1
|
Solsona‐Vilarrasa E, Vousden KH. Obesity, white adipose tissue and cancer. FEBS J 2025; 292:2189-2207. [PMID: 39496581 PMCID: PMC12062788 DOI: 10.1111/febs.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
White adipose tissue (WAT) is crucial for whole-body energy homeostasis and plays an important role in metabolic and hormonal regulation. While healthy WAT undergoes controlled expansion and contraction to meet the body's requirements, dysfunctional WAT in conditions like obesity is characterized by excessive tissue expansion, alterations in lipid homeostasis, inflammation, hypoxia, and fibrosis. Obesity is strongly associated with an increased risk of numerous cancers, with obesity-induced WAT dysfunction influencing cancer development through various mechanisms involving both systemic and local interactions between adipose tissue and tumors. Unhealthy obese WAT affects circulating levels of free fatty acids and factors like leptin, adiponectin, and insulin, altering systemic lipid metabolism and inducing inflammation that supports tumor growth. Similar mechanisms are observed locally in an adipose-rich tumor microenvironment (TME), where WAT cells can also trigger extracellular matrix remodeling, thereby enhancing the TME's ability to promote tumor growth. Moreover, tumors reciprocally interact with WAT, creating a bidirectional communication that further enhances tumorigenesis. This review focuses on the complex interplay between obesity, WAT dysfunction, and primary tumor growth, highlighting potential targets for therapeutic intervention.
Collapse
|
2
|
Beeghly GF, Pincus MI, Varshney RR, Giri DD, Falcone DJ, Rudolph MC, Antonyak MA, Iyengar NM, Fischbach C. Hypertrophic adipocytes increase extracellular vesicle-mediated lipid release and reprogram breast cancer cell metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645549. [PMID: 40236195 PMCID: PMC11996363 DOI: 10.1101/2025.03.28.645549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Obesity worsens cancer-specific survival and all-cause mortality for women diagnosed with breast cancer. Rich in adipose tissue, the breast exhibits increased adipocyte size in obesity, which correlates with poor prognosis. However, adipocyte size is highly heterogeneous as adipose tissue expands through both hyperplasia and hypertrophy; and adipocyte size can increase independently of weight gain. Despite these observations, the impact of adipocyte size on breast cancer cell behavior remains unclear due to insufficient approaches to isolate adipocytes based on size and maintain them in culture for mechanistic studies. Here, we develop strategies to culture size-sorted adipocytes from two mouse models of obesity and test their functional impact on tumor cell malignancy. We find that large adipocytes are transcriptionally distinct from small adipocytes and are enriched for gene sets related to adipose tissue dysfunction, including altered lipid processing. In coculture studies, large adipocytes promote lipid accumulation in breast cancer cells, and enhance their migration, proliferation, and aerobic metabolism in a manner dependent on fatty acid oxidation. These changes coincide with increased release of extracellular vesicles by large versus small adipocytes, which transfer lipid to recipient tumor cells. Moving forward, our findings suggest that adipocyte size could serve as a prognostic biomarker for women with breast cancer and help identify new therapeutic targets to advance clinical outcomes for these patients.
Collapse
|
3
|
Jiang X, Xiong Y, Yu J, Avellino A, Liu S, Han X, Wang Z, Shilyansky JS, Curry MA, Hao J, Sauter ER, Huang Y, Sugg SL, Li B. Expression profiles of FABP4 and FABP5 in breast cancer: clinical implications and perspectives. Discov Oncol 2025; 16:357. [PMID: 40106183 PMCID: PMC11923334 DOI: 10.1007/s12672-025-02117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The incidence of breast cancer continues to rise each year despite significant advances in diagnosis and treatment. Obesity-associated dysregulated lipid metabolism is believed to contribute to the increasing risk of breast cancer. However, the mechanisms linking lipid dysregulation to breast cancer risk and progression remain to be determined. The family of fatty acid binding proteins (FABPs) evolves to facilitate lipid transport and metabolism. As the predominant isoforms of FABP members expressed in breast tissue, adipose FABP (A-FABP, also known as FABP4) and epithelial FABP (E-FABP, FABP5) have been shown to play critical roles in breast carcinogenesis. In this study, we collected surgical breast tissue samples from 96 women with different subtypes of breast cancer and comprehensively analyzed the expression pattens of FABP4 and FABP5. We found that distinct expression profiles of FABP4 and FABP5 were associated with their unique roles in breast cancer development. FABP4, mainly expressed in breast stroma, especially in adipose tissue, likely supported neighboring tumor cell lymphovascular invasion through secretion from adipocytes. In contrast, FABP5, primarily expressed in epithelial-derived tumor cells, could promote tumor metastasis by enhancing lipid metabolism. Thus, elevated levels of FABP4 and FABP5 may serve as poor prognostic markers for breast cancer. Inhibiting the activity of FABP4 and/or FABP5 may offer a novel strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Xingshan Jiang
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Anthony Avellino
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Shanshan Liu
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Xiaochun Han
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Zhaohua Wang
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Jonathan S Shilyansky
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Melissa A Curry
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Jiaqing Hao
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | | | - Yi Huang
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Li Y, Zhang H, Ibáñez CF, Xie M. Characterization of subcutaneous and visceral de-differentiated fat cells. Mol Metab 2025; 93:102105. [PMID: 39884650 PMCID: PMC11848481 DOI: 10.1016/j.molmet.2025.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE The capacity of mature adipocytes to de-differentiate into fibroblast-like cells has been demonstrated in vitro and a few, rather specific in vivo conditions. A detailed comparison between de-differentiated fat (DFAT) cells and adipose stem and progenitor cells (ASPCs) from different adipose depots is yet to be conducted. Moreover, whether de-differentiation of mature adipocytes from classical subcutaneous and visceral depots occurs under physiological conditions remains unknown. METHODS Here, we used in vitro "ceiling culture", single cell/nucleus RNA sequencing, epigenetic anaysis and genetic lineage tracing to address these unknowns. RESULTS We show that in vitro-derived DFAT cells have lower adipogenic potential and distinct cellular composition compared to ASPCs. In addition, DFAT cells derived from adipocytes of inguinal origin have dramatically higher adipogenic potential than DFAT cells of the epididymal origin, due in part to enhanced NF-KB signaling in the former. We also show that high-fat diet (HFD) feeding enhances DFAT cell colony formation and re-differentiation into adipocytes, while switching from HFD to chow diet (CD) only reverses their re-differentiation. Moreover, HFD deposits epigenetic changes in DFAT cells and ASPCs that are not reversed after returning to CD. Finally, combining genetic lineage tracing and single cell/nucleus RNA sequencing, we demonstrate the existence of DFAT cells in inguinal and epididymal adipose depots in vivo, with transcriptomes resembling late-stage ASPCs. CONCLUSIONS These data uncover the cell type- and depot-specific properties of DFAT cells, as well as their plasticity in response to dietary intervention. This knowledge may shed light on their role in life style change-induced weight loss and regain.
