1
|
Oettinger D, Yamamoto A. Autophagy dysfunction and neurodegeneration: Where does it go wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Yadav SK, Chen C, Dhib-Jalbut S, Ito K. The mechanism of disease progression by aging and age-related gut dysbiosis in multiple sclerosis. Neurobiol Dis 2025:106956. [PMID: 40383164 DOI: 10.1016/j.nbd.2025.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease caused by a multifaceted interplay of genetic predispositions and environmental factors. Most patients initially experience the relapsing-remitting form of the disease (RRMS), which is characterized by episodes of neurological deficits followed by periods of symptom resolution. However, over time, many individuals with RRMS advance to a progressive form of the disease, known as secondary progressive MS (SPMS), marked by a gradual worsening of symptoms without periods of remission. The mechanisms underlying this transition remain largely unclear, and current disease-modifying therapies (DMTs) are partially effective in treating SPMS. Age is widely acknowledged as a risk factor for the transition from RRMS to SPMS. One factor associated with aging that may influence the progression of MS is gut dysbiosis. This review discusses how aging and age-related gut dysbiosis affect the progression of MS.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Claire Chen
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
3
|
Hu H, Gao T, Zhao J, Li H. Oligodendrogenesis in Evolution, Development and Adulthood. Glia 2025. [PMID: 40371693 DOI: 10.1002/glia.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Oligodendrogenesis and myelin formation are important processes in the central nervous system (CNS) of jawed vertebrates, underpinning the highly efficient neural computation within the compact CNS architecture. Myelin, the dense lipid sheath wrapped around axons, enables rapid signal transmission and modulation of neural circuits. Oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), which are widely distributed in the adult CNS and continue to produce new oligodendrocytes throughout life. Adult oligodendrogenesis is integral to adaptive myelination, which fine-tunes neural circuits in response to neuronal activity, contributing to neuroplasticity, learning, and memory. Emerging evidence also highlights the role of oligodendrogenesis in specialized brain regions, linking oligodendrocytes to metabolic and homeostatic functions. In the aging and diseased brain, dysregulated oligodendrogenesis exacerbates myelin loss and may contribute to pathogenesis. In addition, maladaptive myelination driven by aberrant neuronal activity could sustain a dysfunction in conditions such as epilepsy. This review summarizes the current understanding of oligodendrogenesis, with insights into its evolution, regulation, and impact on aging and disease.
Collapse
Affiliation(s)
- Hao Hu
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - Tianhao Gao
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - Jingwei Zhao
- Systemic Medicine Centre, School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
4
|
Canada K, Evans TM, Pelphrey KA. Microglial regulation of white matter development and its disruption in autism spectrum disorder. Cereb Cortex 2025; 35:bhaf109. [PMID: 40302613 DOI: 10.1093/cercor/bhaf109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
White matter, comprising approximately 50% of the human brain, is crucial for efficient neuronal signaling and a wide range of brain functions, including social cognition, sensation, memory, motor control, and information integration across cortical brain regions in the service of perception and cognition. White matter, composed of myelinated axons, results from complex interactions between different cell types, with oligodendrocytes (OLs) and microglia playing integral roles. Microglia, the brain's resident immune cells, regulate oligodendrogenesis through phagocytosis and molecular signaling, for example through cytokines, which promote and inhibit maturation stages of OL lineage cells. Maternal immune activation (MIA) is a recognized risk factor for neurodevelopmental disorders, especially autism spectrum disorder (ASD). The physiological presentation of ASD includes white matter abnormalities and immune dysregulation. Emerging evidence indicates that MIA may reduce microglial reactivity and alter cytokine release in offspring, potentially disrupting the delicate balance required for proper white matter development. Understanding the intricate interplay between oligodendrocytes, microglia, inflammation, and white matter development in the context of MIA provides valuable insights into the etiology of and core symptoms of ASD and possible therapeutic targets.
