1
|
Kotthoff M, Skowron MA, Bremmer F, Parmaksiz F, Kretschmer P, Stephan A, Fichtner A, Lautwein T, Raba K, Fuß J, Köhrer K, Nettersheim D. Induction of SOX17 with stimulation of WNT, TGF-beta, and FGF signaling drives embryonal carcinomas into the yolk-sac tumor lineage resulting in increased cisplatin resistance. Int J Cancer 2025; 156:2210-2224. [PMID: 40025812 PMCID: PMC11970549 DOI: 10.1002/ijc.35385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Relapsing germ cell tumor (GCT) patients often harbor components of the aggressive subtype yolk-sac tumor (YST), suggesting that YST formation is an escape mechanism under therapy. Nevertheless, the molecular mechanisms inducing YST development from its stem cell-like precursor embryonal carcinoma (EC) are largely unexplored. We demonstrated that the induction of the transcription factor SOX17 together with the stimulation of WNT, TGF-beta / Activin, and FGF signaling drives EC cells into the YST lineage. Single cell RNA sequencing revealed that this cell fate switch was accompanied by the upregulation of the typical YST factors AFP, ANKRD1, APOA1, CST1, FOXA2, GATA6, and GPC3 and microRNAs, while pluripotency-related genes NANOG, POU5F1, and SOX2 were downregulated. Chromatin immunoprecipitation followed by sequencing analysis revealed that SOX17 may act in concert with FOXA2 and GATA factors to initiate YST formation. Xenografting of the YST-like cells into nude mice led to the growth of mixed GCT with YST components, confirming that these cells are able to form a YST in vivo. Moreover, the expression of cisplatin resistance factors was induced in a subpopulation of YST-like cells, suggesting that the formation of a YST is accompanied by the acquisition of cisplatin resistance. Indeed, the YST-like cells presented as less sensitive to cisplatin than their parental cells. Our study deciphered the molecular mechanisms forcing EC to differentiate into the YST lineage, which is accompanied by the acquisition of cisplatin resistance, confirming that YST formation is an escape mechanism for GCT under therapy. Thus, GCT patients should be screened for YST elements under therapy to identify patients at risk of developing therapy resistance.
Collapse
Affiliation(s)
- Mara Kotthoff
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Felix Bremmer
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Fatma Parmaksiz
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pia Kretschmer
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Alexander Fichtner
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Lautwein
- Genomics and Transcriptomics Laboratory (GTL), Biomedical Research CenterHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Core Facility Flow Cytometry, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Janina Fuß
- Competence Center for Genomic AnalysisUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory (GTL), Biomedical Research CenterHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)Germany
| |
Collapse
|
2
|
Jauregi-Miguel A, Söderholm S, Weiss T, Nordin A, Ghezzi V, Brütsch SM, Pagella P, van de Grift Y, Zambanini G, Ulisse J, Mattia A, Deviatiiarov R, Faustini E, Moparthi L, Zhong W, Björnsson B, Sandström P, Lundqvist E, Lottersberger F, Koch S, Moor AE, Sun XF, von Castelmur E, Sheng G, Cantù C. The developmental factor TBX3 engages with the Wnt/β-catenin transcriptional complex in colorectal cancer to regulate metastasis genes. Proc Natl Acad Sci U S A 2025; 122:e2419691122. [PMID: 40343989 DOI: 10.1073/pnas.2419691122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/28/2025] [Indexed: 05/11/2025] Open
Abstract
Wnt signaling orchestrates gene expression in a plethora of processes during development and adult cell homeostasis via the action of nuclear β-catenin. Yet, little is known about how β-catenin generates context-specific transcriptional outcomes. Understanding this will reveal how aberrant Wnt/β-catenin signaling causes neoplasia specifically of the colorectal epithelium. We have previously identified the transcription factor TBX3 as a tissue-specific component of the Wnt/β-catenin nuclear complex during mouse forelimb development. In this study, we show that TBX3 is functionally active in human colorectal cancer (CRC). Here, genome-wide binding and transcriptomics analyses reveal that TBX3 regulates cancer metastasis genes in cooperation with Wnt/β-catenin. Proteomics proximity labeling performed across Wnt pathway activation shows that TBX3 engages with several transcription factors and chromatin remodeling complexes found at Wnt responsive elements (WRE). Protein sequence and structure analysis of TBX3 revealed short motifs, including an exposed Asn-Pro-Phe (NPF), that mediate these interactions. Deletion of these motifs abrogates TBX3's proximity to its protein partners and its ability to enhance the Wnt-dependent transcription. TBX3 emerges as a key modulator of the oncogenic activity of Wnt/β-catenin in CRC, and its mechanism of action exposes protein-interaction surfaces as putative druggable targets.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping 58183, Sweden