Collapse
Affiliation(s)
- Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Neuroscience, Karolinska Institute, Stockholm 17165, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China; Biosciences and Nutrition Unit, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14183, Sweden.
| |
Collapse
|
6
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
7
|
Nagasaka H, Sato S, Suzuki A, Terao H, Nakamura Y, Yoshihara M, Okubo Y, Washimi K, Yokose T, Kishida T, Miyagi Y. Clinicopathological Significance of Extranodal Adipose Tissue Invasion in Metastatic Lymph Nodes in Patients With Prostate Cancer. Prostate 2025; 85:283-293. [PMID: 39567857 DOI: 10.1002/pros.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Lymph node (LN) metastasis is a poor prognostic factor in patients with prostate cancer. Elucidating the mechanisms underlying cancer progression in the metastatic microenvironment of LNs is crucial to establishing novel therapies. Adipocytes interact with cancer cells and regulate cancer progression. In this study, we aimed to clarify the clinicopathological significance of extranodal adipose tissue invasion in metastatic LNs and preoperative adipokine concentration in patients with prostate cancer exhibiting metastatic LNs. METHODS We examined the pathological findings of primary and metastatic nodes and clinical information of 66 specimens from 46 patients with prostate cancer. A sub-analysis was performed to assess the relationship between preoperative adiponectin/leptin concentrations and clinical/pathological findings in the blood samples of 56 patients with prostate cancer who either did or did not show LN metastasis. RESULTS The number of metastatic LNs in patients correlated with the involvement of adipose tissue and lymphovascular invasion (p = 0.039 and < 0.001, respectively). Preoperative adiponectin concentration was lower in patients with resected margin-positive and extraprostatic extension-positive primary cancers (p = 0.0071 and 0.02, respectively). Preoperative adiponectin concentrations were significantly lower in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). Moreover, leptin concentrations were significantly higher in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). In patients with metastatic LNs, preoperative adiponectin concentrations were significantly lower in patients with biochemical recurrence than in patients without biochemical recurrence (p = 0.031). There was no correlation between biochemical recurrence and pathological findings. CONCLUSIONS This is the first report on the detailed histopathological characteristics of prostate cancer with LN metastases and the significance of preoperative adiponectin concentration in predicting the pathological features of primary cancers. Also, adipokines are a significant prediction factor of LN metastases for prostate cancer patients. Adipose tissue and adipose-secreting factors may be involved in the progression of metastatic and primary prostate cancer.
Collapse
Affiliation(s)
- Hirotaka Nagasaka
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Atsuto Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hideyuki Terao
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiyasu Nakamura
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuyo Yoshihara
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Yang X, Wang X, Yang Z, Lu H. Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects. Curr Obes Rep 2025; 14:4. [PMID: 39753935 DOI: 10.1007/s13679-024-00600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases. RECENT FINDINGS Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis. It is involved in physiological processes such as energy storage, insulin sensitivity regulation and lipid metabolism. As a unique iron-sensing tissue, AT expresses related regulatory factors, including the classic hepcidin, ferroportin (FPN), iron regulatory protein/iron responsive element (IRP/IRE) and ferritin. Consequently, the interaction between AT and iron is intricately intertwined. Imbalance of iron homeostasis produces the potential risks of steatosis, impaired glucose tolerance and insulin resistance, leading to AT dysfunction diseases, including obesity, type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the role of AT iron has garnered increasing attention in recent years, a comprehensive review that systematically organizes the connection between iron and AT remains lacking. Given the necessity of iron homeostasis, emphasizing its potential impact on AT function and metabolism regulation provides valuable insights into physiological effects such as adipocyte differentiation and thermogenesis. Futhermore, regulators including adipokines, mitochondria and macrophages have been mentioned, along with analyzing the novel perspective of iron as a key mediator influencing the fat-gut crosstalk.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
| |
Collapse
|
9
|
Rupert J, Daquinag A, Yu Y, Dai Y, Zhao Z, Kolonin MG. Depletion of Adipose Stroma-Like Cancer-Associated Fibroblasts Potentiates Pancreatic Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2025; 5:5-12. [PMID: 39620946 PMCID: PMC11694247 DOI: 10.1158/2767-9764.crc-24-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
SIGNIFICANCE This study shows that populations of CAFs have distinct effects on pancreatic cancer progression and shows that depletion of CAFs expressing adipose markers potentiates tumor/metastasis suppression effects of immune checkpoint blockade.
Collapse
Affiliation(s)
- Joseph Rupert
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| | - Alexes Daquinag
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| | - Yongmei Yu
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics and School of Public Health, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics and School of Public Health, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Mikhail G. Kolonin
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, McGovern Medical School, Houston, Texas
| |
Collapse
|
10
|
Diao B, Fan Z, Zhou B, Zhan H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem Biophys Res Commun 2024; 740:151012. [PMID: 39561650 DOI: 10.1016/j.bbrc.2024.151012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
Collapse
Affiliation(s)
- Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
11
|
Neugebauer J, Raulien N, Arndt L, Akkermann D, Hobusch C, Lindhorst A, Fröba J, Gericke M. The Impact of Resident Adipose Tissue Macrophages on Adipocyte Homeostasis and Dedifferentiation. Int J Mol Sci 2024; 25:13019. [PMID: 39684730 DOI: 10.3390/ijms252313019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is concurrent with immunological dysregulation, resulting in chronic low-grade inflammation and cellular dysfunction. In pancreatic islets, this loss of function has been correlated with mature β-cells dedifferentiating into a precursor-like state through constant exposure to inflammatory stressors. As mature adipocytes likewise have the capability to dedifferentiate in vitro and in vivo, we wanted to analyze this cellular change in relation to adipose tissue (AT) inflammation and adipose tissue macrophage (ATM) activity. Using our organotypic AT explant culture method combined with a double-reporter mouse model for labeling ATMs and mature adipocytes, we were able to visualize and quantify dedifferentiated fat (DFAT) cells in AT explants. Preliminary testing showed increased dedifferentiation after tamoxifen (TAM) stimulation, making TAM-dependent lineage-tracing models unsuitable for quantification of naturally occurring DFAT cells. The regulatory role of ATMs in adipocyte dedifferentiation was shown through macrophage depletion using Plexxicon 5622 or clodronate liposomes, which significantly increased DFAT cell levels. Subsequent bulk RNA sequencing of macrophage-depleted explants revealed enrichment of the tumor necrosis factor α (TNFα) signaling pathway as well as downregulation of associated genes. Direct stimulation with TNFα decreased adipocyte dedifferentiation, while application of a TNFα-neutralizing antibody did not significantly alter DFAT cell levels. Our findings suggest a regulatory role of resident ATMs in maintaining the mature adipocyte phenotype and preventing excessive adipocyte dedifferentiation. The specific regulatory pathways as well as the impact that DFAT cells might have on ATMs, and vice versa, are subject to further investigation.
Collapse
Affiliation(s)
- Julia Neugebauer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Dagmar Akkermann
- Paul-Flechsig-Institute, Leipzig University, 04103 Leipzig, Germany
| | | | | | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Calabrese C, Miserocchi G, De Vita A, Spadazzi C, Cocchi C, Vanni S, Gabellone S, Martinelli G, Ranallo N, Bongiovanni A, Liverani C. Lipids and adipocytes involvement in tumor progression with a focus on obesity and diet. Obes Rev 2024; 25:e13833. [PMID: 39289899 DOI: 10.1111/obr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The adipose tissue is a complex organ that can play endocrine, metabolic, and immune regulatory roles in cancer. In particular, adipocytes provide metabolic substrates for cancer cell proliferation and produce signaling molecules that can stimulate cell adhesion, migration, invasion, angiogenesis, and inflammation. Cancer cells, in turn, can reprogram adipocytes towards a more inflammatory state, resulting in a vicious cycle that fuels tumor growth and evolution. These mechanisms are enhanced in obesity, which is associated with the risk of developing certain tumors. Diet, an exogenous source of lipids with pro- or anti-inflammatory functions, has also been connected to cancer risk. This review analyzes how adipocytes and lipids are involved in tumor development and progression, focusing on the relationship between obesity and cancer. In addition, we discuss how diets with varying lipid intakes can affect the disease outcomes. Finally, we introduce novel metabolism-targeted treatments and adipocyte-based therapies in oncology.