Collapse
Affiliation(s)
- Katherine Canada
- Department of Neurology, University of Virginia, Ivy Translational Research Building, 560 Ray C Hunt Drive, Charlottesville, VA 22903, United States
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Ridley Hall 126, PO Box 800784, 405 Emmet St S, Charlottesville, VA 22903, United States
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Ivy Translational Research Building, 560 Ray C Hunt Drive, Charlottesville, VA 22903, United States
| |
Collapse
|
5
|
Ktena N, Spyridakos D, Georgilis A, Kalafatakis I, Thomoglou E, Kolaxi A, Nikoletopoulou V, Savvaki M, Karagogeos D. Disruption of Oligodendroglial Autophagy Leads to Myelin Morphological Deficits, Neuronal Apoptosis, and Cognitive Decline in Aged Mice. Glia 2025. [PMID: 40105013 DOI: 10.1002/glia.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The aging central nervous system (CNS) is often marked by myelin degeneration, yet the underlying mechanisms remain elusive. This study delves into the previously unexplored role of autophagy in maintaining CNS myelin during aging. We generated the transgenic mouse line plpCreERT2; atg5f/f, enabling selective deletion of the core autophagic component Atg5 in oligodendrocytes (OLs) following tamoxifen administration in adulthood, while analysis was conducted on aged mice. Our findings reveal that oligodendroglial autophagy inactivation leads to significant alterations in myelin protein levels. Moreover, the ultrastructural analysis revealed pronounced myelin deficits and increased degeneration of axons, accompanied by apoptosis, as confirmed by immunohistochemistry. Behaviorally, aged knockout (cKO) mice exhibited marked deficits in learning and memory tasks, indicative of cognitive impairment. Additionally, we observed increased activation of microglia, suggesting an inflammatory response linked to the absence of autophagic activity in OLs. These results underscore the critical role of autophagy in OLs for the preservation of CNS myelin and axonal integrity during aging. Our study highlights autophagy as a vital mechanism for neural maintenance, offering potential therapeutic avenues for combating age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Niki Ktena
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | | | - Alexandros Georgilis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | - Ilias Kalafatakis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | | | - Angeliki Kolaxi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | | | - Maria Savvaki
- School of Medicine, University of Crete, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| |
Collapse
|
6
|
Fleming A, Lopez A, Rob M, Ramakrishna S, Park SJ, Li X, Rubinsztein DC. How does autophagy impact neurological function? Neuroscientist 2025:10738584251324459. [PMID: 40079405 DOI: 10.1177/10738584251324459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Autophagies describe a set of processes in which cells degrade their cytoplasmic contents via various routes that terminate with the lysosome. In macroautophagy (the focus of this review, henceforth autophagy), cytoplasmic contents, including misfolded proteins, protein complexes, dysfunctional organelles, and various pathogens, are captured within double membranes called autophagosomes, which ultimately fuse with lysosomes, after which their contents are degraded. Autophagy is important in maintaining neuronal and glial function; consequently, disrupted autophagy is associated with various neurologic diseases. This review provides a broad perspective on the roles of autophagy in the CNS, highlighting recent literature that furthers our understanding of the multifaceted role of autophagy in maintaining a healthy nervous system.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Matea Rob
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Sarayu Ramakrishna
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - So Jung Park
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Xinyi Li
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
7
|
López-Muguruza E, Peiró-Moreno C, Pérez-Cerdá F, Matute C, Ruiz A. Del Río Hortega's insights into oligodendrocytes: recent advances in subtype characterization and functional roles in axonal support and disease. Front Neuroanat 2025; 19:1557214. [PMID: 40145026 PMCID: PMC11936973 DOI: 10.3389/fnana.2025.1557214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Pío Del Río Hortega (1882-1945) was a giant of modern neuroscience and perhaps the most impactful member of Cajal's School. His contributions to clarifying the structure of the nervous system were key to understanding the brain beyond neurons. He uncovered microglia and oligodendrocytes, the latter until then named mesoglia. Most importantly, the characterization of oligodendroglia subtypes he made has stood the omics revolution that added molecular details relevant to comprehend their biological properties. Astounding as it may seem on today's eyes, he postulated a century ago that oligodendrocytes provide trophic support to axons, an idea that is now beyond doubt and under scrutiny as dysfunction at the axon-myelin unit is key to neurodegeneration. Here, we revised recent key advancements in oligodendrocyte biology that shed light on Hortega's ideas a century ago.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Carla Peiró-Moreno