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping 58183, Sweden
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping 58183, Sweden
| | - Valeria Ghezzi
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Salome M Brütsch
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Department of Physics, Chemistry, and Biology, Division of Biophysics and Bioengineering, Faculty of Science and Engineering, Linköping University, Linköping 58183, Sweden
| | - Yorick van de Grift
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping 58183, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Jacopo Ulisse
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Alessandro Mattia
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420012, Russian Federation
- Endocrinology Research Center, Moscow 115478, Russian Federation
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Elena Faustini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Lavanya Moparthi
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Wenjing Zhong
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Bergthor Björnsson
- Department of Surgery in Linköping, Linköping University, Linköping 58225, Sweden
- Department of Biomedicine and Clinical Sciences, Linköping University, Linköping 58225, Sweden
| | - Per Sandström
- Department of Surgery in Linköping, Linköping University, Linköping 58225, Sweden
- Department of Biomedicine and Clinical Sciences, Linköping University, Linköping 58225, Sweden
| | - Erik Lundqvist
- Department of Biomedicine and Clinical Sciences, Linköping University, Linköping 58225, Sweden
- Department of Surgery, Vrinnevi Hospital, Norrköping, Linköping University, Norrköping 60379, Sweden
| | - Francisca Lottersberger
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Stefan Koch
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, Federal Institute of Technology Zürich, Basel 4056, Switzerland
| | - Xiao-Feng Sun
- Department of Oncology, Division of Surgery, Orthopedics and Oncology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
| | - Eleonore von Castelmur
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Physics, Chemistry and Biology, Division of Chemistry, Faculty of Science and Engineering, Linköping University, Linköping 58183, Sweden
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping 58183, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58225, Sweden
- Science for Life Laboratory, SciLifeLab, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
3
|
Veitia RA. Rethinking transcription factor dynamics and transcription regulation in eukaryotes. Trends Biochem Sci 2025; 50:376-384. [PMID: 40044550 DOI: 10.1016/j.tibs.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 05/04/2025]
Abstract
Transcription factors (TFs) control gene expression by binding to specific DNA motifs in cis-regulatory elements. Cooperativity has been thought to ensure TF binding specificity. Recent research suggests that, at least in yeast, the role of cooperativity has probably been overemphasized. Consequently, synergy - the collective recruitment of the transcriptional machinery by TFs bound at multiple DNA sites - emerges as a more significant mechanism for achieving the specificity of the transcriptional response. Furthermore, I argue that the concentration of TFs within phase-separated nuclear condensates and their covalent modifications play an underappreciated but crucial role in sharpening transcriptional responses through complementary mechanisms. A model integrating cooperativity, synergy, post-translational modifications, and phase separation provides a comprehensive framework to explain dynamic, context-specific transcriptional responses in eukaryotes.
Collapse
Affiliation(s)
- Reiner A Veitia
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod, F-75006, Paris, France; Université Paris-Saclay, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France.