Collapse
Affiliation(s)
- Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
13
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
14
|
Tovar-Hernández K, Salinas-Vera YM, Carlos-Reyes Á, García-Hernández AP, Marchat LA, Mandujano-Lázaro G, Ríos-Castro E, Velasco-Suárez A, Mendez-Gómez I, Tecalco-Cruz ÁC, Ibarra-Sierra E, López-Camarillo C. Adipocytes reprogram the proteome of breast cancer cells in organotypic three-dimensional cell cultures. Sci Rep 2024; 14:27029. [PMID: 39505903 PMCID: PMC11542085 DOI: 10.1038/s41598-024-76053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
While epidemiological evidence has long linked obesity with an increased risk of breast cancer, the intricate interactions between adipocytes and cancer cells within the tumor microenvironment remain largely uncharted territory. The use of organotypic three-dimensional (3D) cell cultures that more accurately mimic the spatial architecture of tumors represents an innovative approach to this complex issue. In the present study, we investigated the effects of adipocytes on the proteome of Hs578t breast cancer cells cultured in a 3D microenvironment. Using different treatments, we rigorously optimized the experimental conditions to induce the optimal differentiation of 3T3-L1 fibroblasts into mature adipocytes. Then, we grow the Hs578t cells in a simulated microenvironment using an on-top model for organotypic 3D cultures. Our data showed that cancer cells formed 3D stellate-like architectures when grown over an extracellular matrix proteins-enriched scaffold for 48 h. Proteomic profiling using LC-MS/MS mass spectrometry of Hs578t cells grown in 3D conditions with or without the adipocyte-enriched culture discovered 916 unique proteins. Of these, 605 showed no significant changes in abundance, whereas 87 proteins were significantly upregulated and 224 downregulated after interaction with fat cells (p < 0.05, FC > 2.0). Bioinformatic analysis of upregulated proteins indicated that the most enriched GO terms and molecular functions were related to lipids transport, cell differentiation, hypoxia response, and cell junctions. In addition, several modulated proteins have been previously associated with breast cancer progression. Interestingly, lipid transport proteins, including PITPNM2, ATP2C1, ABCA12, HDLBP, and APOB, showed perturbations in their expression, which were also associated with low overall survival in breast cancer patients. Functional studies showed that the knockdown of apolipoprotein B (APOB) expression in Hs578t cells reduced the size of 3D cellular structures. Moreover, APOB-knocked cells cocultured with adipocytes for 48 h exhibited a significant decrease of intracellular lipids, whereas an increase in the adipocytes was found. Our results indicate that the 3D microenvironment and the adipocytes crosstalk reprogram the proteome of breast cancer cells. These data help us understand the environmental effects in gene expression and contribute to discovering novel tumor proteins with potential intervention in breast cancer therapy.
Collapse
Affiliation(s)
- Karla Tovar-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Oncoinmunobiologia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México.
- , Calzada de Tlalpan 4502, Belisario Domínguez Sección 16, Tlalpan, Ciudad de México, 14080, México.
| | | | - Laurence A Marchat
- Laboratorio de Biomedicina Molecular II. Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gilberto Mandujano-Lázaro
- Laboratorio de Biomedicina Molecular II. Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica. CINVESTAV-IPN, Ciudad de México, México
| | - Andrea Velasco-Suárez
- Unidad de Genómica, Proteómica y Metabolómica. CINVESTAV-IPN, Ciudad de México, México
| | - Ivonne Mendez-Gómez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Ángeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerologia "Dr. Arturo Beltrán Ortega", Acapulco, Guerrero, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
- San Lorenzo 290, Colonia del Valle, Ciudad de México, 03100, México.
| |
Collapse
|
15
|
Miracle CE, McCallister CL, Denning KL, Russell R, Allen J, Lawrence L, Legenza M, Krutzler-Berry D, Salisbury TB. High BMI Is Associated with Changes in Peritumor Breast Adipose Tissue That Increase the Invasive Activity of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:10592. [PMID: 39408921 PMCID: PMC11476838 DOI: 10.3390/ijms251910592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer is the most common cancer in women with multiple risk factors including smoking, genetics, environmental factors, and obesity. Smoking and obesity are the top two risk factors for the development of breast cancer. The effect of obesity on adipose tissue mediates the pathogenesis of breast cancer in the context of obesity. Triple-negative breast cancer (TNBC) is a breast cancer subtype within which the cells lack estrogen, progesterone, and HER2 receptors. TNBC is the deadliest breast cancer subtype. The 5-year survival rates for patients with TNBC are 8-16% lower than the 5-year survival rates for patients with estrogen-receptor-positive breast tumors. In addition, TNBC patients have early relapse rates (3-5 years after diagnosis). Obesity is associated with an increased risk for TNBC, larger TNBC tumors, and increased breast cancer metastasis compared with lean women. Thus, novel therapeutic approaches are warranted to treat TNBC in the context of obesity. In this paper, we show that peritumor breast adipose-derived secretome (ADS) from patients with a high (>30) BMI is a stronger inducer of TNBC cell invasiveness and JAG1 expression than peritumor breast ADS from patients with low (<30) BMI. These findings indicate that patient BMI-associated changes in peritumor AT induce changes in peritumor ADS, which in turn acts on TNBC cells to stimulate JAG1 expression and cancer cell invasiveness.
Collapse
Affiliation(s)
- Cora E. Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Chelsea L. McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Krista L. Denning
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Rebecca Russell
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Jennifer Allen
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Logan Lawrence
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Mary Legenza
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Diane Krutzler-Berry
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Travis B. Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| |
Collapse
|
16
|
Zheng Y, Wang D, Beeghly G, Fischbach C, Shattuck MD, O'Hern CS. Computational modeling of the physical features that influence breast cancer invasion into adipose tissue. APL Bioeng 2024; 8:036104. [PMID: 38966325 PMCID: PMC11223776 DOI: 10.1063/5.0209019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on both biochemical signaling and the mechanical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue using discrete element method simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At vs the activity and strength of the cohesion between cancer cells, as well as the mechanical properties of the adipocytes and extracellular matrix in which adipocytes are embedded. We show that the degree of invasion collapses onto a master curve as a function of the dimensionless energy scale Ec , which grows linearly with the cancer cell velocity persistence time and fluctuations, is inversely proportional to the system pressure, and is offset by the cancer cell cohesive energy. WhenE c > 1 , cancer cells will invade the adipose tissue, whereas forE c < 1 , cancer cells and adipocytes remain de-mixed. We also show that At decreases when the adipocytes are constrained by the ECM by an amount that depends on the spatial heterogeneity of the adipose tissue.
