1
|
Ebenig A, Lange MV, Gellhorn Serra M, Kupke A, Plesker R, Qu B, Brown RJP, Maier TJ, Mühlebach MD. Differential efficacy of first licensed western vaccines protecting without immunopathogenesis Wuhan-1-challenged hamsters from severe COVID-19. NPJ Vaccines 2025; 10:51. [PMID: 40097436 PMCID: PMC11914482 DOI: 10.1038/s41541-025-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Four COVID-19 vaccines were developed, tested, and authorized early in Europe and the US. Comirnaty and Spikevax are mRNA-based, whereas Jcovden and Vaxzevria utilize adenoviral vectors (AdV). We described a hamster model of COVID-19 utilizing Wuhan-1 strain SARS-CoV-2, in which vaccine-associated immunopathogenesis can be induced by Alum-adjuvanted Spike protein (Alum+S). Such animals were vaccinated with the authorized vaccines or Alum+S, challenged, and examined. All vaccinated hamsters produced antibodies targeting S. Neutralizing antibodies (nAb) were induced only by authorized vaccines. While nAbs were present after one vaccination with AdV-vaccines, mRNA vaccines needed a boost immunization. Upon challenge, all authorized vaccines protected from severe disease. Less tissue damage and no live virus (one exception) were detectable in the lungs. In contrast, Alum+S immunized hamsters developed VAERD. Our data reveal the absence of induction of VAERD by early commercial vaccines in hamsters, while animals´ immune responses and protection seem to match the clinical vaccine efficacy.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Mona V Lange
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | | | - Alexandra Kupke
- Institute for Virology, Philipps University, 35043, Marburg, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Roland Plesker
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Bingqian Qu
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Richard J P Brown
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
- Department of Translational and Computational Infection Research, Ruhr University Bochum, 44801, Bochum, Germany
| | - Thorsten J Maier
- Division Safety of Biomedicines and Diagnostics, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Michael D Mühlebach
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
2
|
Kim J, Kachko A, Selvaraj P, Rotstein D, Stauft CB, Rajasagi N, Zhao Y, Wang T, Major M. Combined immunization with SARS-CoV-2 spike and SARS-CoV nucleocapsid protects K18-hACE2 mice but increases lung pathology. NPJ Vaccines 2025; 10:30. [PMID: 39948345 PMCID: PMC11825953 DOI: 10.1038/s41541-025-01085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Vaccines against SARS-CoV-2 have targeted the spike protein and have been successful at preventing disease. However, with the emergence of variants, spike-specific vaccines become less effective. The nucleocapsid protein is relatively conserved among variants of SARS-CoV-2 and is a candidate for addition to spike in next generation vaccines for the induction of T cell protection. Previous studies on SARS-CoV have suggested that the induction of an immune response to nucleocapsid could result in enhanced disease. Using the K18-hACE2 mouse model we investigated immunization with a variant nucleocapsid, from SARS CoV (N1) alone or in combination with spike from SARS-CoV-2 and compared this to nucleocapsid from SARS-CoV-2 (N2). The spike-nucleocapsid-based vaccines conferred protection against SARS-CoV-2 in lungs and brain and decreased lung pathology compared to control mice. However, higher T and B cell immune responses were observed in N1-immunized mice prior to challenge, whether delivered alone or with spike, and immunization with N1 resulted in increased lung pathology compared to immunization with spike or N2. These findings suggest that spike-nucleocapsid-based vaccines are safe and effective, even with variant nucleocapsid sequences, but that viral control in this mouse model may be associated with higher lung pathology, compared to spike immunization alone, due to the immunogenic qualities of the nucleocapsid antigen.
Collapse
Affiliation(s)
- Jaekwan Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Alla Kachko
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Rotstein
- Division of Food Compliance, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, USA
| | - Charles Brandon Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Naveen Rajasagi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yangqing Zhao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tony Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Sergeeva MV, Vasilev K, Romanovskaya-Romanko E, Yolshin N, Pulkina A, Shamakova D, Shurygina AP, Muzhikyan A, Lioznov D, Stukova M. Mucosal Immunization with an Influenza Vector Carrying SARS-CoV-2 N Protein Protects Naïve Mice and Prevents Disease Enhancement in Seropositive Th2-Prone Mice. Vaccines (Basel) 2024; 13:15. [PMID: 39852794 PMCID: PMC11769390 DOI: 10.3390/vaccines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame. Methods: We generated several FluVec-N recombinant vectors by reverse genetics and confirmed the vector's genetic stability, antigen expression in vitro, attenuation, and immunogenicity in a mouse model. We tested the protective potential of FluVec-N intranasal immunization in naïve mice and seropositive Th2-prone mice, primed with aluminium-adjuvanted inactivated SARS-CoV-2. Immune response in immunized and challenged mice was analyzed through serological methods and flow cytometry. Results: Double intranasal immunization of naïve mice with FluVec-N reduced weight loss and viral load in the lungs following infection with the SARS-CoV-2 beta variant. Mice primed with alum-adjuvanted inactivated coronavirus experienced substantial early weight loss and eosinophilia in the lungs during infection, demonstrating signs of enhanced disease. A single intranasal boost immunization with FluVec-N prevented the disease enhancement in primed mice by modulating the local immune response. Protection was associated with the formation of specific IgA and the early activation of virus-specific effector and resident CD8+ lymphocytes in mouse lungs. Conclusions: Our study supports the potential of immunization with influenza vector vaccines to prevent respiratory diseases and associated immunopathology.