| |
Collapse
|
4
|
Martinez-Marin D, Stroman GC, Fulton CJ, Pruitt K. Frizzled receptors: gatekeepers of Wnt signaling in development and disease. Front Cell Dev Biol 2025; 13:1599355. [PMID: 40376615 PMCID: PMC12078226 DOI: 10.3389/fcell.2025.1599355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Frizzled (FZD) receptors are a subset of G-protein-coupled receptors (GPCRs), the largest class of human cell surface receptors and a major target of FDA-approved drugs. Activated by Wnt ligands, FZDs regulate key cellular processes such as proliferation, differentiation, and polarity, positioning them at the intersection of developmental biology and disease, including cancer. Despite their significance, FZD signaling remains incompletely understood, particularly in distinguishing receptor-specific roles across canonical and non-canonical Wnt pathways. Challenges include defining ligand-receptor specificity, elucidating signal transduction mechanisms, and understanding the influence of post translational modifications and the cellular context. Structural dynamics, receptor trafficking, and non-canonical signaling contributions also remain areas of active investigation. Recent advances in structural biology, transcriptomics, and functional genomics are beginning to address these gaps, while emerging therapeutic approaches-such as small-molecule modulators and antibodies-highlight the potential of FZDs as drug targets. This review synthesizes current insights into FZD receptor biology, examines ongoing controversies, and outlines promising directions for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Morabito RD, Tatarakis D, Swick R, Stettnisch S, Schilling TF, Horsfield JA, Martin BL. The ratio of Wnt signaling activity to Sox2 transcription factor levels predicts neuromesodermal fate potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633481. [PMID: 39868081 PMCID: PMC11761523 DOI: 10.1101/2025.01.16.633481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue. We used this unique signature to identify the previously unknown anatomical position of a progenitor population that gives rise to the midline tissues of the floor plate of the spinal cord and the mesodermal notochord. Thus, quantification of the active Wnt signaling to Sox2 ratio can be used to predict and identify cells with neuromesodermal potential. We also developed the auxin inducible degron 2 system for use in zebrafish to test the temporal role that Sox2 plays during midline formation. We found ectopic Sox2 in the presence of Wnt activity holds cells in the undifferentiated floor plate/notochord progenitor state, and that degradation of the ectopic Sox2 is required for cells to adopt a notochord fate.
Collapse
Affiliation(s)
- Robert D. Morabito
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| | - David Tatarakis
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ryan Swick
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| | - Samantha Stettnisch
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
| | - Benjamin L. Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11733, USA
| |
Collapse
|
6
|
Trinh LT, Finnel RR, Osipovich AB, Musselman JR, Sampson LL, Wright CVE, Magnuson MA. Positive autoregulation of Sox17 is necessary for gallbladder and extrahepatic bile duct formation. Development 2025; 152:dev203033. [PMID: 39745200 PMCID: PMC11829758 DOI: 10.1242/dev.203033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Expression of SRY-box transcription factor 17 (Sox17) in the endodermal region caudal to the hepatic diverticulum during late gastrulation is necessary for hepato-pancreato-biliary system formation. Analysis of an allelic series of promoter-proximal mutations near the transcription start site (TSS) 2 of Sox17 in mouse has revealed that gallbladder (GB) and extrahepatic bile duct (EHBD) development is exquisitely sensitive to Sox17 expression levels. Deletion of a SOX17-binding cis-regulatory element in the TSS2 promoter impairs GB and EHBD development by reducing outgrowth of the nascent biliary bud. These findings reveal the existence of a SOX17-dependent autoregulatory loop that drives Sox17 expression above a critical threshold concentration necessary for GB and EHBD development to occur, and that minor impairments in Sox17 gene expression are sufficient to impair the expression of SOX17-regulated genes in the nascent GB and EHBD system, impairing or preventing development.
Collapse
Affiliation(s)
- Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryan R. Finnel
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B. Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Leesa L. Sampson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V. E. Wright
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A. Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
8
|