Collapse
Affiliation(s)
| | - Dong Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Garrett Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mark D. Shattuck
- Benjamin Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA
| | | |
Collapse
|
17
|
Cai Q, Yang J, Shen H, Xu W. Cancer-associated adipocytes in the ovarian cancer microenvironment. Am J Cancer Res 2024; 14:3259-3279. [PMID: 39113876 PMCID: PMC11301307 DOI: 10.62347/xzri9189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) plays a critical role in high energy metabolism during tumorigenesis, progression and metastasis. Among them, adipocytes, as an important component of the TME, can transform into cancer-associated adipocytes (CAAs) through dedifferentiation via interactions with tumor cells. These CAAs provide nutrients, growth factors, cytokines and metabolites to the tumor and later transdifferentiate into other stromal cells at a later stage to alter tumor growth, metastasis and the drug response and ultimately influence the treatment and prognosis of ovarian cancer. This review outlines the physiological functions of CAAs and discusses the progress in the use of CAAs as therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Qiuling Cai
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jing Yang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Huiling Shen
- Department of Oncology, The First Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| |
Collapse
|
18
|
Liu M, Hemba-Waduge RUS, Li X, Huang X, Liu TH, Han X, Wang Y, Ji JY. Wnt/Wingless signaling promotes lipid mobilization through signal-induced transcriptional repression. Proc Natl Acad Sci U S A 2024; 121:e2322066121. [PMID: 38968125 PMCID: PMC11252803 DOI: 10.1073/pnas.2322066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid β-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid β-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid β-oxidation.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | | | - Xiao Li
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ08540
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| |
Collapse
|
19
|
Gogg S, Nerstedt A, Smith U, Hansson E. Breast volume in non-obese females is related to breast adipose cell hypertrophy, inflammation, and COX2 expression. J Plast Surg Hand Surg 2024; 59:83-88. [PMID: 38967364 DOI: 10.2340/jphs.v59.40754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Breast hypertrophy seems to be a risk factor for breast cancer and the amount and characteristics of breast adipose tissue may play important roles. The main aim of this study was to investigate associations between breast volume in normal weight women and hypertrophic adipose tissue and inflammation. METHODS Fifteen non-obese women undergoing breast reduction surgery were examined. Breast volume was measured with plastic cups and surgery was indicated if the breast was 800 ml or larger according to Swedish guidelines. We isolated adipose cells from the breasts and ambient subcutaneous tissue to measure cell size, cell inflammation and other known markers of risk of developing breast cancer including COX2 gene activation and MAPK, a cell proliferation regulator. RESULTS Breast adipose cell size was characterized by cell hypertrophy and closely related to breast volume. The breast adipose cells were also characterized by being pro-inflammatory with increased IL-6, IL-8, IL-1β, CCL-2, TNF-a and an increased marker of cell senescence GLB1/β-galactosidase, commonly increased in hypertrophic adipose tissue. The prostaglandin synthetic marker COX2 was also increased in the hypertrophic cells and COX2 has previously been shown to be an important marker of risk of developing breast cancer. Interestingly, the phosphorylation of the proliferation marker MAPK was also increased in the hypertrophic adipose cells. CONCLUSION Taken together, these findings show that increased breast volume in non-obese women is associated with adipose cell hypertrophy and dysfunction and characterized by increased inflammation and other markers of increased risk for developing breast cancer. TRIAL REGISTRATION Projektdatabasen FoU i VGR, project number: 249191 (https://www.researchweb.org/is/vgr/project/249191).
Collapse
Affiliation(s)
- Silvia Gogg
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Nerstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Hansson
- Department of Plastic Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Plastic Surgery, Gothenburg, Sweden.
| |
Collapse
|
20
|
Zhu Q, Chen S, Funcke JB, Straub LG, Lin Q, Zhao S, Joung C, Zhang Z, Kim DS, Li N, Gliniak CM, Lee C, Cebrian-Serrano A, Pedersen L, Halberg N, Gordillo R, Kusminski CM, Scherer PE. PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels. Nat Metab 2024; 6:1347-1366. [PMID: 38961186 PMCID: PMC11891014 DOI: 10.1038/s42255-024-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Line Pedersen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
22
|
Rebeaud M, Lacombe M, Fallone F, Milhas D, Roumiguié M, Vaysse C, Attané C, Muller C. Specificities of mammary and periprostatic adipose tissues: A perspective from cancer research. ANNALES D'ENDOCRINOLOGIE 2024; 85:220-225. [PMID: 38871505 DOI: 10.1016/j.ando.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In addition to the major subcutaneous and visceral adipose tissues (AT), other adipose depots are dispersed throughout the body and are found in close interaction with proximal organs such as mammary and periprostatic AT (MAT and PPAT respectively). These ATs have an effect on proximal organ function during physiological processes and diseases such as cancer. We highlighted here some of their most distinctive features in terms of tissular organization and responses to external stimuli and discussed how obesity affects them based on our current knowledge.
Collapse
Affiliation(s)
- Marie Rebeaud
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Mathilde Lacombe
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Frédérique Fallone
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Delphine Milhas
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Mathieu Roumiguié
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France; Département d'urologie, CHU de Toulouse, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Charlotte Vaysse
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France; Département de chirurgie gynécologique-oncologique, institut universitaire du cancer de Toulouse-Oncopole, CHU de Toulouse, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France
| | - Camille Attané
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Catherine Muller
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France.
| |
Collapse
|
23
|
Han X, Jiang S, Hu C, Wang Y, Zhao L, Wang W. Inhibition of keloid fibroblast proliferation by artesunate is mediated by targeting the IRE1α/XBP1 signaling pathway and decreasing TGF-β1. Burns 2024; 50:1259-1268. [PMID: 38492983 DOI: 10.1016/j.burns.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Keloid is a benign hyperplastic dermatosis with high recurrence rate and complex pathogenesis. There is no universally effective treatment yet. New therapies and elucidation of pathogenesis are urgently required. AIMS To explore the function of IRE1α/XBP1 in keloid fibroblasts and to investigate the potential mechanism of artesunate in inhibiting keloid hyperplasia. METHODS Human keloid fibroblasts (KFs) were cultured, and the expressions of XBP1 and TGF-β1 were detected by immunohistochemistry. The expression of IRE1 was interfered with through cell transfection and the effects of IRE1 interference on cell proliferation and the cell cycle were assessed using MTS, colony formation assays, and flow cytometry. Detection of the expressions of XBP1 and TGF-β1 by qRT-PCR and Western blot. Then artesunate was applied to a subset of the cells, and its effects on cell viability and the expression of related proteins using the same methods. RESULTS The IRE1α/XBP1 pathway was activated in KFs. Knocking out the gene IRE1α can inhibit the expression of TGF-β1, in addition, the cell viability and cell cycle progression of KFs were also significantly affected. After artesunate treatment, there was a remarkable reduction in cell proliferation. Meanwhile, the cell cycle of KFs treated with artesunate was blocked in G1 phase.After upregulating the expression of IRE1α and treating KFs with artesunate, both cell cycle and proliferation showed inhibitory effects, and related proteins also exhibited suppressed expression. CONCLUSIONS The IRE1α/XBP1 pathway is activated in keloid, and inhibiting the expression of this pathway can affect the cell proliferation activity. In addition, artesunate also has a significant effect on fibroblast proliferation, and the IRE1α/XBP1 pathway may participate in this process. These findings suggest that IRE1α/XBP1 signal pathway may be a potential target for scar treatment, and artesunate could also be a powerful candidate for keloid treatment.
Collapse
Affiliation(s)
- Xiaomei Han
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shaoqian Jiang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixia Hu
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying Wang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Zhao
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenqing Wang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024; 35:518-532. [PMID: 38212233 DOI: 10.1016/j.tem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials, Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Rybinska I, Mangano N, Romero-Cordoba SL, Regondi V, Ciravolo V, De Cecco L, Maffioli E, Paolini B, Bianchi F, Sfondrini L, Tedeschi G, Agresti R, Tagliabue E, Triulzi T. SAA1-dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int J Cancer 2024; 154:1842-1856. [PMID: 38289016 DOI: 10.1002/ijc.34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Ilona Rybinska
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nunzia Mangano
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sandra L Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Viola Regondi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Ciravolo
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Maffioli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Biagio Paolini
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Francesca Bianchi
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Lucia Sfondrini
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elda Tagliabue
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tiziana Triulzi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
26
|
Song Y, Na H, Lee SE, Kim YM, Moon J, Nam TW, Ji Y, Jin Y, Park JH, Cho SC, Lee J, Hwang D, Ha SJ, Park HW, Kim JB, Lee HW. Dysfunctional adipocytes promote tumor progression through YAP/TAZ-dependent cancer-associated adipocyte transformation. Nat Commun 2024; 15:4052. [PMID: 38744820 PMCID: PMC11094189 DOI: 10.1038/s41467-024-48179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.