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Fernando Pérez-Cerdá
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| |
Collapse
|
8
|
Chen H, Yang G, Xu DE, Du YT, Zhu C, Hu H, Luo L, Feng L, Huang W, Sun YY, Ma QH. Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner. Neurosci Bull 2025; 41:374-390. [PMID: 39283565 PMCID: PMC11876512 DOI: 10.1007/s12264-024-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 12/08/2024] Open
Abstract
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, China
| | - Yu-Tong Du
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Körner MB, Velluva A, Bundalian L, Krohn K, Schön K, Schumann I, Kromp J, Thum AS, Garten A, Hentschel J, Abou Jamra R, Mrestani A, Scholz N, Langenhan T, Le Duc D. Drosophila WDFY3/ Bchs overexpression impairs neural function. J Neurogenet 2025; 39:23-38. [PMID: 40000652 DOI: 10.1080/01677063.2025.2465536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic variants in WDFY3, a gene encoding for an autophagy adaptor termed ALFY, are linked to neurodevelopmental delay and altered brain size in human probands. While the role of WDFY3 loss-of-function is extensively studied in neurons, little is known about the effects of WDFY3 upregulation in different cell types of the central nervous system (CNS). We show that overexpression of the Drosophila melanogaster WDFY3 ortholog, Bchs, in either glia or neurons impaired autophagy and locomotion. Bchs glial overexpression also increased VNC size and glial nuclei number significantly, whereas neuronal Bchs overexpression affected wing and thorax morphology. We identified 79 genes that were differentially expressed and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively. Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in gene ontology categories associated with autophagy and mitochondrial function. Our data indicate that glial as well as neuronal Bchs upregulation can have detrimental outcomes on neural function.
Collapse
Affiliation(s)
- Marek B Körner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathleen Schön
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Schumann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jessica Kromp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Choi JJ, Svaren J, Wang D. CoTF-reg reveals cooperative transcription factors in oligodendrocyte gene regulation using single-cell multi-omics. Commun Biol 2025; 8:181. [PMID: 39910206 PMCID: PMC11799153 DOI: 10.1038/s42003-025-07570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Oligodendrocytes are the myelinating cells within the central nervous system, but the mechanisms by which transcription factors (TFs) cooperate for gene regulation in oligodendrocytes remain unclear. We introduce coTF-reg, an analytical framework that integrates scRNA-seq and scATAC-seq data to identify cooperative TFs co-regulating the target gene (TG). First, we identify co-binding TF pairs in the same oligodendrocyte-specific regulatory regions. Next, we train a deep learning model to predict each TG expression using the co-binding TFs' expressions. Shapley interaction scores reveal high interactions between co-binding TF pairs, such as SOX10-TCF12. Validation using oligodendrocyte eQTLs and their eGenes that are regulated by these cooperative TFs show potential regulatory roles for genetic variants. Experimental validation using ChIP-seq data confirms some cooperative TF pairs, such as SOX10-OLIG2. Prediction performance of our models is evaluated through holdout data and additional datasets, and an ablation study is also conducted. The results demonstrate stable and consistent performance.
Collapse
Affiliation(s)
- Jerome J Choi
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Li D, Hu Q, Zhan Z, Zhang X, Zeng W, Liu L, Wu K, Yu M. Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice. Exp Eye Res 2025; 251:110235. [PMID: 39798846 DOI: 10.1016/j.exer.2025.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury. After unilateral ONC, visual acuity in the injured eye declined, along with thinning of the retinal nerve fiber layer, and the latency and amplitude of FVEPs decreased. Furthermore, neuronal loss and degeneration were observed in the contralateral SC and V1 region, accompanied by astrocytic activation. Additionally, protein markers C3, and Serping1 for A1 astrocytes, which had neurotoxic effects and S100A10, and PTX3 for A2 astrocytes, which promoted tissue repair, were increased in the two regions. A1 astrocytes were mainly present in the early stages of observation, while A2 astrocytes were mainly increased later. Notably, NLRC4, GSDMD-N, cleaved caspase-1 expression, and IL-1β, IL-18 secretion increased in the contralateral SC and V1 region. Collectively, our findings reveal that A1 (neurotoxic) and A2 astrocytes (neuroprotective), NLRC4-mediated neuronal pyroptosis are enhanced in SC and V1 region contralateral to the ONC eye. The primary visual cortex responds to injury later than the superior colliculus after ONC, with less pronounced damage changes. Reactive astrocytes and NLRC4 inflammasome may act as promising targets for the prevention and treatment of optic nerve injury.