Wu PV, Fish M, Hazard FK, Zhu C, Vennam S, Walton H, Wagh D, Coller J, Przybyl J, Morri M, Neff N, West RB, Nusse R. A developmental biliary lineage program cooperates with Wnt activation to promote cell proliferation in hepatoblastoma. Nat Commun 2024; 15:10007. [PMID: 39567523 PMCID: PMC11579301 DOI: 10.1038/s41467-024-53802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Cancers evolve not only through the acquisition and clonal transmission of somatic mutations but also by epigenetic mechanisms that modify cell phenotype. Here, we use histology-guided and spatial transcriptomics to characterize hepatoblastoma, a childhood liver cancer that exhibits significant histologic and proliferative heterogeneity despite clonal activating mutations in the Wnt/β-catenin pathway. Highly proliferative regions with embryonal histology show high expression of Wnt target genes, the embryonic biliary transcription factor SOX4, and striking focal expression of the growth factor FGF19. In patient-derived tumoroids with constitutive Wnt activation, FGF19 is a required growth signal for FGF19-negative cells. Indeed, some tumoroids contain subsets of cells that endogenously express FGF19, downstream of Wnt/β-catenin and SOX4. Thus, the embryonic biliary lineage program cooperates with stabilized nuclear β-catenin, inducing FGF19 as a paracrine growth signal that promotes tumor cell proliferation, together with active Wnt signaling. In this pediatric cancer presumed to originate from a multipotent hepatobiliary progenitor, lineage-driven heterogeneity results in a functional growth advantage, a non-genetic mechanism whereby developmental lineage programs influence tumor evolution.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Matt Fish
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannah Walton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Population Health, NYC Health + Hospitals, New York, NY, 10004, USA
| | - Dhananjay Wagh
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - John Coller
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - Joanna Przybyl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Surgery, McGill University, Montreal, H4A 3J1, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
| | - Maurizio Morri
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
- Altos Labs, Redwood City, CA, 94065, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Johal S, Elsayed R, Panfilio KA, Nelson AC. The molecular basis for functional divergence of duplicated SOX factors controlling endoderm formation and left-right patterning in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579092. [PMID: 39605568 PMCID: PMC11601245 DOI: 10.1101/2024.02.06.579092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Endoderm, one of three primary germ layers of vertebrate embryos, makes major contributions to the respiratory and gastrointestinal tracts and associated organs, including liver and pancreas. In mammals, the transcription factor SOX17 is vital for endoderm organ formation and can induce endoderm progenitor identity. Duplication of ancestral sox17 in the teleost lineage produced the paralogues sox32 and sox17 in zebrafish. Sox32 is required for specification of endoderm and progenitors of the left-right organiser (Kupffer's Vesicle, KV), with Sox17 a downstream target of Sox32 that is implicated in further KV development. Phenotypic evidence therefore suggests functional similarities between zebrafish Sox32 and Sox17 and mammalian SOX17. Here, we directly compare these orthologues and paralogues, using the early zebrafish embryo as a biological platform for functional testing. Our results indicate that, unlike Sox32, human SOX17 cannot induce endoderm specification in zebrafish. Furthermore, using hybrid protein functional analyses, we show that Sox32 specificity for the endoderm gene regulatory network is linked to evolutionary divergence in its DNA-binding HMG domain from its paralogue Sox17. Additionally, changes in the C-terminal regions of Sox32 and Sox17 underpin their differing target specificities. Finally, we establish that specific conserved peptides in the C-terminal domain are essential for the role of Sox17 in establishing correct organ asymmetry. Overall, our results illuminate the molecular basis for functional divergence of Sox32 and Sox17 in vertebrate endoderm development and left-right patterning, and the evolution of SoxF transcription factor function.
Collapse
|
10
|
Li M, Jin H, Zhao Y, Zhu G, Liu Y, Long H, Shen X. PHD2 safeguards modest mesendoderm development. Commun Biol 2024; 7:1100. [PMID: 39244636 PMCID: PMC11380689 DOI: 10.1038/s42003-024-06824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
PHD2 is essential in modulating HIF-1α levels upon oxygen fluctuations. Hypoxia, a hallmark of uterus, and HIF-1α have recently emerged as opposing regulators of mesendoderm specification, suggesting a role for PHD2 therein. We found that PHD2 expression initially covered the epiblast and gradually receded from the primitive streak, which was identical to hypoxia and exclusive to HIF-1α. The investigations performed in mESCs, embryoids, and mouse embryos together demonstrated that PHD2 negatively regulated mesendoderm specification. Single-cell RNA sequencing revealed that PHD2 governed the transition from epiblast to mesendoderm. The downstream effect of PHD2 relied on the HIF-1α regulated Wnt/β-catenin pathway, while it was regulated upstream by miR-429. In summary, our research highlights PHD2's essential role in mesendoderm specification and its interactions with hypoxia and HIF-1α.