Collapse
Affiliation(s)
- Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - You Min Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihyun Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae Wook Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yul Ji
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seok Chan Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Gemcro, Inc, Seoul, 03722, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Gemcro, Inc, Seoul, 03722, Republic of Korea.
| |
Collapse
|
27
|
Arumugam M, Tovar EA, Essenburg CJ, Dischinger PS, Beddows I, Wolfrum E, Madaj ZB, Turner L, Feenstra K, Gallik KL, Cohen L, Nichols M, Sheridan RTC, Esquibel CR, Mouneimne G, Graveel CR, Steensma MR. Nf1 deficiency modulates the stromal environment in the pretumorigenic rat mammary gland. Front Cell Dev Biol 2024; 12:1375441. [PMID: 38799507 PMCID: PMC11116614 DOI: 10.3389/fcell.2024.1375441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Neurofibromin, coded by the NF1 tumor suppressor gene, is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1)-a tumor predisposition syndrome caused by a germline NF1 mutation-have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanism by which NF1 mutations lead to breast cancer tumorigenesis is not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. Approach To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development before presenting with highly penetrant breast cancer. Results We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient mature adipocytes in the rat mammary gland have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation, however, flow cytometry analysis did not show a change in mammary adipose-derived mesenchymal stem cell abundance. Conclusion Collectively, this study uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary glands will create a foundation for developing early detection strategies of breast cancer among NF1 patients.
Collapse
Affiliation(s)
- Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Elizabeth A. Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Curt J. Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Patrick S. Dischinger
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Ian Beddows
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Emily Wolfrum
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Zach B. Madaj
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lisa Turner
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Kristin Feenstra
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Kristin L. Gallik
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lorna Cohen
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Madison Nichols
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | | | - Corinne R. Esquibel
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Carrie R. Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Matthew R. Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
- Helen DeVos Children’s Hospital, Spectrum Health System, Grand Rapids, MI, United States
- Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
28
|
Robino JJ, Plekhanov AP, Zhu Q, Jensen MD, Scherer PE, Roberts CT, Varlamov O. Adipose Tissue Analysis Toolkit (ATAT) for automated analysis of adipocyte size and extracellular matrix in white adipose tissue. Obesity (Silver Spring) 2024; 32:723-732. [PMID: 38321231 PMCID: PMC10965369 DOI: 10.1002/oby.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE The pathological expansion of white adipose tissue (WAT) in obesity involves adipocyte hypertrophy accompanied by expansion of the collagen-rich pericellular extracellular matrix (ECM) and development of crown-like structures (CLS). Traditionally, WAT morphology is assessed through immunohistochemical analysis of WAT sections. However, manual analysis of large histological sections is time-consuming, and the available digital tools for analyzing adipocyte size and pericellular ECM are limited. To address this gap, the authors developed the Adipose Tissue Analysis Toolkit (ATAT), an ImageJ plugin facilitating analysis of adipocyte size, WAT ECM, and CLS. METHODS AND RESULTS ATAT utilizes local and image-level differentials in pixel intensity to independently threshold image background, distinguishing adipocyte-free tissue without user input. It accurately captures adipocytes in histological sections stained with common dyes and automates the analysis of adipocyte cross-sectional area, total-field, and localized region-of-interest ECM. ATAT allows fully automated batch analysis of histological images using default or user-defined adipocyte detection parameters. CONCLUSIONS ATAT provides several advantages over existing WAT image analysis tools, enabling high-throughput analyses of adipocyte-specific parameters and facilitating the assessment of ECM changes associated with WAT remodeling due to weight changes and other pathophysiological alterations that affect WAT function.
Collapse
Affiliation(s)
- Jacob J. Robino
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alexander P. Plekhanov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Oleg Varlamov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
29
|
Zheng Y, Wang D, Beeghly G, Fischbach C, Shattuck MD, O'Hern CS. Computational modeling of the physical features that influence breast cancer invasion into adipose tissue. ARXIV 2024:arXiv:2403.12293v1. [PMID: 38562454 PMCID: PMC10984007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on numerous biochemical and physical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue as a physical process by carrying out simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area A t between cancer cells and adipocytes. We determine the long-time value of A t versus the activity and strength of the cohesion between cancer cells, as well as mechanical properties of the adipocytes and extracellular matrix (ECM) in which the adipocytes are embedded. We show that the degree of invasion collapses onto a master curve by plotting it versus a dimensionless energy scale E c , which grows linearly with mean-square fluctuations and persistence time of the cancer cell velocities, is inversely proportional to the pressure of the system, and has an offset that increases with the cancer cell cohesive energy. The condition, E c ≫ 1 , indicates that cancer cells will invade the adipose tissue, whereas for E c ≪ 1 , the cancer cells and adipocytes remain demixed. We also show that constraints on adipocyte positions by the ECM decrease A t relative to that obtained for unconstrained adipocytes. Finally, spatial heterogeneity in structural and mechanical properties of the adipocytes in the presence of ECM impedes invasion relative to adipose tissue with uniform properties.
Collapse
Affiliation(s)
- Yitong Zheng
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520
| | - Dong Wang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520
| | - Garrett Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, City College of New York, New York, New York 10031
| | - Corey S O'Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520
- Department of Physics, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
30
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
31
|
Kim S, Oh J, Park C, Kim M, Jo W, Kim CS, Cho SW, Park J. FAM3C in Cancer-Associated Adipocytes Promotes Breast Cancer Cell Survival and Metastasis. Cancer Res 2024; 84:545-559. [PMID: 38117489 DOI: 10.1158/0008-5472.can-23-1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Adipose tissue within the tumor microenvironment (TME) plays a critical role in supporting breast cancer progression. In this study, we identified FAM3 metabolism-regulating signaling molecule C (FAM3C) produced by cancer-associated adipocytes (CAA) as a key regulator of tumor progression. FAM3C overexpression in cultured adipocytes significantly reduced cell death in both adipocytes and cocultured breast cancer cells while suppressing markers of fibrosis. Conversely, FAM3C depletion in CAAs resulted in adipocyte-mesenchymal transition (AMT) and increased fibrosis within the TME. Adipocyte FAM3C expression was driven by TGFβ signaling from breast cancer cells and was reduced upon treatment with a TGFβ-neutralizing antibody. FAM3C knockdown in CAAs early in tumorigenesis in a genetically engineered mouse model of breast cancer significantly inhibited primary and metastatic tumor growth. Circulating FAM3C levels were elevated in patients with metastatic breast cancer compared with those with nonmetastatic breast cancer. These results suggest that therapeutic inhibition of FAM3C expression levels in CAAs during early tumor development could be a promising approach in the treatment of patients with breast cancer. SIGNIFICANCE High FAM3C levels in cancer-associated adipocytes contribute to tumor-supportive niches and are tightly associated with metastatic growth, indicating that FAM3C inhibition could be beneficial for treating patients with breast cancer.