Collapse
Affiliation(s)
- Mariia V. Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| | | | | | | | | | | | | | | | | | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| |
Collapse
|
4
|
Lu J, Tan S, Gu H, Liu K, Huang W, Yu Z, Lu G, Wu Z, Gao X, Zhao J, Yao Z, Yi F, Yang Y, Wang H, Hu X, Lu M, Li W, Zhou H, Yu H, Shan C, Lin J. Effectiveness of a broad-spectrum bivalent mRNA vaccine against SARS-CoV-2 variants in preclinical studies. Emerg Microbes Infect 2024; 13:2321994. [PMID: 38377136 PMCID: PMC10906132 DOI: 10.1080/22221751.2024.2321994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Shudan Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Hao Gu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wei Huang
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Zhaoli Yu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Guoliang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| | - Zihan Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| | - Xiaobo Gao
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Zongting Yao
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Feng Yi
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Yantao Yang
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Hu Wang
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Xue Hu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wei Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| | - Hui Zhou
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, People’s Republic of China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Gazzinelli-Guimaraes PH, Jones SM, Voehringer D, Mayer-Barber KD, Samarasinghe AE. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. J Leukoc Biol 2024; 116:1301-1323. [PMID: 39136237 DOI: 10.1093/jleuko/qiae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Indexed: 11/28/2024] Open
Abstract
Eosinophils, traditionally associated as central innate effector cells with type 2 immunity during allergic and helminth parasitic diseases, have recently been revealed to have important roles in tissue homeostasis as well as host defense in a broader variety of infectious diseases. In a dedicated session at the 2023 biennial conference of the International Eosinophil Society titled "Eosinophils in Host Defense," the multifaceted roles eosinophils play against diverse pathogens, ranging from parasites to fungi, bacteria, and viruses, were presented. In this review, the session speakers offer a comprehensive summary of recent discoveries across pathogen classes, positioning eosinophils as pivotal leukocytes in both host defense and pathology. By unraveling the intricacies of eosinophil engagement in host resistance, this exploration may provide valuable insights not only to understand specific underpinnings of eosinophil functions related to each class of pathogens but also to develop novel therapeutics effective against a broad spectrum of infectious diseases.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC 20037, United States
| | - Shelby M Jones
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Wasserturmstrasse 3-5, 91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD 20892, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Children's Foundation Research Institute, 50 N Dunlap Street, Memphis, TN 38103, United States
| |
Collapse
|
6
|
Stepanova E, Isakova-Sivak I, Matyushenko V, Mezhenskaya D, Kudryavtsev I, Kostromitina A, Chistiakova A, Rak A, Bazhenova E, Prokopenko P, Kotomina T, Donina S, Novitskaya V, Sivak K, Karal-Ogly D, Rudenko L. Safety and Immunogenicity Study of a Bivalent Vaccine for Combined Prophylaxis of COVID-19 and Influenza in Non-Human Primates. Vaccines (Basel) 2024; 12:1099. [PMID: 39460266 PMCID: PMC11511058 DOI: 10.3390/vaccines12101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Influenza and SARS-CoV-2 viruses are two highly variable pathogens. We have developed a candidate bivalent live vaccine based on the strain of licensed A/Leningrad/17-based cold-adapted live attenuated influenza vaccine (LAIV) of H3N2 subtype, which expressed SARS-CoV-2 immunogenic T-cell epitopes. A cassette encoding fragments of S and N proteins of SARS-CoV-2 was inserted into the influenza NA gene using the P2A autocleavage site. In this study, we present the results of preclinical evaluation of the developed bivalent vaccine in a non-human primate model. METHODS Rhesus macaques (Macaca mulatta) (n = 3 per group) were immunized intranasally with 7.5 lg EID50 of the LAIV/CoV-2 bivalent vaccine, a control non-modified H3N2 LAIV or a placebo (chorioallantoic fluid) using a sprayer device, twice, with a 28-day interval. The blood samples were collected at days 0, 3, 28 and 35 for hematological and biochemical assessment. Safety was also assessed by monitoring body weight, body temperature and clinical signs of the disease. Immune responses to influenza virus were assessed both by determining serum antibody titers in hemagglutination inhibition assay, microneutralization assay and IgG ELISA. T-cell responses were measured both to influenza and SARS-CoV-2 antigens using ELISPOT and flow cytometry. Three weeks after the second immunization, animals were challenged with 105 PFU of Delta SARS-CoV-2. The body temperature, weight and challenge virus shedding were monitored for 5 days post-challenge. In addition, virus titers in various organs and histopathology were evaluated on day 6 after SARS-CoV-2 infection. RESULTS There was no toxic effect of the immunizations on the hematological and coagulation hemostasis of animals. No difference in the dynamics of the average weight and thermometry results were found between the groups of animals. Both LAIV and LAIV/CoV-2 variants poorly replicated in the upper respiratory tract of rhesus macaques. Nevertheless, despite this low level of virus shedding, influenza-specific serum IgG responses were detected in the group of monkeys immunized with the LAIV/CoV-2 bivalent but not in the LAIV group. Furthermore, T-cell responses to both influenza and SARS-CoV-2 viruses were detected in the LAIV/CoV-2 vaccine group only. The animals were generally resistant to SARS-CoV-2 challenge, with minimal virus shedding in the placebo and LAIV groups. Histopathological changes in vaccinated animals were decreased compared to the PBS group, suggesting a protective effect of the chimeric vaccine candidate. CONCLUSIONS The candidate bivalent vaccine was safe and immunogenic for non-human primates and warrants its further evaluation in clinical trials.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Arina Kostromitina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Anna Chistiakova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Alexandra Rak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Ekaterina Bazhenova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Vlada Novitskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint-Petersburg 197376, Russia;