Collapse
Affiliation(s)
- Deling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Qinyuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Xinyi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Weiting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Liling Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
13
|
Ito-Silva VI, Smith BJ, Martins-de-Souza D. The autophagy proteome in the brain. J Neurochem 2025; 169:e16204. [PMID: 39155518 DOI: 10.1111/jnc.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
As one of the most important cellular housekeepers, autophagy directly affects cellular health, homeostasis, and function. Even though the mechanisms behind autophagy are well described, how molecular alterations and dysfunctions can lead to pathology in disease contexts still demands deeper investigation. Proteomics is a widely employed tool used to investigate molecular alterations associated with pathological states and has proven useful in identifying alterations in protein expression levels and post-translational modifications in autophagy. In this narrative review, we expand on the molecular mechanisms behind autophagy and its regulation, and further compile recent literature associating autophagy disturbances in context of brain disorders, utilizing discoveries from varying models and species from rodents and cellular models to human post-mortem brain samples. To outline, the canonical pathways of autophagy, the effects of post-translational modifications on regulating each step of autophagy, and the future directions of proteomics in autophagy will be discussed. We further aim to suggest how advancing proteomics can help further unveil molecular mechanisms with regard to neurological disorders.
Collapse
Affiliation(s)
- Vitor I Ito-Silva
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil
| |
Collapse
|
14
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
15
|
Grosso Jasutkar H, Wasserlein EM, Ishola A, Litt N, Staniszewski A, Arancio O, Yamamoto A. Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease. Autophagy 2024; 20:2540-2555. [PMID: 38949671 PMCID: PMC11572145 DOI: 10.1080/15548627.2024.2368335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the atg7iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from atg7iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in atg7iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. Abbreviations: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Azeez Ishola
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicole Litt
- Department of Neurology, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Asadollahi E, Trevisiol A, Saab AS, Looser ZJ, Dibaj P, Ebrahimi R, Kusch K, Ruhwedel T, Möbius W, Jahn O, Lee JY, Don AS, Khalil MA, Hiller K, Baes M, Weber B, Abel ED, Ballabio A, Popko B, Kassmann CM, Ehrenreich H, Hirrlinger J, Nave KA. Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat Neurosci 2024; 27:1934-1944. [PMID: 39251890 PMCID: PMC11452346 DOI: 10.1038/s41593-024-01749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Brain function requires a constant supply of glucose. However, the brain has no known energy stores, except for glycogen granules in astrocytes. In the present study, we report that continuous oligodendroglial lipid metabolism provides an energy reserve in white matter tracts. In the isolated optic nerve from young adult mice of both sexes, oligodendrocytes survive glucose deprivation better than astrocytes. Under low glucose, both axonal ATP levels and action potentials become dependent on fatty acid β-oxidation. Importantly, ongoing oligodendroglial lipid degradation feeds rapidly into white matter energy metabolism. Although not supporting high-frequency spiking, fatty acid β-oxidation in mitochondria and oligodendroglial peroxisomes protects axons from conduction blocks when glucose is limiting. Disruption of the glucose transporter GLUT1 expression in oligodendrocytes of adult mice perturbs myelin homeostasis in vivo and causes gradual demyelination without behavioral signs. This further suggests that the imbalance of myelin synthesis and degradation can underlie myelin thinning in aging and disease.
Collapse
Affiliation(s)
- Ebrahim Asadollahi
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany.
| | - Andrea Trevisiol
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Toronto, Sunnybrook Health Sciences Centre, Department of Physical Sciences, North York, Ontario, Canada
| | - Aiman S Saab
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Zoe J Looser
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Payam Dibaj
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- Center for Rare Diseases Göttingen, Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | - Reyhane Ebrahimi
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Kathrin Kusch
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Göttingen Medical School, Institute for Auditory Neuroscience and Inner Ear Lab, Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Neurobiology, Neuroproteomics Group, Göttingen, Germany
- University Medical Center Göttingen, Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, Göttingen, Germany
| | - Jun Yup Lee
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Don
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michelle-Amirah Khalil
- Department for Bioinformatics and Biochemistry, Braunschweig Integrated Center of System Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, Braunschweig Integrated Center of System Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Brian Popko
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celia M Kassmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Hannelore Ehrenreich
- Max Planck Institute for Multidisciplinary Sciences, Clinical Neuroscience, Göttingen, Germany
- Central Institute of Mental Health, Mannheim, Germany
| | - Johannes Hirrlinger
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany.