Collapse
Affiliation(s)
- Sahee Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Woobeen Jo
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
32
|
Hassin O, Sernik M, Seligman A, Vogel FCE, Wellenstein MD, Smollich J, Halperin C, Pirona AC, Toledano LN, Caballero CD, Schlicker L, Salame TM, Sarusi Portuguez A, Aylon Y, Scherz-Shouval R, Geiger T, de Visser KE, Schulze A, Oren M. p53 deficient breast cancer cells reprogram preadipocytes toward tumor-protective immunomodulatory cells. Proc Natl Acad Sci U S A 2023; 120:e2311460120. [PMID: 38127986 PMCID: PMC10756271 DOI: 10.1073/pnas.2311460120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Miriam Sernik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Adi Seligman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Felix C. E. Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Max D. Wellenstein
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Joachim Smollich
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Anna Chiara Pirona
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Liron Nomi Toledano
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Carolina Dehesa Caballero
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avital Sarusi Portuguez
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tamar Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Karin E. de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
33
|
Liu G, Wang Y, Pan Y, Tian L, Choi MH, Wang L, Kim JY, Zhang J, Cheng SH, Zhang L. Hypertonicity induces mitochondrial extracellular vesicles (MEVs) that activate TNF-α and β-catenin signaling to promote adipocyte dedifferentiation. Stem Cell Res Ther 2023; 14:333. [PMID: 38115136 PMCID: PMC10731851 DOI: 10.1186/s13287-023-03558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Recent studies demonstrated that elevated osmolarity could induce adipocyte dedifferentiation, representing an appealing procedure to generate multipotent stem cells. Here we aim to elucidate the molecular mechanisms that underlie osmotic induction of adipocyte reprogramming. METHODS To induce dedifferentiation, the 3T3-L1 or SVF adipocytes were cultured under the hypertonic pressure in 2% PEG 300 medium. Adipocyte dedifferentiation was monitored by aspect ratio measurement, Oil Red staining and qPCR to examine the morphology, lipid droplets, and specific genes of adipocytes, respectively. The osteogenic and chondrogenic re-differentiation capacities of dedifferentiated adipocytes were also examined. To investigate the mechanisms of the osmotic stress-induced dedifferentiation, extracellular vesicles (EVs) were collected from the reprograming cells, followed by proteomic and functional analyses. In addition, qPCR, ELISA, and TNF-α neutralizing antibody (20 ng/ml) was applied to examine the activation and effects of the TNF-α signaling. Furthermore, we also analyzed the Wnt signaling by assessing the activation of β-catenin and applying BML-284, an agonist of β-catenin. RESULTS Hypertonic treatment induced dedifferentiation of both 3T3-L1 and the primary stromal vascular fraction (SVF) adipocytes, characterized by morphological and functional changes. Proteomic profiling revealed that hypertonicity induced extracellular vesicles (EVs) containing mitochondrial molecules including NDUFA9 and VDAC. Functionally, the mitochondrial EVs (MEVs) stimulated TNF-α signaling that activates Wnt-β-catenin signaling and adipocyte dedifferentiation. Neutralizing TNF-α inhibited hypertonic dedifferentiation of adipocytes. In addition, direct activation of Wnt-β-catenin signaling using BML-284 could efficiently induce adipocyte dedifferentiation while circumventing the apoptotic effect of the hypertonic treatment. CONCLUSIONS Hypertonicity prompts the adipocytes to release MEVs, which in turn enhances the secretion of TNF-α as a pro-inflammatory cytokine during the stress response. Importantly, TNF-α is essential for the activation of the Wnt/β-catenin signaling that drives adipocyte dedifferentiation. A caveat of the hypertonic treatment is apoptosis, which could be circumvented by direct activation of the Wnt/β-catenin signaling using BML-284.
Collapse
Affiliation(s)
- Guopan Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Ying Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yilin Pan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Ming Ho Choi
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
34
|
Robino JJ, Plekhanov AP, Zhu Q, Jensen MD, Scherer PE, Roberts CT, Varlamov O. Adipose Tissue Analysis Toolkit (ATAT) for Automated Analysis of Adipocyte Size and Extracellular Matrix in White Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571339. [PMID: 38318208 PMCID: PMC10843162 DOI: 10.1101/2023.12.12.571339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Objective The pathological expansion of white adipose tissue (WAT) in obesity involves adipocyte hypertrophy accompanied by expansion of collagen-rich pericellular extracellular matrix (ECM) and the development of crown-like structures (CLS). Traditionally, WAT morphology is assessed through immunohistochemical analysis of WAT sections. However, manual analysis of large histological sections is time-consuming, and available digital tools for analyzing adipocyte size and pericellular ECM are limited. To address this gap, we developed the Adipose Tissue Analysis Toolkit (ATAT), an ImageJ plugin facilitating analysis of adipocyte size, WAT ECM and CLS. Methods and Results ATAT utilizes local and image-level differentials in pixel intensity to independently threshold background, distinguishing adipocyte-free tissue without user input. It accurately captures adipocytes in histological sections stained with common dyes and automates the analysis of adipocyte cross-sectional area, total-field, and localized region-of-interest ECM. ATAT allows fully automated batch analysis of histological images using default or user-defined adipocyte detection parameters. Conclusions ATAT provides several advantages over existing WAT image analysis tools, enabling high-throughput analyses of adipocyte-specific parameters and facilitating the assessment of ECM changes associated with WAT remodeling due to weight changes and other pathophysiological alterations that affect WAT function. Study Importance Questions What is already known about this subject?: The manual analysis of large WAT histological sections is very time-consuming, while digital tools for the analysis of WAT are limited.What are the new findings in your manuscript?: - ATAT enables fully automated analysis of batches of histological images using either default or user-defined adipocyte detection parameters- ATAT allows high-throughput analyses of adipocyte-specific parameters and pericellular extracellular matrix- ATAT enables the assessment of fibrotic changes associated with WAT remodeling and crown-like structuresHow might your results change the direction of research or the focus of clinical practice?: - ATAT is designed to work with histological sections and digital images obtained using a slide scanner or a microscope.- This tool will help basic and clinical researchers to conduct automated analyses of adipose tissue histological sections.
Collapse
|
35
|
Yao L, Jeong S, Kwon HR, Olson LE. Regulation of adipocyte dedifferentiation at the skin wound edge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568302. [PMID: 38045303 PMCID: PMC10690246 DOI: 10.1101/2023.11.22.568302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Adipocytes have diverse roles in energy storage and metabolism, inflammation, and tissue repair. Mature adipocytes have been assumed to be terminally differentiated cells. However, recent evidence suggests that adipocytes retain substantial phenotypic plasticity, with potential to dedifferentiate into fibroblast-like cells under physiological and pathological conditions. Here, we develop a two-step lineage tracing approach based on the observation that fibroblasts express platelet-derived growth factor receptor alpha ( Pdgfra ) while adipocytes express Adiponectin ( Adipoq ) but not Pdgfra . Our approach specifically traces Pdgfra + cells that originate from Adipoq + adipocytes. We find many traced adipocytes and fibroblast-like cells surrounding skin wounds, but only a few traced cells localize to the wound center. In agreement with adipocyte plasticity, traced adipocytes incorporate EdU, downregulate Plin1 and PPARγ, and upregulate αSMA. We also investigate the role of potential dedifferentiation signals using constitutively active PDGFRα mutation, Pdgfra knockout, or Tgfbr2 knockout models. We find that PDGF and TGFβ signaling both promote dedifferentiation, and PDGFRα does so independently of TGFβR2. These results demonstrate an intersectional genetic approach to trace the hybrid cell phenotype of Pdgfra + adipocytes, which may be important for wound repair, regeneration and fibrosis.