| | - Dzhina Karal-Ogly
- Center of Preclinical Research, Research Institute of Medical Primatology, Sochi 354376, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| |
Collapse
|
7
|
Yu J, Zhang Y, Ye Z, Tang K, Ma Y, Fu L, Cui T, Kang H, Yuan Y, Pan W. A Multi-Machine Learning Consensus Model Based on Clinical Features Reveals That Interleukin-10 Derived from Monocytes Leads to a Poor Prognosis in Patients with Coronavirus Disease-2019. J Inflamm Res 2024; 17:5923-5942. [PMID: 39247837 PMCID: PMC11378990 DOI: 10.2147/jir.s472099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background Despite ongoing interventions, SARS-CoV-2 continues to cause significant global morbidity and mortality. Early diagnosis and intervention are crucial for effective clinical management. However, prognostic features based on transcriptional data have shown limited effectiveness, highlighting the need for more precise biomarkers to improve COVID-19 treatment outcomes. Methods We retrospectively analyzed 149 clinical features from 189 COVID-19 patients, identifying prognostic features via univariate Cox regression. The cohort was split into training and validation sets, and 77 prognostic models were developed using seven machine learning algorithms. Among these, the least absolute shrinkage and selection operator (Lasso) method was employed to refine the selection of prognostic variables by ten-fold cross-validation strategy, which were then integrated with random survival forests (RSF) to build a robust COVID-19-related prognostic model (CRM). Model accuracy was evaluated across training, validation, and entire cohorts. The diagnostic relevance of interleukin-10 (IL-10) was confirmed in bulk transcriptional data and validated at the single-cell level, where we also examined changes in cellular communication between mononuclear cells with differing IL-10 expression and other immune cells. Results Univariate Cox regression identified 43 prognostic features. Among the 77 machine learning models, the combination of Lasso and RSF produced the most robust CRM. This model consistently performed well across training, validation, and entire cohorts. IL-10 emerged as a key prognostic feature within the CRM, validated by single-cell transcriptional data. Transcriptome analysis confirmed the stable diagnostic value of IL-10, with mononuclear cells identified as the primary IL-10 source. Moreover, differential IL-10 expression in these cells was linked to altered cellular communication in the COVID-19 immune microenvironment. Conclusion The CRM provides accurate prognostic predictions for COVID-19 patients. Additionally, the study underscores the importance of early IL-10 level testing upon hospital admission, which could inform therapeutic strategies.
Collapse
Affiliation(s)
- Jing Yu
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yike Zhang
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhixiong Ye
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun Tang
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yiming Ma
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Linlin Fu
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tongtong Cui
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hening Kang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yadong Yuan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
8
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
9
|
Cheang NYZ, Tan KS, Tan PS, Purushotorma K, Yap WC, Tullett KM, Chua BYL, Yeoh AYY, Tan CQH, Qian X, Chen H, Tay DJW, Caminschi I, Tan YJ, Macary PA, Tan CW, Lahoud MH, Alonso S. Single-shot dendritic cell targeting SARS-CoV-2 vaccine candidate induces broad, durable and protective systemic and mucosal immunity in mice. Mol Ther 2024; 32:2299-2315. [PMID: 38715364 PMCID: PMC11286822 DOI: 10.1016/j.ymthe.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Collapse
Affiliation(s)
- Nicholas You Zhi Cheang
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peck Szee Tan
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kiren Purushotorma
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kirsteen McInnes Tullett
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benson Yen Leong Chua
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Caris Qi Hui Tan
- Histology Core Facility, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xinlei Qian
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huixin Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yee Joo Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anthony Macary
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mireille Hanna Lahoud
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Wymore Brand M, Souza CK, Gauger P, Arruda B, Vincent Baker AL. Biomarkers associated with vaccine-associated enhanced respiratory disease following influenza A virus infection in swine. Vet Immunol Immunopathol 2024; 273:110787. [PMID: 38815504 PMCID: PMC11201273 DOI: 10.1016/j.vetimm.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Influenza A virus (IAV) is a major pathogen in the swine industry. Whole-inactivated virus (WIV) vaccines in swine are highly effective against homologous viruses but provide limited protection to antigenically divergent viruses and may lead to vaccine-associated enhanced respiratory disease (VAERD) after heterologous infection. Although VAERD is reproducible in laboratory studies, clinical diagnosis is challenging, as it would require both knowledge of prior vaccine history and evidence of severe disease by assessment of pathologic lesions at necropsy following infection with a heterologous virus. The objective of this study was to identify potential biomarkers for VAERD for antemortem clinical diagnosis. Naïve pigs were split into two groups, and one group was vaccinated with IAV WIV vaccine. All pigs were then challenged with a heterologous virus to induce VAERD in the vaccinated group and necropsied at 5 days post infection (dpi). Blood was collected on 0, 1, 3, and 5 dpi, and assessed by hematology, plasma chemistry, acute phase proteins, and citrullinated H3 histone (CitH3) assays. Additionally, cytokine and CitH3 levels were assessed in bronchoalveolar lavage fluid (BALF) collected at necropsy. Compared to nonvaccinated challenged pigs, blood collected from vaccinated and challenged (V/C) pigs with VAERD had elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin acute phase proteins, and elevated CitH3. In BALF, the proinflammatory cytokine IL-8 and CitH3 were elevated in V/C pigs. In conclusion, a profile of elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin, and elevated CitH3 may be relevant for a clinical antemortem IAV VAERD diagnosis.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA.
