brain," "the resident macrophages of the central nervous system" (CNS), or "CNS parenchymal macrophages." These labels allude to their inherent immune function, related to their macrophage lineage. However, beyond their classic innate immune responses, microglia also play physiological roles crucial for proper brain development and maintenance of adult brain homeostasis. Microglia sense both external and local stimuli through a variety of surface receptors. Thus, they might serve as integrative hubs at the interface between the external environment and the CNS, able to decode, filter, and buffer cues from outside, with the aim of preserving and maintaining brain homeostasis. In this perspective, we will cast a critical look at how these multiple microglial functions are acquired and coordinated, and we will speculate on their impact on human brain physiology and pathology.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Laboratory, Science Park of UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, 48940 Leioa, Spain
- Ikerbasque Foundation, Bilbao 48009, Spain
| | - Veronique E Miron
- BARLO Multiple Sclerosis Centre, Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto M5B 1T8, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
34
|
Fastenau C, Bunce M, Keating M, Wickline J, Hopp SC, Bieniek KF. Distinct patterns of plaque and microglia glycosylation in Alzheimer's disease. Brain Pathol 2024; 34:e13267. [PMID: 38724175 PMCID: PMC11189777 DOI: 10.1111/bpa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Abstract
Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aβ plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aβ plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Caitlyn Fastenau
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Madison Bunce
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mallory Keating
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Jessica Wickline
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Sarah C. Hopp
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
35
|
Munsterman D, Falcione S, Long R, Boghozian R, Joy T, Camicioli R, Smith EE, Jickling GC. Cerebral amyloid angiopathy and the immune system. Alzheimers Dement 2024; 20:4999-5008. [PMID: 38881491 PMCID: PMC11247707 DOI: 10.1002/alz.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/18/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of amyloid protein in the walls of cerebral blood vessels. This deposition of amyloid causes damage to the cerebral vasculature, resulting in blood-brain barrier disruption, cerebral hemorrhage, cognitive decline, and dementia. The role of the immune system in CAA is complex and not fully understood. While the immune system has a clear role in the rare inflammatory variants of CAA (CAA related inflammation and Abeta related angiitis), the more common variants of CAA also have immune system involvement. In a protective role, immune cells may facilitate the clearance of beta-amyloid from the cerebral vasculature. The immune system can also contribute to CAA pathology, promoting vascular injury, blood-brain barrier breakdown, inflammation, and progression of CAA. In this review, we summarize the role of the immune system in CAA, including the potential of immune based treatment strategies to slow vascular disease in CAA and associated cognitive impairment, white matter disease progression, and reduce the risk of cerebral hemorrhage. HIGHLIGHTS: The immune system has a role in cerebral amyloid angiopathy (CAA) which is summarized in this review. There is an inflammatory response to beta-amyloid that may contribute to brain injury and cognitive impairment. Immune cells may facilitate the clearance of beta-amyloid from the cerebral vasculature. Improved understanding of the immune system in CAA may afford novel treatment to improve outcomes in patients with CAA.
Collapse
Affiliation(s)
| | - Sarina Falcione
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Rebecca Long
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Twinkle Joy
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Eric E. Smith
- Clinical NeurosciencesHotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
36
|
Sebastijanović A, Azzurra Camassa LM, Malmborg V, Kralj S, Pagels J, Vogel U, Zienolddiny-Narui S, Urbančič I, Koklič T, Štrancar J. Particulate matter constituents trigger the formation of extracellular amyloid β and Tau -containing plaques and neurite shortening in vitro. Nanotoxicology 2024; 18:335-353. [PMID: 38907733 DOI: 10.1080/17435390.2024.2362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandar Sebastijanović
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Vilhelm Malmborg
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Slavko Kralj
- Material Synthesis Department, Jožef Stefan Institute, Slovenia
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Štrancar
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
37
|
Barry-Carroll L, Gomez-Nicola D. The molecular determinants of microglial developmental dynamics. Nat Rev Neurosci 2024; 25:414-427. [PMID: 38658739 DOI: 10.1038/s41583-024-00813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Microglia constitute the largest population of parenchymal macrophages in the brain and are considered a unique subset of central nervous system glial cells owing to their extra-embryonic origins in the yolk sac. During development, microglial progenitors readily proliferate and eventually colonize the entire brain. In this Review, we highlight the origins of microglial progenitors and their entry routes into the brain and discuss the various molecular and non-molecular determinants of their fate, which may inform their specific functions. Specifically, we explore recently identified mechanisms that regulate microglial colonization of the brain, including the availability of space, and describe how the expansion of highly proliferative microglial progenitors facilitates the occupation of the microglial niche. Finally, we shed light on the factors involved in establishing microglial identity in the brain.