Collapse
Affiliation(s)
- Meng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huaizhang Jin
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yun Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guoping Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
11
|
Pozdnyakov IR, Selyuk AO, Kalashnikova VA, Karpov SA. HMG-B transcription factors of unicellular opisthokonts and their relatedness to the Sox-Tcf/Lef-Mata proteins of Metazoa and fungi. Gene 2024; 921:148520. [PMID: 38702020 DOI: 10.1016/j.gene.2024.148520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
A phylogenetic analysis of transcription factors of the Sox-Tcf/Lef-Mata (STM) family of the HMG-B superfamily was carried out in order to clarify the evolutionary roots of the Wnt signaling pathway in unicellular organisms. The data set for analysis included protein sequences of metazoans, fungi, unicellular opisthokonts, apusomonads and amoebozoans. The topology of the phylogenetic tree suggests that STM-related proteins arose in the common ancestor of Opisthokonta and Amoebozoa, two of amoebozoan STM proteins are sister-related to opisthokont ones and the three known lineages of STM transcription factors (STM family in narrow sence) are found in Opisthokonta only. Of these, the holozoan Sox protein branch is the result of either the first or second branching, that originated in the common ancestor of Opisthokonta. The lineage containing Tcf/Lef proteins (holozoan) and the lineage containing Mata proteins (holomycotan) are sister. They derived either at the time of the Holozoa and Holomycota divergence or originate from two paralogs of the common ancestor of Opisthokonta, which arose after the separation of the Sox lineage. Interaction with Armadillo-like proteins may be an original feature of the STM protein family and existed in the unicellular ancestors of multicellular animals; a connection is possible between the presence of Mata-related proteins in Aphelidium protococcorum and specific genome feature of this species.
Collapse
Affiliation(s)
- Igor R Pozdnyakov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia.
| | - Alexey O Selyuk
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg 199034, Russia
| | - Vera A Kalashnikova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg 199034, Russia
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
12
|
Ma X, Dai L, Tan C, Li J, He X, Wang Y, Xue J, Huang M, Ren J, Xia Y, Wu Q, Zhao H, Chan WY, Feng B. β-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions. Cell Biosci 2024; 14:96. [PMID: 39049023 PMCID: PMC11267888 DOI: 10.1186/s13578-024-01279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation. RESULTS In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN148C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN90) had limited ability to induce DE lineage. Notably, the ΔN148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes. CONCLUSION Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.
Collapse
Affiliation(s)
- Xun Ma
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liujiang Dai
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Chunlai Tan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiangchuan Li
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianwei Ren
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
13
|
Bell I, Khan H, Stutt N, Horn M, Hydzik T, Lum W, Rea V, Clapham E, Hoeg L, Van Raay TJ. Nkd1 functions downstream of Axin2 to attenuate Wnt signaling. Mol Biol Cell 2024; 35:ar93. [PMID: 38656801 PMCID: PMC11244159 DOI: 10.1091/mbc.e24-02-0059-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic β-catenin, and Nkd1 functions to inhibit the nuclear localization of β-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of β-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/β-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.
Collapse
Affiliation(s)
- Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Haider Khan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Nathan Stutt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew Horn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Teesha Hydzik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Whitney Lum
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Emma Clapham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Lisa Hoeg
- Department of Bioinformatics, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| |
Collapse
|
14
|
Treccarichi S, Calì F, Vinci M, Ragalmuto A, Musumeci A, Federico C, Costanza C, Bottitta M, Greco D, Saccone S, Elia M. Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Curr Issues Mol Biol 2024; 46:6407-6422. [PMID: 39057025 PMCID: PMC11276073 DOI: 10.3390/cimb46070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
SRY-box transcription factor (SOX) genes, a recently discovered gene family, play crucial roles in the regulation of neuronal stem cell proliferation and glial differentiation during nervous system development and neurogenesis. Whole exome sequencing (WES) in patients presenting with generalized epilepsy, intellectual disability, and childhood emotional behavioral disorder, uncovered a de novo variation within SOX12 gene. Notably, this gene has never been associated with neurodevelopmental disorders. No variants in known genes linked with the patient's symptoms have been detected by the WES Trio analysis. To date, any MIM phenotype number associated with intellectual developmental disorder has not been assigned for SOX12. In contrast, both SOX4 and SOX11 genes within the same C group (SoxC) of the Sox gene family have been associated with neurodevelopmental disorders. The variant identified in the patient here described was situated within the critical high-mobility group (HMG) functional site of the SOX12 protein. This domain, in the Sox protein family, is essential for DNA binding and bending, as well as being responsible for transcriptional activation or repression during the early stages of gene expression. Sequence alignment within SoxC (SOX12, SOX4 and SOX11) revealed a high conservation rate of the HMG region. The in silico predictive analysis described this novel variant as likely pathogenic. Furthermore, the mutated protein structure predictions unveiled notable changes with potential deleterious effects on the protein structure. The aim of this study is to establish a correlation between the SOX12 gene and the symptoms diagnosed in the patient.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Alda Ragalmuto
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Carola Costanza
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy;
| | - Maria Bottitta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (F.C.); (M.V.); (A.R.); (A.M.); (M.B.); (D.G.); (M.E.)