| | - Carine K Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bailey Arruda
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| |
Collapse
|
11
|
Reineking W, Hennig-Pauka I, Schröder L, Höner U, Schreiber E, Geiping L, Lassnig S, Bonilla MC, Hewicker-Trautwein M, de Buhr N. Spontaneous Lethal Outbreak of Influenza A Virus Infection in Vaccinated Sows on Two Farms Suggesting the Occurrence of Vaccine-Associated Enhanced Respiratory Disease with Eosinophilic Lung Pathology. Viruses 2024; 16:955. [PMID: 38932247 PMCID: PMC11209110 DOI: 10.3390/v16060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A virus (IAV) infections in swine are usually subclinical, but they can reach high morbidity rates. The mortality rate is normally low. In this study, six vaccinated, spontaneously deceased sows revealed IAV infection and enhanced neutrophilic bronchopneumonia with unexpectedly large numbers of infiltrating eosinophils. The purpose of this study was to characterize these lung lesions with special emphasis on the phenotypes of inflammatory cells, the presence of eosinophilic peroxidase (EPO), and neutrophil extracellular traps (NETs). The number of Sirius red-stained eosinophils was significantly higher in the lungs of IAV-infected sows compared to healthy pigs, indicating a migration of eosinophils from blood vessels into the lung tissue stimulated by IAV infection. The detection of intra- and extracellular EPO in the lungs suggests its contribution to pulmonary damage. The presence of CD3+ T lymphocytes, CD20+ B lymphocytes, and Iba-1+ macrophages indicates the involvement of cell-mediated immune responses in disease progression. Furthermore, high numbers of myeloperoxidase-positive cells were detected. However, DNA-histone-1 complexes were reduced in IAV-infected sows, leading to the hypothesis that NETs are not formed in the IAV-infected sows. In conclusion, our findings in the lungs of IAV-infected vaccinated sows suggest the presence of so far unreported field cases of vaccine-associated enhanced respiratory disease.
Collapse
Affiliation(s)
- Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany (M.H.-T.)
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | | | - Ulf Höner
- Tierärztliche Praxis in Schöppingen, 48624 Schöppingen, Germany
| | - Elena Schreiber
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | - Lukas Geiping
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | - Simon Lassnig
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marta C. Bonilla
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marion Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany (M.H.-T.)
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
12
|
Qu B, Miskey C, Gömer A, Kleinert RDV, Ibanez SC, Eberle R, Ebenig A, Postmus D, Nocke MK, Herrmann M, Itotia TK, Herrmann ST, Heinen N, Höck S, Hastert FD, von Rhein C, Schürmann C, Li X, van Zandbergen G, Widera M, Ciesek S, Schnierle BS, Tarr AW, Steinmann E, Goffinet C, Pfaender S, Locker JK, Mühlebach MD, Todt D, Brown RJP. TMPRSS2-mediated SARS-CoV-2 uptake boosts innate immune activation, enhances cytopathology, and drives convergent virus evolution. Proc Natl Acad Sci U S A 2024; 121:e2407437121. [PMID: 38814864 PMCID: PMC11161796 DOI: 10.1073/pnas.2407437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- European Virus Bioinformatics Center, 07743Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | | | - Sara Calvo Ibanez
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Regina Eberle
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Dylan Postmus
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Tabitha K. Itotia
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- Department of Physical Sciences, Chuka University, 60400Chuka, Kenya
| | - Simon T. Herrmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Sebastian Höck
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | | | | | - Christoph Schürmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Xue Li
- Department of Cardiology, Medical University Hospital, 69120Heidelberg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, 63225Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131Mainz, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596Frankfurt am Main, Germany
- German Center for Infection Research, 38124Braunschweig, Germany
| | | | - Alexander W. Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, NottinghamNG7 2UH, United Kingdom
- School of Life Sciences and National Institute for Health and Care Research, Nottingham Biomedical Research Centre, University of Nottingham, NottinghamNG7 2UH, United Kingdom
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Christine Goffinet
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology, 20251Hamburg, Germany
- University of Lübeck, 23562Lübeck, Germany
| | - Jacomina Krijnse Locker
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
- Justus Liebig University Geissen, 35390Giessen, Germany
| | - Michael D. Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- German Center for Infection Research, 63225Giessen-Marburg-Langen, Germany
| | - Daniel Todt
- European Virus Bioinformatics Center, 07743Jena, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| |
Collapse
|
13
|
Brunet J, Choucha Z, Gransagne M, Tabbal H, Ku MW, Buchrieser J, Fernandes P, Batalie D, Lopez J, Ma L, Dufour E, Simon E, Hardy D, Petres S, Guinet F, Strick-Marchand H, Monot M, Charneau P, Majlessi L, Duprex WP, Gerke C, Martin A, Escriou N. A measles-vectored vaccine candidate expressing prefusion-stabilized SARS-CoV-2 spike protein brought to phase I/II clinical trials: candidate selection in a preclinical murine model. J Virol 2024; 98:e0169323. [PMID: 38563763 PMCID: PMC11210269 DOI: 10.1128/jvi.01693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.