Collapse
Affiliation(s)
- Liam Barry-Carroll
- Nutrineuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Bordeaux, France
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
38
|
Eskandari-Sedighi G, Crichton M, Zia S, Gomez-Cardona E, Cortez LM, Patel ZH, Takahashi-Yamashiro K, St Laurent CD, Sidhu G, Sarkar S, Aghanya V, Sim VL, Tan Q, Julien O, Plemel JR, Macauley MS. Alzheimer's disease associated isoforms of human CD33 distinctively modulate microglial cell responses in 5XFAD mice. Mol Neurodegener 2024; 19:42. [PMID: 38802940 PMCID: PMC11129479 DOI: 10.1186/s13024-024-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Microglia play diverse pathophysiological roles in Alzheimer's disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell function in vivo has been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-β (Aβ) deposition. Mice expressing CD33M have increased Aβ levels, more diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to 5XFAD control mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m+ microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.
Collapse
Affiliation(s)
| | | | - Sameera Zia
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Zain H Patel
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | - Gaurav Sidhu
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Vivian Aghanya
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Valerie L Sim
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
39
|
Fruhwürth S, Zetterberg H, Paludan SR. Microglia and amyloid plaque formation in Alzheimer's disease - Evidence, possible mechanisms, and future challenges. J Neuroimmunol 2024; 390:578342. [PMID: 38640827 DOI: 10.1016/j.jneuroim.2024.578342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aβ) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aβ plaque formation, as well as their impact on morphological and functional diversity of Aβ plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Søren R Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
40
|
Surala M, Soso-Zdravkovic L, Munro D, Rifat A, Ouk K, Vida I, Priller J, Madry C. Lifelong absence of microglia alters hippocampal glutamatergic networks but not synapse and spine density. EMBO Rep 2024; 25:2348-2374. [PMID: 38589666 PMCID: PMC11094096 DOI: 10.1038/s44319-024-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.
Collapse
Affiliation(s)
- Michael Surala
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Luna Soso-Zdravkovic
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
| | - David Munro
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, EH16 4TJ, UK
| | - Ali Rifat
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Koliane Ouk
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charitéplatz 1, 10117, Berlin, Germany
| | - Imre Vida
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute for Integrative Neuroanatomy, Charitéplatz 1, 10117, Berlin, Germany
| | - Josef Priller
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, EH16 4TJ, UK.
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charitéplatz 1, 10117, Berlin, Germany.
- DZNE Berlin, 10117, Berlin, Germany.
- Department of Psychiatry and Psychotherapy; School of Medicine and Health, Technical University of Munich and German Center for Mental Health (DZPG), 81675, Munich, Germany.
| | - Christian Madry
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
41
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
42
|
Stoll AC, Kemp CJ, Patterson JR, Kubik M, Kuhn N, Benskey M, Duffy MF, Luk KC, Sortwell CE. Alpha-synuclein inclusion responsive microglia are resistant to CSF1R inhibition. J Neuroinflammation 2024; 21:108. [PMID: 38664840 PMCID: PMC11045433 DOI: 10.1186/s12974-024-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.
Collapse
Affiliation(s)
- Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Michael Kubik
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Nathan Kuhn
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Matthew Benskey
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Megan F Duffy
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
43
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
44
|
Lawrence AR, Canzi A, Bridlance C, Olivié N, Lansonneur C, Catale C, Pizzamiglio L, Kloeckner B, Silvin A, Munro DAD, Fortoul A, Boido D, Zehani F, Cartonnet H, Viguier S, Oller G, Squarzoni P, Candat A, Helft J, Allet C, Watrin F, Manent JB, Paoletti P, Thieffry D, Cantini L, Pridans C, Priller J, Gélot A, Giacobini P, Ciobanu L, Ginhoux F, Thion MS, Lokmane L, Garel S. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 2024; 187:962-980.e19. [PMID: 38309258 PMCID: PMC10869139 DOI: 10.1016/j.cell.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/30/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.
Collapse
Affiliation(s)
- Akindé René Lawrence
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Alice Canzi
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Cécile Bridlance
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Nicolas Olivié
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Claire Lansonneur
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clarissa Catale
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Benoit Kloeckner
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Davide Boido
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Feriel Zehani
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sarah Viguier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Oller
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Paola Squarzoni
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Adrien Candat
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Electron Microscopy Facility, 75005 Paris, France
| | - Julie Helft
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Team Phagocytes and Tumor Immunology, 75014 Paris, France
| | - Cécile Allet
- UMR-S 1172, JPArc - Centre de Recherche Neurosciences et Cancer, University of Lille, Lille, France
| | - Francoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Laura Cantini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh EH16 4TJ, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University Munich, 81675 Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin and DZNE Berlin, 10117 Berlin, Germany
| | - Antoinette Gélot
- Service d'anatomie Pathologique, Hôpital Trousseau APHP, 75571 Paris Cedex 12, France
| | - Paolo Giacobini
- University of Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, 59000 Lille, France
| | - Luisa Ciobanu
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Collège de France, Université PSL, 75005 Paris, France.