Collapse
|
36
|
Brown KA, Scherer PE. Update on Adipose Tissue and Cancer. Endocr Rev 2023; 44:961-974. [PMID: 37260403 PMCID: PMC10638602 DOI: 10.1210/endrev/bnad015] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Adipose tissue is the largest endocrine organ and an accepted contributor to overall energy homeostasis. There is strong evidence linking increased adiposity to the development of 13 types of cancer. With increased adiposity comes metabolic dysfunction and insulin resistance, and increased systemic insulin and glucose support the growth of many cancers, including those of the colon and endometrium. There is also an important direct crosstalk between adipose tissue and various organs. For instance, the healthy development and function of the mammary gland, as well as the development, growth, and progression of breast cancer, are heavily impacted by the breast adipose tissue in which breast epithelial cells are embedded. Cells of the adipose tissue are responsive to external stimuli, including overfeeding, leading to remodeling and important changes in the secretion of factors known to drive the development and growth of cancers. Loss of factors like adiponectin and increased production of leptin, endotrophin, steroid hormones, and inflammatory mediators have been determined to be important mediators of the obesity-cancer link. Obesity is also associated with a structural remodeling of the adipose tissue, including increased localized fibrosis and disrupted angiogenesis that contribute to the development and progression of cancers. Furthermore, tumor cells feed off the adipose tissue, where increased lipolysis within adipocytes leads to the release of fatty acids and stromal cell aerobic glycolysis leading to the increased production of lactate. Both have been hypothesized to support the higher energetic demands of cancer cells. Here, we aim to provide an update on the state of the literature revolving around the role of the adipose tissue in cancer initiation and progression.
Collapse
Affiliation(s)
- Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Khaledian B, Thibes L, Shimono Y. Adipocyte regulation of cancer stem cells. Cancer Sci 2023; 114:4134-4144. [PMID: 37622414 PMCID: PMC10637066 DOI: 10.1111/cas.15940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a highly tumorigenic subpopulation of the cancer cells within a tumor that drive tumor initiation, progression, and therapy resistance. In general, stem cell niche provides a specific microenvironment in which stem cells are present in an undifferentiated and self-renewable state. CSC niche is a specialized tumor microenvironment for CSCs which provides cues for their maintenance and propagation. However, molecular mechanisms for the CSC-niche interaction remain to be elucidated. We have revealed that adipsin (complement factor D) and its downstream effector hepatocyte growth factor are secreted from adipocytes and enhance the CSC properties in breast cancers in which tumor initiation and progression are constantly associated with the surrounding adipose tissue. Considering that obesity, characterized by excess adipose tissue, is associated with an increased risk of multiple cancers, it is reasonably speculated that adipocyte-CSC interaction is similarly involved in many types of cancers, such as pancreas, colorectal, and ovarian cancers. In this review, various molecular mechanisms by which adipocytes regulate CSCs, including secretion of adipokines, extracellular matrix production, biosynthesis of estrogen, metabolism, and exosome, are discussed. Uncovering the roles of adipocytes in the CSC niche will propose novel strategies to treat cancers, especially those whose progression is linked to obesity.
Collapse
Affiliation(s)
- Behnoush Khaledian
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Lisa Thibes
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
38
|
Zhou Z, Zhang H, Tao Y, Zang J, Zhao J, Li H, Wang Y, Wang T, Zhao H, Wang F, Guo C, Zhu F, Mao H, Liu F, Zhang L, Wang Q. FGF21 alleviates adipose stem cell senescence via CD90 glycosylation-dependent glucose influx in remodeling healthy white adipose tissue. Redox Biol 2023; 67:102877. [PMID: 37690164 PMCID: PMC10497791 DOI: 10.1016/j.redox.2023.102877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
The senescence of adipose stem cells (ASCs) impairs healthy adipose tissue remodeling, causing metabolic maladaptation to energy surplus. The intrinsic molecular pathways and potential therapy targets for ASC senescence are largely unclear. Here, we showed that visceral ASCs were prone to senescence that was caused by reactive oxygen species (ROS) overload, especially mitochondrial ROS. These senescent ASCs failed to sustain efficient glucose influx, pentose phosphate pathway (PPP) and redox homeostasis. We showed that CD90 silence restricted the glucose uptake by ASCs and thus disrupted their PPP and anti-oxidant system, resulting in ASC senescence. Notably, fibroblast growth factor 21 (FGF21) treatment significantly reduced the senescent phenotypes of ASCs by augmenting CD90 protein via glycosylation, which promoted glucose influx via the AKT-GLUT4 axis and therefore mitigated ROS overload. For diet-induced obese mice, chronic administration of low-dose FGF21 relieved their visceral white adipose tissue (VAT) dysfunction and systemic metabolic disorders. In particular, VAT homeostasis was restored in FGF21-treated obese mice, where ASC repertoire was markedly recovered, accompanied by CD90 elevation and anti-senescent phenotypes in these ASCs. Collectively, we reveal a molecular mechanism of ASC senescence by which CD90 downregulation interferes glucose influx into PPP and redox homeostasis. And we propose a FGF21-based strategy for healthy VAT remodeling, which targets CD90 glycosylation to correct ASC senescence and therefore combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fuwu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
39
|
Caruso JA, Wang X, Murrow LM, Rodriguez CI, Chen-Tanyolac C, Vu L, Chen YY, Gascard P, Gartner ZJ, Kerlikowske K, Tlsty TD. Loss of PPARγ activity characterizes early protumorigenic stromal reprogramming and dictates the therapeutic window of opportunity. Proc Natl Acad Sci U S A 2023; 120:e2303774120. [PMID: 37816052 PMCID: PMC10589683 DOI: 10.1073/pnas.2303774120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Xianhong Wang
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | | | | | - Lisa Vu
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Karla Kerlikowske
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, CA 94143
| |
Collapse
|
40
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
41
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
42
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
43
|
Orsini A, Diquigiovanni C, Bonora E. Omics Technologies Improving Breast Cancer Research and Diagnostics. Int J Mol Sci 2023; 24:12690. [PMID: 37628869 PMCID: PMC10454385 DOI: 10.3390/ijms241612690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) has yielded approximately 2.26 million new cases and has caused nearly 685,000 deaths worldwide in the last two years, making it the most common diagnosed cancer type in the world. BC is an intricate ecosystem formed by both the tumor microenvironment and malignant cells, and its heterogeneity impacts the response to treatment. Biomedical research has entered the era of massive omics data thanks to the high-throughput sequencing revolution, quick progress and widespread adoption. These technologies-liquid biopsy, transcriptomics, epigenomics, proteomics, metabolomics, pharmaco-omics and artificial intelligence imaging-could help researchers and clinicians to better understand the formation and evolution of BC. This review focuses on the findings of recent multi-omics-based research that has been applied to BC research, with an introduction to every omics technique and their applications for the different BC phenotypes, biomarkers, target therapies, diagnosis, treatment and prognosis, to provide a comprehensive overview of the possibilities of BC research.