Collapse
Affiliation(s)
- Jérémy Brunet
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Zaineb Choucha
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Marion Gransagne
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Houda Tabbal
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Min-Wen Ku
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Priyanka Fernandes
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Damien Batalie
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Jodie Lopez
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Emeline Simon
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Françoise Guinet
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocytes and Immunity Unit, Paris, France
| | - Helene Strick-Marchand
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Pierre Charneau
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - W. Paul Duprex
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christiane Gerke
- Institut Pasteur, Université Paris Cité, Innovation Office, Vaccine Programs, Paris, France
| | - Annette Martin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| |
Collapse
|
14
|
Dillard JA, Taft-Benz SA, Knight AC, Anderson EJ, Pressey KD, Parotti B, Martinez SA, Diaz JL, Sarkar S, Madden EA, De la Cruz G, Adams LE, Dinnon KH, Leist SR, Martinez DR, Schäfer A, Powers JM, Yount BL, Castillo IN, Morales NL, Burdick J, Evangelista MKD, Ralph LM, Pankow NC, Linnertz CL, Lakshmanane P, Montgomery SA, Ferris MT, Baric RS, Baxter VK, Heise MT. Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. Nat Commun 2024; 15:3738. [PMID: 38702297 PMCID: PMC11068739 DOI: 10.1038/s41467-024-47450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey C Knight
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katia D Pressey
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Breantié Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sabian A Martinez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Diaz
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E Adams
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah L Morales
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane Burdick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lauren M Ralph
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas C Pankow
- Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Premkumar Lakshmanane
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Dallas Tissue Research, Farmers Branch, TX, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria K Baxter
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Mark T Heise
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Mahalingam G, Marepally S. In a quest for bivalent mRNA vaccine for respiratory viruses: An effective strategy to overcome antigenic competition. Mol Ther 2024; 32:873-874. [PMID: 38503298 PMCID: PMC11163211 DOI: 10.1016/j.ymthe.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore 632002, TN, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore 632002, TN, India.
| |
Collapse
|
16
|
An X, Xiang W, Liu X, Li S, Xu Z, He P, Ge RL, Tang F, Cheng Z, Liu C, Liu G. A Bioengineered Nanovesicle Vaccine Boosts T-B cell Interaction for Immunotherapy of Echinococcus multilocularis. Angew Chem Int Ed Engl 2024; 63:e202319489. [PMID: 38308123 DOI: 10.1002/anie.202319489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Alveolar echinococcosis (AE) is a zoonotic parasitic disease, resulting from being infected with the metacestode larvae of the tapeworm Echinococcus multilocularis (E. multilocularis). Novel prophylactic and therapeutic interventions are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. Bioengineered nano cellular membrane vesicles are widely used for displaying the native conformational epitope peptides because of their unique structure and biocompatibility. In this study, four T-cells and four B-cells dominant epitope peptides of E. multilocularis with high immunogenicity were engineered into the Vero cell surface to construct a membrane vesicle nanovaccine for the treatment of AE. The results showed that the nanovesicle vaccine can efficiently activate dendritic cells, induce specific T/B cells to form a mutually activated circuit, and inhibit E. multilocularis infection. This study presents for the first time a nanovaccine strategy that can completely eliminate the burden of E. multilocularis.
Collapse
Affiliation(s)
- Xiaoyu An
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, R4-A600, Virtual University Park, 19 Gaoxin South Fourth Road, Nanshan District, Shenzhen
| | - Wei Xiang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| | - Shuo Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| | - Pan He
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai Provincial Research Key Laboratory for Hydatid, Qinghai University, 16 Kunlun Road, Xining, Qinghai, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai Provincial Research Key Laboratory for Hydatid, Qinghai University, 16 Kunlun Road, Xining, Qinghai, China
| | - Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, R4-A600, Virtual University Park, 19 Gaoxin South Fourth Road, Nanshan District, Shenzhen
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 4221 Xianganan Road, Xiang 'an District, Xiamen, Fujian, China
| |
Collapse
|
17
|
Nogimori T, Nagatsuka Y, Kobayashi S, Murakami H, Masuta Y, Suzuki K, Tomimaru Y, Noda T, Akita H, Takahama S, Yoshioka Y, Doki Y, Eguchi H, Yamamoto T. Humoral and cellular immune responses to COVID-19 mRNA vaccines in immunosuppressed liver transplant recipients. COMMUNICATIONS MEDICINE 2024; 4:30. [PMID: 38409262 PMCID: PMC10897323 DOI: 10.1038/s43856-024-00448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Liver transplant recipients (LTRs) are at a high risk of severe COVID-19 owing to immunosuppression and comorbidities. LTRs are less responsive to mRNA vaccines than healthy donors (HDs) or other immunosuppressed patients. However, the disruption mechanism in humoral and cellular immune memory responses is unclear. METHODS We longitudinally collected peripheral blood mononuclear cells and plasma samples from HDs (n = 44) and LTRs (n = 54) who received BNT162b2 or mRNA-1273 vaccines. We measured the levels of anti-receptor-binding domain (RBD) antibodies and spike-specific CD4+ and CD8+ T-cell responses. RESULTS Here, we show that the induction of anti-RBD IgG was weaker in LTRs than in HDs. The use of multiple immunosuppressive drugs is associated with lower antibody titers than only calcineurin inhibitor, and limits the induction of CD4+ T-cell responses. However, spike-specific CD4+ T-cell and antibody responses improved with a third vaccination. Furthermore, mRNA vaccine-induced spike-specific CD8+ T cells are quantitatively, but not qualitatively, limited to LTRs. Both CD4+ and CD8+ T cells react to omicron sublineages, regardless of the presence in HDs or LTRs. However, there is no boosting effect of spike-specific memory CD8+ T-cell responses after a third vaccination in HDs or LTRs. CONCLUSIONS The third mRNA vaccination improves both humoral responses and spike-specific CD4+ T-cell responses in LTRs but provides no booster effect for spike-specific memory CD8+ T-cell responses. A third mRNA vaccination could be helpful in LTRs to prevent severe COVID-19, although further investigation is required to elicit CD8+ T-cell responses in LTRs and HDs.