| |
Collapse
|
45
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
46
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
47
|
Misrani A, Ngwa C, Mamun AA, Sharmeen R, Manyam KV, Ritzel RM, McCullough L, Liu F. Brain endothelial CD200 signaling protects brain against ischemic damage. Brain Res Bull 2024; 207:110864. [PMID: 38157992 PMCID: PMC11022665 DOI: 10.1016/j.brainresbull.2023.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Ischemic stroke induced inflammatory responses contribute significantly to neuronal damage and stroke outcomes. CD200 ligand and its receptor, CD200R, constitute an endogenous inhibitory signaling that is being increasingly recognized in studies of neuroinflammation in various central nervous system disorders. CD200 is a type 1 membrane glycoprotein that is broadly expressed by endothelia and neurons in the brain. In the present study, we have examined the role of endothelial CD200 signaling in acute ischemic stroke. Endothelial CD200 conditional knock out (CKO) mice were generated by breeding CD200 gene floxed mice with Cdh5Cre mice. The mice were subjected to a 60-min transient middle cerebral artery occlusion (MCAO). Flow cytometry, Immunohistochemical staining, and Western blotting were performed to assess the post-stroke inflammation; stroke outcomes (infarct volume and neurobehavioral deficits) were evaluated at 72 h after MCAO. We found CD200R was near-null expressed on microglia at 24 h after stoke. Endothelial CKO of CD200 had no impact on peripheral immune cell development. Immunohistochemical staining confirmed CD200 was expressed on CD200 floxed but not on CD200 CKO endothelia. CD200 CKO mice exhibited larger infarct size, worse neurological deficit scores (NDS), and more deficits in the adhesive removal when compared with control mice, 72 h after MCAO. Western blot results showed that endothelial CKO of CD200 did not change BBB protein expression. Together it suggests that endothelial CD200 signaling protects brains against ischemic injury through a mechanism not directly related to microglial activation.
Collapse
Affiliation(s)
- Afzal Misrani
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kanaka Valli Manyam
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rodney M Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
49
|
Vervuurt M, Schrader JM, de Kort AM, Kersten I, Wessels HJCT, Klijn CJM, Schreuder FHBM, Kuiperij HB, Gloerich J, Van Nostrand WE, Verbeek MM. Cerebrospinal fluid shotgun proteomics identifies distinct proteomic patterns in cerebral amyloid angiopathy rodent models and human patients. Acta Neuropathol Commun 2024; 12:6. [PMID: 38191511 PMCID: PMC10775534 DOI: 10.1186/s40478-023-01698-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a form of small vessel disease characterised by the progressive deposition of amyloid β protein in the cerebral vasculature, inducing symptoms including cognitive impairment and cerebral haemorrhages. Due to their accessibility and homogeneous disease phenotypes, animal models are advantageous platforms to study diseases like CAA. Untargeted proteomics studies of CAA rat models (e.g. rTg-DI) and CAA patients provide opportunities for the identification of novel biomarkers of CAA. We performed untargeted, data-independent acquisition proteomic shotgun analyses on the cerebrospinal fluid of rTg-DI rats and wild-type (WT) littermates. Rodents were analysed at 3 months (n = 6/10), 6 months (n = 8/8), and 12 months (n = 10/10) for rTg-DI and WT respectively. For humans, proteomic analyses were performed on CSF of sporadic CAA patients (sCAA) and control participants (n = 39/28). We show recurring patterns of differentially expressed (mostly increased) proteins in the rTg-DI rats compared to wild type rats, especially of proteases of the cathepsin protein family (CTSB, CTSD, CTSS), and their main inhibitor (CST3). In sCAA patients, decreased levels of synaptic proteins (e.g. including VGF, NPTX1, NRXN2) and several members of the granin family (SCG1, SCG2, SCG3, SCG5) compared to controls were discovered. Additionally, several serine protease inhibitors of the SERPIN protein family (including SERPINA3, SERPINC1 and SERPING1) were differentially expressed compared to controls. Fifteen proteins were significantly altered in both rTg-DI rats and sCAA patients, including (amongst others) SCG5 and SERPING1. These results identify specific groups of proteins likely involved in, or affected by, pathophysiological processes involved in CAA pathology such as protease and synapse function of rTg-DI rat models and sCAA patients, and may serve as candidate biomarkers for sCAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 2024; 24:49-63. [PMID: 37452201 DOI: 10.1038/s41577-023-00907-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.
Collapse
Affiliation(s)
- Sarah A Kent
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|