Collapse
Affiliation(s)
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40131 Bologna, Italy; (A.O.); (E.B.)
| | | |
Collapse
|
44
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
45
|
Kwak JG, Lee J. Bone Marrow Adipocytes Contribute to Tumor Microenvironment-Driven Chemoresistance via Sequestration of Doxorubicin. Cancers (Basel) 2023; 15:2737. [PMID: 37345073 PMCID: PMC10216070 DOI: 10.3390/cancers15102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Chemoresistance is a significant problem in the effective treatment of bone metastasis. Adipocytes are a major stromal cell type in the bone marrow and may play a crucial role in developing microenvironment-driven chemoresistance. However, detailed investigation remains challenging due to the anatomical inaccessibility and intrinsic tissue complexity of the bone marrow microenvironment. In this study, we developed 2D and 3D in vitro models of bone marrow adipocytes to examine the mechanisms underlying adipocyte-induced chemoresistance. We first established a protocol for the rapid and robust differentiation of human bone marrow stromal cells (hBMSCs) into mature adipocytes in 2D tissue culture plastic using rosiglitazone (10 μM), a PPARγ agonist. Next, we created a 3D adipocyte culture model by inducing aggregation of hBMSCs and adipogenesis to create adipocyte spheroids in porous hydrogel scaffolds that mimic bone marrow sinusoids. Simulated chemotherapy treatment with doxorubicin (2.5 μM) demonstrated that mature adipocytes sequester doxorubicin in lipid droplets, resulting in reduced cytotoxicity. Lastly, we performed direct coculture of human multiple myeloma cells (MM1.S) with the established 3D adipocyte model in the presence of doxorubicin. This resulted in significantly accelerated multiple myeloma proliferation following doxorubicin treatment. Our findings suggest that the sequestration of hydrophobic chemotherapeutics by mature adipocytes represents a potent mechanism of bone marrow microenvironment-driven chemoresistance.
Collapse
Affiliation(s)
- Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
46
|
Andreucci E, Fioretto BS, Rosa I, Matucci-Cerinic M, Biagioni A, Romano E, Calorini L, Manetti M. Extracellular Lactic Acidosis of the Tumor Microenvironment Drives Adipocyte-to-Myofibroblast Transition Fueling the Generation of Cancer-Associated Fibroblasts. Cells 2023; 12:cells12060939. [PMID: 36980280 PMCID: PMC10046917 DOI: 10.3390/cells12060939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Lactic acidosis characterizes the tumor microenvironment (TME) and is involved in the mechanisms leading to cancer progression and dissemination through the reprogramming of tumor and local host cells (e.g., endothelial cells, fibroblasts, and immune cells). Adipose tissue also represents a crucial component of the TME which is receiving increasing attention due to its pro-tumoral activity, however, to date, it is not known whether it could be affected by the acidic TME. Now, emerging evidence from chronic inflammatory and fibrotic diseases underlines that adipocytes may give rise to pathogenic myofibroblast-like cells through the adipocyte-to-myofibroblast transition (AMT). Thus, our study aimed to investigate whether extracellular acidosis could affect the AMT process, sustaining the acquisition by adipocytes of a cancer-associated fibroblast (CAF)-like phenotype with a pro-tumoral activity. To this purpose, human subcutaneous adipose-derived stem cells committed to adipocytes (acADSCs) were cultured under basal (pH 7.4) or lactic acidic (pH 6.7, 10 mM lactate) conditions, and AMT was evaluated with quantitative PCR, immunoblotting, and immunofluorescence analyses. We observed that lactic acidosis significantly impaired the expression of adipocytic markers while inducing myofibroblastic, pro-fibrotic, and pro-inflammatory phenotypes in acADSCs, which are characteristic of AMT reprogramming. Interestingly, the conditioned medium of lactic acidosis-exposed acADSC cultures was able to induce myofibroblastic activation in normal fibroblasts and sustain the proliferation, migration, invasion, and therapy resistance of breast cancer cells in vitro. This study reveals a previously unrecognized relationship between lactic acidosis and the generation of a new CAF-like cell subpopulation from adipocytic precursor cells sustaining tumor malignancy.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50134 Florence, Italy
| |
Collapse
|
47
|
Maniyadath B, Zhang Q, Gupta RK, Mandrup S. Adipose tissue at single-cell resolution. Cell Metab 2023; 35:386-413. [PMID: 36889280 PMCID: PMC10027403 DOI: 10.1016/j.cmet.2023.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Qianbin Zhang
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
48
|
Abstract
Few metabolites can claim a more central and versatile role in cell metabolism than acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is produced during nutrient catabolism to fuel the tricarboxylic acid cycle and is the essential building block for fatty acid and isoprenoid biosynthesis. It also functions as a signalling metabolite as the substrate for lysine acetylation reactions, enabling the modulation of protein functions in response to acetyl-CoA availability. Recent years have seen exciting advances in our understanding of acetyl-CoA metabolism in normal physiology and in cancer, buoyed by new mouse models, in vivo stable-isotope tracing approaches and improved methods for measuring acetyl-CoA, including in specific subcellular compartments. Efforts to target acetyl-CoA metabolic enzymes are also advancing, with one therapeutic agent targeting acetyl-CoA synthesis receiving approval from the US Food and Drug Administration. In this Review, we give an overview of the regulation and cancer relevance of major metabolic pathways in which acetyl-CoA participates. We further discuss recent advances in understanding acetyl-CoA metabolism in normal tissues and tumours and the potential for targeting these pathways therapeutically. We conclude with a commentary on emerging nodes of acetyl-CoA metabolism that may impact cancer biology.
Collapse
Affiliation(s)
- David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Tumor and peritumoral adipose tissue crosstalk: De-differentiated adipocytes influence spread of colon carcinoma cells. Tissue Cell 2023; 80:101990. [PMID: 36542947 DOI: 10.1016/j.tice.2022.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Colorectal cancer is the second leading cause of cancer and often has a fatal course. There are many studies in the literature that have described a close functional relationship between the tumor mass and surrounding tissue, or tumor stroma, which is affected by the continuous metabolic exchange that occurs at the interface between tumor and tissues in contact with it. There is much evidence that the presence of adipose tissue in stroma plays a fundamental role in modulating the tumor microenvironment and promote tumor development, growth, and angiogenesis due to its endocrine characteristics. In this analysis, we have studied the alterations of adipose tissue surrounding colorectal tumors with MRI and optical imaging in vivo techniques to monitor tumor progression and also performed histological and molecular analysis. We detected differences in the principal adipose markers expressed by adipocytes residing around the rectal colon and observed that peritumoral adipose tissue is exposed to a mesenchymal transition process that leads to the acquisition of a less differentiated phenotype of adipocyte that represents the main cellular type present in tumor stroma. The mesenchymal transition correlated with the acquisition of more aggressive tumor phenotype and could represent a valid target for tumor therapy.
Collapse
|
50
|
Na H, Song Y, Lee HW. Emphasis on Adipocyte Transformation: Anti-Inflammatory Agents to Prevent the Development of Cancer-Associated Adipocytes. Cancers (Basel) 2023; 15:cancers15020502. [PMID: 36672449 PMCID: PMC9856688 DOI: 10.3390/cancers15020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Of the various cell types in the tumor microenvironment (TME), adipocytes undergo a dynamic transformation when activated by neighboring cancer cells. Although these adipocytes, known as cancer-associated adipocytes (CAAs), have been reported to play a crucial role in tumor progression, the factors that mediate their transformation remain elusive. In this review, we discuss the hypothesis that inflammatory signals involving NF-ĸB activation can induce lipolysis and adipocyte dedifferentiation. This provides a mechanistic understanding of CAA formation and introduces the concept of preventing adipocyte transformation via anti-inflammatory agents. Indeed, epidemiological studies indicate a higher efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in obese patients with cancer, suggesting that NSAIDs can modulate the TME. Inhibition of cyclooxygenase-2 (COX-2) and prostaglandin production leads to the suppression of inflammatory signals such as NF-ĸB. Thus, we suggest the use of NSAIDs in cancer patients with metabolic disorders to prevent the transformation of TME components. Moreover, throughout this review, we attempt to expand our knowledge of CAA transformation to improve the clinical feasibility of targeting CAAs.
Collapse
Affiliation(s)
- Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Corporation, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2123-7642
| |
Collapse
|