Collapse
Affiliation(s)
- Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yuta Nagatsuka
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Hirotomo Murakami
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, 540-0008, Japan
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, 540-0008, Japan
| | - Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yasuo Yoshioka
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, 540-0008, Japan.
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Bagato O, Balkema-Buschmann A, Todt D, Weber S, Gömer A, Qu B, Miskey C, Ivics Z, Mettenleiter TC, Finke S, Brown RJP, Breithaupt A, Ushakov DS. Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs. Microbiol Spectr 2024; 12:e0246923. [PMID: 38009950 PMCID: PMC10782978 DOI: 10.1128/spectrum.02469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.
Collapse
Affiliation(s)
- Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Water Pollution Research Department, Dokki, Giza, Egypt
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Richard J. P. Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Dmitry S. Ushakov
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
20
|
Nogimori T, Yamamoto T. Comprehensive Immunophenotyping by Polychromatic Cytometry. Methods Mol Biol 2024; 2779:85-97. [PMID: 38526783 DOI: 10.1007/978-1-0716-3738-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The human immune system comprises a diverse array of cells involved in innate and adaptive immunity, and these immune cells coordinate immune responses against pathogens through intricate interactions. Multicolor flow cytometry is a powerful technique for qualitatively and quantitatively measuring the characteristics of immune cells, offering advantages, such as high-dimensional analysis, elucidation of cellular heterogeneity, understanding of pathogenesis, development of therapeutic strategies, and platform flexibility. Here, we demonstrate a new immunophenotyping panel that allows simultaneous evaluation of the characteristics of T and B cells. This panel enables tracking of changes in the immune status due to aging, environmental factors, pathogen infections, and vaccine administration. Additionally, it includes co-stimulatory molecules for assessing the activation state of immune cells and inhibitory checkpoint molecules for evaluating exhaustion status, thereby providing valuable insights into the features of human immune responses. These analyses contribute to understanding the pathophysiology of diseases and developing therapeutic strategies while offering crucial information for assessing the correlation of symptoms with infections and evaluating the efficacy of vaccines.
Collapse
Affiliation(s)
- Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
21
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-associated immunopathology following SARS-CoV-2 breakthrough infection in Spike-vaccinated ACE2-humanized mice. J Med Virol 2024; 96:e29408. [PMID: 38258331 PMCID: PMC10832989 DOI: 10.1002/jmv.29408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Honda-Okubo Y, Bowen R, Barker M, Bielefeldt-Ohmann H, Petrovsky N. Advax-CpG55.2-adjuvanted monovalent or trivalent SARS-CoV-2 recombinant spike protein vaccine protects hamsters against heterologous infection with Beta or Delta variants. Vaccine 2023; 41:7116-7128. [PMID: 37863669 PMCID: PMC10873063 DOI: 10.1016/j.vaccine.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The ongoing evolution of SARS-CoV-2 variants emphasizes the need for vaccines providing broad cross-protective immunity. This study was undertaken to assess the ability of Advax-CpG55.2 adjuvanted monovalent recombinant spike protein (Wuhan, Beta, Gamma) vaccines or a trivalent formulation to protect hamsters againstBeta or Delta virus infection. The ability of vaccines to block virus transmission to naïve co-housed animals was also assessed. In naïve hosts, the Beta variant induced higher virus loads than the Delta variant, and conversely the Delta variant caused more severe disease and was more likely to be associated with virus transmission. The trivalent vaccine formulation provided the best protection against both Beta and Delta infection and also completely prevented virus transmission. The next best performing vaccine was the original monovalent Wuhan-based vaccine. Notably, hamsters that received the monovalent Gamma spike vaccine had the highest viral loads and clinical disease of all the vaccine groups, a potential signal of antibody dependent-enhancement (ADE). These hamsters were also the most likely to transmit Delta virus to naïve recipients. In murine studies, the Gamma spike vaccine induced the highest total spike protein to RBD IgG ratio and the lowest levels of neutralizing antibody, a context that could predispose to ADE. Overall, the study results confirmed that the current SpikoGen® vaccine based on Wuhan spike protein was still able to protect against clinical disease caused by either the Beta or Delta virus variants but suggested additional protection may be obtained by combining it with extra variant spike proteins to make a multivalent formulation. This study highlights the complexity of optimizing vaccine protection against multiple SARS-CoV-2 variants and stresses the need to continue to pursue new and improved COVID-19 vaccines able to provide robust, long-lasting, and broadly cross-protective immunity against constantly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mckinzee Barker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | | |
Collapse
|
23
|