| |
Collapse
|
15
|
Xu Y, Yu Y, Yan R, Ke X, Qu Y. Modulating β-catenin homeostasis for cancer therapy. Trends Cancer 2024; 10:507-518. [PMID: 38521655 DOI: 10.1016/j.trecan.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
β-Catenin is a well-established driver of many cancers; however, there are challenges in developing agents targeting β-catenin for clinical use. Recent progress has indicated that most of the pathological changes in β-catenin may be commonly caused by loss of protein homeostasis. Modulation of β-catenin homeostasis, especially by hyperactivation of β-catenin, potentially leads to robust antitumor outcomes. Here, we comprehensively dissect the protein homeostasis of β-catenin in terms of time, compartmentalization, supramolecular assemblies, and dynamics, with emphasis on changes in β-catenin homeostasis upon oncogenic mutations. We propose that altered β-catenin homeostasis could be deleterious for β-catenin-dependent cancers and that modulation of β-catenin homeostasis offers a novel avenue for targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yu Xu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Ying Yu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
16
|
Cooper F, Souilhol C, Haston S, Gray S, Boswell K, Gogolou A, Frith TJR, Stavish D, James BM, Bose D, Kim Dale J, Tsakiridis A. Notch signalling influences cell fate decisions and HOX gene induction in axial progenitors. Development 2024; 151:dev202098. [PMID: 38223992 PMCID: PMC10911136 DOI: 10.1242/dev.202098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.
Collapse
Affiliation(s)
- Fay Cooper
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Celine Souilhol
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Scott Haston
- Developmental Biology and Cancer, Birth Defects Research Centre, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Shona Gray
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Katy Boswell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Antigoni Gogolou
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas J. R. Frith
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Dylan Stavish
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Bethany M. James
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Daniel Bose
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jacqueline Kim Dale
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Anestis Tsakiridis
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
17
|
Matsui S, Granitto M, Buckley M, Ludwig K, Koigi S, Shiley J, Zacharias WJ, Mayhew CN, Lim HW, Iwafuchi M. Pioneer and PRDM transcription factors coordinate bivalent epigenetic states to safeguard cell fate. Mol Cell 2024; 84:476-489.e10. [PMID: 38211589 PMCID: PMC10872272 DOI: 10.1016/j.molcel.2023.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.
Collapse
Affiliation(s)
- Satoshi Matsui
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marissa Granitto
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan Buckley
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Katie Ludwig
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sandra Koigi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Shiley
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - William J Zacharias
- Division of Pulmonary Biology and Pulmonary and Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christopher N Mayhew
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
19
|
Simmons Beck R, Liang OD, Klinger JR. Light at the ENDothelium-role of Sox17 and Runx1 in endothelial dysfunction and pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1274033. [PMID: 38028440 PMCID: PMC10656768 DOI: 10.3389/fcvm.2023.1274033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that is characterized by an obliterative vasculopathy of the distal pulmonary circulation. Despite significant progress in our understanding of the pathophysiology, currently approved medical therapies for PAH act primarily as pulmonary vasodilators and fail to address the underlying processes that lead to the development and progression of the disease. Endothelial dysregulation in response to stress, injury or physiologic stimuli followed by perivascular infiltration of immune cells plays a prominent role in the pulmonary vascular remodeling of PAH. Over the last few decades, our understanding of endothelial cell dysregulation has evolved and brought to light a number of transcription factors that play important roles in vascular homeostasis and angiogenesis. In this review, we examine two such factors, SOX17 and one of its downstream targets, RUNX1 and the emerging data that implicate their roles in the pathogenesis of PAH. We review their discovery and discuss their function in angiogenesis and lung vascular development including their roles in endothelial to hematopoietic transition (EHT) and their ability to drive progenitor stem cells toward an endothelial or myeloid fate. We also summarize the data from studies that link mutations in Sox17 with an increased risk of developing PAH and studies that implicate Sox17 and Runx1 in the pathogenesis of PAH. Finally, we review the results of recent studies from our lab demonstrating the efficacy of preventing and reversing pulmonary hypertension in animal models of PAH by deleting RUNX1 expression in endothelial or myeloid cells or by the use of RUNX1 inhibitors. By investigating PAH through the lens of SOX17 and RUNX1 we hope to shed light on the role of these transcription factors in vascular homeostasis and endothelial dysregulation, their contribution to pulmonary vascular remodeling in PAH, and their potential as novel therapeutic targets for treating this devastating disease.