Heise M, Dillard J, Taft-Benz S, Knight A, Anderson E, Pressey K, Parotti B, Martinez S, Diaz J, Sarkar S, Madden E, De la Cruz G, Adams L, Dinnon K, Leist S, Martinez D, Schaefer A, Powers J, Yount B, Castillo I, Morales N, Burdick J, Evangelista MK, Ralph L, Pankow N, Linnertz C, Lakshmanane P, Montgomery S, Ferris M, Baric R, Baxter V. Adjuvant-dependent effects on the safety and efficacy of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. RESEARCH SQUARE 2023:rs.3.rs-3401539. [PMID: 37961507 PMCID: PMC10635311 DOI: 10.21203/rs.3.rs-3401539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease. Consistent with human results, iCoV2 + Alum protected against homologous challenge. However, challenge with a heterologous SARS-related coronavirus, Rs-SHC014-CoV (SHC014), up to at least 10 months post-vaccination, resulted in VAERD in iCoV2 + Alum-vaccinated animals, characterized by pulmonary eosinophilic infiltrates, enhanced pulmonary pathology, delayed viral clearance, and decreased pulmonary function. In contrast, vaccination with iCoV2 in combination with an alternative adjuvant (RIBI) did not induce VAERD and promoted enhanced SHC014 clearance. Further characterization of iCoV2 + Alum-induced immunity suggested that CD4+ T cells were a major driver of VAERD, and these responses were partially reversed by re-boosting with recombinant Spike protein + RIBI adjuvant. These results highlight potential risks associated with vaccine breakthrough in recipients of Alum-adjuvanted inactivated vaccines and provide important insights into factors affecting both the safety and efficacy of coronavirus vaccines in the face of heterologous virus infections.
Collapse
Affiliation(s)
- Mark Heise
- University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Boyd Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | - Prem Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | | | - Victoria Baxter
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
24
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-Associated Immunopathology Following SARS-CoV-2 Breakthrough Infection in Spike-Vaccinated ACE2-humanized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563016. [PMID: 37904941 PMCID: PMC10614945 DOI: 10.1101/2023.10.18.563016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Chang LA, Choi A, Rathnasinghe R, Warang P, Noureddine M, Jangra S, Chen Y, De Geest BG, Schotsaert M. Influenza breakthrough infection in vaccinated mice is characterized by non-pathological lung eosinophilia. Front Immunol 2023; 14:1217181. [PMID: 37600776 PMCID: PMC10437116 DOI: 10.3389/fimmu.2023.1217181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Eosinophils are important mediators of mucosal tissue homeostasis, anti-helminth responses, and allergy. Lung eosinophilia has previously been linked to aberrant Type 2-skewed T cell responses to respiratory viral infection and may also be a consequence of vaccine-associated enhanced respiratory disease (VAERD), particularly in the case of respiratory syncytial virus (RSV) and the formalin-inactivated RSV vaccine. We previously reported a dose-dependent recruitment of eosinophils to the lungs of mice vaccinated with alum-adjuvanted trivalent inactivated influenza vaccine (TIV) following a sublethal, vaccine-matched H1N1 (A/New Caledonia/20/1999; NC99) influenza challenge. Given the differential role of eosinophil subset on immune function, we conducted the investigations herein to phenotype the lung eosinophils observed in our model of influenza breakthrough infection. Here, we demonstrate that eosinophil influx into the lungs of vaccinated mice is adjuvant- and sex-independent, and only present after vaccine-matched sublethal influenza challenge but not in mock-challenged mice. Furthermore, vaccinated and challenged mice had a compositional shift towards more inflammatory eosinophils (iEos) compared to resident eosinophils (rEos), resembling the shift observed in ovalbumin (OVA)-sensitized allergic control mice, however without any evidence of enhanced morbidity or aberrant inflammation in lung cytokine/chemokine signatures. Furthermore, we saw a lung eosinophil influx in the context of a vaccine-mismatched challenge. Additional layers of heterogeneity in the eosinophil compartment were observed via unsupervised clustering analysis of flow cytometry data. Our collective findings are a starting point for more in-depth phenotypic and functional characterization of lung eosinophil subsets in the context of vaccine- and infection-induced immunity.
Collapse
Affiliation(s)
- Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
García-Bernalt Diego J, Singh G, Jangra S, Handrejk K, Laporte M, Chang LA, El Zahed SS, Pache L, Chang MW, Warang P, Aslam S, Mena I, Webb BT, Benner C, García-Sastre A, Schotsaert M. Breakthrough infections by SARS-CoV-2 variants boost cross-reactive hybrid immune responses in mRNA-vaccinated Golden Syrian Hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541294. [PMID: 37425792 PMCID: PMC10327228 DOI: 10.1101/2023.05.22.541294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hybrid immunity to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.
Collapse
Affiliation(s)
- Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Kim Handrejk
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Manon Laporte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Max W Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Brett T Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Christopher Benner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
28
|
Nouailles G, Adler JM, Pennitz P, Peidli S, Teixeira Alves LG, Baumgardt M, Bushe J, Voss A, Langenhagen A, Langner C, Martin Vidal R, Pott F, Kazmierski J, Ebenig A, Lange MV, Mühlebach MD, Goekeri C, Simmons S, Xing N, Abdelgawad A, Herwig S, Cichon G, Niemeyer D, Drosten C, Goffinet C, Landthaler M, Blüthgen N, Wu H, Witzenrath M, Gruber AD, Praktiknjo SD, Osterrieder N, Wyler E, Kunec D, Trimpert J. Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nat Microbiol 2023; 8:860-874. [PMID: 37012419 PMCID: PMC10159847 DOI: 10.1038/s41564-023-01352-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.
Collapse
Affiliation(s)
- Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia M Adler
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Peter Pennitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Peidli
- Institute of Pathology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bushe
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Anne Voss
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Alina Langenhagen
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Fabian Pott
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Aileen Ebenig
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Mona V Lange
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research (DZIF), partner site Gießen-Marburg-Langen, Giessen, Germany
| | - Cengiz Goekeri
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Xing
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Susanne Herwig
- Department of Gynecology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günter Cichon
- Department of Gynecology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB) Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | | | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Pennitz P, Goekeri C, Trimpert J, Wyler E, Ebenig A, Weissfuss C, Mühlebach MD, Witzenrath M, Nouailles G. Protocol to dissociate healthy and infected murine- and hamster-derived lung tissue for single-cell transcriptome analysis. STAR Protoc 2023; 4:101957. [PMID: 36542521 PMCID: PMC9765304 DOI: 10.1016/j.xpro.2022.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
In infectious disease research, single-cell RNA sequencing allows dissection of host-pathogen interactions. As a prerequisite, we provide a protocol to transform solid and complex organs such as lungs into representative diverse, viable single-cell suspensions. Our protocol describes performance of vascular perfusion, pneumonectomy, enzymatic digestion, and mechanical dissociation of lung tissue, as well as red blood cell lysis and counting of isolated cells. A challenge remains, however, to further increase the proportion of pulmonary endothelial cells without compromising on viability. For complete details on the use and execution of this protocol, please refer to Nouailles et al. (2021),1 Wyler et al. (2022),2 and Ebenig et al. (2022).3.
Collapse
Affiliation(s)
- Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.
| | - Cengiz Goekeri
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany; Cyprus International University, Faculty of Medicine, Nicosia, Cyprus.
| | - Jakob Trimpert
- Freie Universität Berlin, Institute of Virology, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Chantal Weissfuss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany; German Center for Infection Research (DZIF), Gießen-Marburg-Langen, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.
| |
Collapse
|
30
|
Christensen D, Polacek C, Sheward DJ, Hanke L, McInerney G, Murrell B, Hartmann KT, Jensen HE, Zimmermann J, Jungersen G, Illigen KE, Isling LK, Fernandez-Antunez C, Ramirez S, Bukh J, Pedersen GK. SARS-CoV-2 spike HexaPro formulated in aluminium hydroxide and administered in an accelerated vaccination schedule partially protects Syrian Hamsters against viral challenge despite low neutralizing antibody responses. Front Immunol 2023; 14:941281. [PMID: 36756130 PMCID: PMC9900178 DOI: 10.3389/fimmu.2023.941281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Charlotta Polacek
- Virus Research and Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Katrine Top Hartmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Louise Krag Isling
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Kristian Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark,*Correspondence: Gabriel Kristian Pedersen,
| |
Collapse
|
31
|
Ko KH, Cha SB, Lee SH, Bae HS, Ham CS, Lee MG, Kim DH, Han SH. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol 2023; 14:1075291. [PMID: 36761735 PMCID: PMC9902914 DOI: 10.3389/fimmu.2023.1075291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Synthetic double-stranded RNA analogs recognized by Toll-like receptor 3 (TLR3) are an attractive adjuvant candidate for vaccines, especially against intracellular pathogens or tumors, because of their ability to enhance T cell and antibody responses. Although poly(I:C) is a representative dsRNA with potent adjuvanticity, its clinical application has been limited due to heterogeneous molecular size, inconsistent activity, poor stability, and toxicity. To overcome these limitations, we developed a novel dsRNA-based TLR3 agonist named NexaVant (NVT) by using PCR-coupled bidirectional in vitro transcription. Agarose gel electrophoresis and reverse phase-HPLC analysis demonstrated that NVT is a single 275-kDa homogeneous molecule. NVT appears to be stable since its appearance, concentration, and molecular size were unaffected under 6 months of accelerated storage conditions. Moreover, preclinical evaluation of toxicity under good laboratory practices showed that NVT is a safe substance without any signs of serious toxicity. NVT stimulated TLR3 and increased the expression of viral nucleic acid sensors TLR3, MDA-5, and RIG-1. When intramuscularly injected into C57BL/6 mice, ovalbumin (OVA) plus NVT highly increased the migration of dendritic cells (DCs), macrophages, and neutrophils into inguinal lymph node (iLN) compared with OVA alone. In addition, NVT substantially induced the phenotypic markers of DC maturation and activation including MHC-II, CD40, CD80, and CD86 together with IFN-β production. Furthermore, NVT exhibited an appropriate adjuvanticity because it elevated OVA-specific IgG, in particular, higher levels of IgG2c (Th1-type) but lower IgG1 (Th2-type). Concomitantly, NVT increased the levels of Th1-type T cells such as IFN-γ+CD4+ and IFN-γ+CD8+ cells in response to OVA stimulation. Collectively, we suggest that NVT with appropriate safety and effectiveness is a novel and promising adjuvant for vaccines, especially those requiring T cell mediated immunity such as viral and cancer vaccines.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Bin Cha
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Hyun Shik Bae
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Chul Soo Ham
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Min-Gyu Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Dong-Ho Kim
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|