Collapse
Affiliation(s)
- Robert Simmons Beck
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - Olin D. Liang
- Division of Hematology/Oncology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - James R. Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Ishioka M, Nihashi Y, Sunagawa Y, Umezawa K, Shimosato T, Kagami H, Morimoto T, Takaya T. Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells. Int J Mol Sci 2023; 24:14380. [PMID: 37762684 PMCID: PMC10532123 DOI: 10.3390/ijms241814380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Mina Ishioka
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
21
|
Bugacov H, Der B, Kim S, Lindström NO, McMahon AP. Canonical Wnt transcriptional complexes are essential for induction of nephrogenesis but not maintenance or proliferation of nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554044. [PMID: 37662369 PMCID: PMC10473675 DOI: 10.1101/2023.08.20.554044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Wnt regulated transcriptional programs are associated with both the maintenance of mammalian nephron progenitor cells (NPC) and their induction, initiating the process of nephrogenesis. How opposing transcriptional roles are regulated remain unclear. Using an in vitro model replicating in vivo events, we examined the requirement for canonical Wnt transcriptional complexes in NPC regulation. In canonical transcription, Lef/Tcf DNA binding proteins associate the transcriptional co-activator β-catenin. Wnt signaling is readily substituted by CHIR99021, a small molecule antagonist of glycogen synthase kinase-3β (GSK3β). GSK3β inhibition blocks Gskβ-dependent turnover of β-catenin, enabling formation of Lef/Tcf/β-catenin transcriptional complexes, and enhancer-mediated transcriptional activation. Removal of β-catenin activity from NPCs under cell expansion conditions (low CHIR) demonstrated a non-transcriptional role for β-catenin in the CHIR-dependent proliferation of NPCs. In contrast, CHIR-mediated induction of nephrogenesis, on switching from low to high CHIR, was dependent on Lef/Tcf and β-catenin transcriptional activity. These studies point to a non-transcriptional mechanism for β-catenin in regulation of NPCs, and potentially other stem progenitor cell types. Further, analysis of the β-catenin-directed transcriptional response provides new insight into induction of nephrogenesis. Summary Statement The study provides a mechanistic understanding of Wnt/ β-catenin activity in self-renewal and differentiation of mammalian nephron progenitors.
Collapse
|
22
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
23
|
Pagella P, Söderholm S, Nordin A, Zambanini G, Ghezzi V, Jauregi-Miguel A, Cantù C. The time-resolved genomic impact of Wnt/β-catenin signaling. Cell Syst 2023; 14:563-581.e7. [PMID: 37473729 DOI: 10.1016/j.cels.2023.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Wnt signaling orchestrates gene expression via its effector, β-catenin. However, it is unknown whether β-catenin binds its target genomic regions simultaneously and how this impacts chromatin dynamics to modulate cell behavior. Using a combination of time-resolved CUT&RUN against β-catenin, ATAC-seq, and perturbation assays in different cell types, we show that Wnt/β-catenin physical targets are tissue-specific, β-catenin "moves" on different loci over time, and its association to DNA accompanies changing chromatin accessibility landscapes that determine cell behavior. In particular, Wnt/β-catenin progressively shapes the chromatin of human embryonic stem cells (hESCs) as they undergo mesodermal differentiation, a behavior that we define as "plastic." In HEK293T cells, on the other hand, Wnt/β-catenin drives a transient chromatin opening, followed by re-establishment of the pre-stimulation state, a response that we define as "elastic." Future experiments shall assess whether other cell communication mechanisms, in addition to Wnt signaling, are ruled by time, cellular idiosyncrasies, and chromatin constraints. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Valeria Ghezzi
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
24
|
Wang B, Zhang J, Wang X, Zhao L, Wang Y, Fan Z, Liu L, Gao W. Identification and clinical validation of key genes as the potential biomarkers in colorectal adenoma. BMC Cancer 2023; 23:39. [PMID: 36631756 PMCID: PMC9832797 DOI: 10.1186/s12885-022-10422-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC), ranking third in cancer prevalence and second in mortality worldwide, is mainly derived from colorectal adenoma (CRA). CRA is a common benign disease in the intestine with rapidly increasing incidence and malignant potential. Therefore, this study aimed to recognize significant biomarkers and original pathogenesis in CRA. METHODS Transcriptome data of GSE8671, GSE37364, and GSE15960 were downloaded from the Gene Expression Omnibus (GEO) datasets, and differentially expressed genes (DEGs) were screened. Functional pathways enrichment, protein-protein interaction (PPI) network, stem-correlation analysis, CIBERSORT, risk score and survival analyses were performed. RT-qPCR and immunohistochemical staining were applied to verify our results. RESULTS: Screening for significant DEGs in each dataset, we identified 230 robust DEGs, including 127 upregulated and 103 downregulated genes. Functional pathways enrichment showed that these DEGs were distinctly enriched in various tumor-associated pathways, such as growth factor activity, extracellular structure organization, neutrophil activation, and inflammatory response. We filtered out two hub genes via STRING and Modules analysis, including CA2 and HSD11B2. Stem-correlation analysis displayed that hub genes were negatively associated with stem-related genes (Olfm4, CD44, CCND1 and MYC). The CIBERSORT algorithm indicated that Macrophage2, activated mast cells, and Neutrophils promoted CRA progression through inflammation. Survival analysis showed that CA2 and HSD11B2 were positively associated with survival outcomes in CRC. CONCLUSION Our study has successfully identified the critical role of two core genes in the development and oncogenesis of CRA, which provides novel insight into the underlying pathogenesis, potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bangting Wang
- Digestive Endoscopy Department, The First Affiliated Hospital With Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Jiting Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lili Zhao
- Digestive Endoscopy Department, The First Affiliated Hospital With Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yan Wang
- Digestive Endoscopy Department, The First Affiliated Hospital With Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Zhining Fan
- Digestive Endoscopy Department, The First Affiliated Hospital With Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Li Liu
- Digestive Endoscopy Department, The First Affiliated Hospital With Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China.
| | - Wenqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Clark E, Battistara M, Benton MA. A timer gene network is spatially regulated by the terminal system in the Drosophila embryo. eLife 2022; 11:e78902. [PMID: 36524728 PMCID: PMC10065802 DOI: 10.7554/elife.78902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete, and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.
Collapse
Affiliation(s)
- Erik Clark
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Margherita Battistara
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Matthew A Benton
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Developmental Biology Unit, EMBLHeidelbergGermany
| |
Collapse
|
26
|
Ramakrishnan AB, Burby PE, Adiga K, Cadigan KM. SOX9 and TCF transcription factors associate to mediate Wnt/β-catenin target gene activation in colorectal cancer. J Biol Chem 2022; 299:102735. [PMID: 36423688 PMCID: PMC9771724 DOI: 10.1016/j.jbc.2022.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of the Wnt/β-catenin pathway regulates gene expression by promoting the formation of a β-catenin-T-cell factor (TCF) complex on target enhancers. In addition to TCFs, other transcription factors interact with the Wnt/β-catenin pathway at different levels to produce tissue-specific patterns of Wnt target gene expression. The transcription factor SOX9 potently represses many Wnt target genes by downregulating β-catenin protein levels. Here, we find using colony formation and cell growth assays that SOX9 surprisingly promotes the proliferation of Wnt-driven colorectal cancer (CRC) cells. In contrast to how it indirectly represses Wnt targets, SOX9 directly co-occupies and activates multiple Wnt-responsive enhancers in CRC cells. Our examination of the binding site grammar of these enhancers shows the presence of TCF and SOX9 binding sites that are necessary for transcriptional activation. In addition, we identify a physical interaction between the DNA-binding domains of TCFs and SOX9 and show that TCF-SOX9 interactions are important for target gene regulation and CRC cell growth. Our work demonstrates a highly context-dependent effect of SOX9 on Wnt targets, with the presence or absence of SOX9-binding sites on Wnt-regulated enhancers determining whether they are directly activated or indirectly repressed by SOX9.
Collapse
|