| |
Collapse
|
17
|
Nevalainen T, Autio-Kimura A, Hurme M. Human endogenous retrovirus W in multiple sclerosis: transcriptional activity is associated with decline in oligodendrocyte proportions in the white matter of the brain. J Neurovirol 2024; 30:393-405. [PMID: 38717678 PMCID: PMC11512866 DOI: 10.1007/s13365-024-01208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/22/2024] [Accepted: 04/03/2024] [Indexed: 10/28/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. One of the basic mechanisms in this disease is the autoimmune response against the myelin sheet leading to axonal damage. There is strong evidence showing that this response is regulated by both genetic and environmental factors. In addition, the role of viruses has been extensively studied, especially in the case of human endogenous retroviruses (HERVs). However, although several associations with MS susceptibility, especially in the case of HERV-W family have been observed, the pathogenic mechanisms have remained enigmatic. To clarify these HERV-mediated mechanisms as well as the responsible HERV-W loci, we utilized RNA sequencing data obtained from the white matter of the brain of individuals with and without MS. CIBERSORTx tool was applied to estimate the proportions of neuronal, glial, and endothelial cells in the brain. In addition, the transcriptional activity of 215 HERV-W loci were analyzed. The results indicated that 65 HERV-W loci had detectable expression, of which 14 were differentially expressed between MS and control samples. Of these, 12 HERV-W loci were upregulated in MS. Expression levels of the 8 upregulated HERV-W loci had significant negative correlation with estimated oligodendrocyte proportions, suggesting that they are associated with the dynamics of oligodendrocyte generation and/or maintenance. Furthermore, Gene Set Enrichment Analysis (GSEA) results indicated that expression levels of three upregulated HERV-W loci: 2p16.2, 2q13, and Xq13.3, are associated with suppression of oligodendrocyte development and myelination. Taken together, these data suggest new HERV-W loci candidates that might take part in MS pathogenesis.
Collapse
Affiliation(s)
- Tapio Nevalainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Gerontology Research Center (GEREC), Tampere, Finland.
- Tampere University Hospital, Tampere, Finland.
| | - Arttu Autio-Kimura
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
| | - Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| |
Collapse
|
18
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
19
|
Nguyen DPQ, Jallow AW, Lin YF, Lin YF. Exploring the Potential Role of Oligodendrocyte-Associated PIP4K2A in Alzheimer's Disease Complicated with Type 2 Diabetes Mellitus via Multi-Omic Analysis. Int J Mol Sci 2024; 25:6640. [PMID: 38928345 PMCID: PMC11204139 DOI: 10.3390/ijms25126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM. The analysis incorporated various data types, including blood and tissue samples as well as single-cell datasets, allowing for a detailed assessment of gene expression patterns. From the brain region-specific single-cell analysis, PIP4K2A, which encodes phosphatidylinositol-5-phosphate 4-kinase type 2 alpha, was found to be expressed mainly in oligodendrocytes compared to other cell types. Elevated levels of PIP4K2A in AD and T2DM patients' blood were found to be associated with key cellular processes such as vesicle-mediated transport, negative regulation of autophagosome assembly, and cytosolic transport. The identification of PIP4K2A's potential roles in the cellular processes of AD and T2DM offers valuable insights into the development of biomarkers for diagnosis and therapy, especially in the complication of these two diseases.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City 110, Taiwan
| |
Collapse
|
20
|
Nagayach A, Wang C. Autophagy in neural stem cells and glia for brain health and diseases. Neural Regen Res 2024; 19:729-736. [PMID: 37843206 PMCID: PMC10664120 DOI: 10.4103/1673-5374.382227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 10/17/2023] Open
Abstract
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells. Autophagy arbitrates structural and functional remodeling during the cell differentiation process. Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases. Only recently, studies have begun to shed light on autophagy regulation in glia (microglia, astrocyte, and oligodendrocyte) in the brain. Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development, synaptic function, brain metabolism, cellular debris clearing, and restoration of damaged or injured tissues. Thus, this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions, neurodevelopmental disorders, and neurodegenerative diseases. This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
21
|
Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-Dependent Secretion: Crosstalk between Autophagy and Exosome Biogenesis. Curr Issues Mol Biol 2024; 46:2209-2235. [PMID: 38534758 DOI: 10.3390/cimb46030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome. Secretory authophagy, initiated by various stress stimuli, prompts the selective release of proteins implicated in inflammation, including leaderless proteins that bypass the conventional endoplasmic reticulum-Golgi secretory pathway. This reflects the significant impact of stress-induced autophagy on cellular secretion profiles, including the modulation of exosome release. The convergence of exosome biogenesis and autophagy is exemplified by the formation of amphisomes, vesicles that integrate autophagic and endosomal pathways, indicating their synergistic interplay. Regulatory proteins common to both pathways, particularly mTORC1, emerge as potential therapeutic targets to alter cellular secretion profiles involved in various diseases. This review explores the dynamic interplay between autophagy and exosome formation, highlighting the potential to influence the secretome composition. While the modulation of exosome secretion and cytokine preconditioning is well-established in regenerative medicine, the strategic manipulation of autophagy is still underexplored, presenting a promising but uncharted therapeutic landscape.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasya Bolotskaya
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| |
Collapse
|
22
|
Wang LH, Wei S, Yuan Y, Zhong MJ, Wang J, Yan ZX, Zhou K, Luo T, Liang L, Bian XW. KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. Autophagy 2024; 20:295-310. [PMID: 37712615 PMCID: PMC10813631 DOI: 10.1080/15548627.2023.2252301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
ABBREVIATIONS AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ming-Jun Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu610000, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Kai Zhou
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| |
Collapse
|
23
|
Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 2024; 24:49-63. [PMID: 37452201 DOI: 10.1038/s41577-023-00907-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.
Collapse
Affiliation(s)
- Sarah A Kent
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
25
|
Litwiniuk A, Juszczak GR, Stankiewicz AM, Urbańska K. The role of glial autophagy in Alzheimer's disease. Mol Psychiatry 2023; 28:4528-4539. [PMID: 37679471 DOI: 10.1038/s41380-023-02242-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Although Alzheimer's disease is the most pervasive neurodegenerative disorder, the mechanism underlying its development is still not precisely understood. Available data indicate that pathophysiology of this disease may involve impaired autophagy in glial cells. The dysfunction is manifested as reduced ability of astrocytes and microglia to clear abnormal protein aggregates. Consequently, excessive accumulation of amyloid beta plaques and neurofibrillary tangles activates microglia and astrocytes leading to decreased number of mature myelinated oligodendrocytes and death of neurons. These pathologic effects of autophagy dysfunction can be rescued by pharmacological activation of autophagy. Therefore, a deeper understanding of the molecular mechanisms involved in autophagy dysfunction in glial cells in Alzheimer's disease may lead to the development of new therapeutic strategies. However, such strategies need to take into consideration differences in regulation of autophagy in different types of neuroglia.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Mazovia, Poland
| | - Grzegorz Roman Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland.
| | - Kaja Urbańska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Mazovia, Poland.
| |
Collapse
|
26
|
Chen K, Garcia Padilla C, Kiselyov K, Kozai TDY. Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. Biomaterials 2023; 302:122316. [PMID: 37738741 PMCID: PMC10897938 DOI: 10.1016/j.biomaterials.2023.122316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/24/2023]
Abstract
Intracortical microelectrodes that can record and stimulate brain activity have become a valuable technique for basic science research and clinical applications. However, long-term implantation of these microelectrodes can lead to progressive neurodegeneration in the surrounding microenvironment, characterized by elevation in disease-associated markers. Dysregulation of autophagy-lysosomal degradation, a major intracellular waste removal process, is considered a key factor in the onset and progression of neurodegenerative diseases. It is plausible that similar dysfunctions in autophagy-lysosomal degradation contribute to tissue degeneration following implantation-induced focal brain injury, ultimately impacting recording performance. To understand how the focal, persistent brain injury caused by long-term microelectrode implantation impairs autophagy-lysosomal pathway, we employed two-photon microscopy and immunohistology. This investigation focused on the spatiotemporal characterization of autophagy-lysosomal activity near the chronically implanted microelectrode. We observed an aberrant accumulation of immature autophagy vesicles near the microelectrode over the chronic implantation period. Additionally, we found deficits in autophagy-lysosomal clearance proximal to the chronic implant, which was associated with an accumulation of autophagy cargo and a reduction in lysosomal protease level during the chronic period. Furthermore, our evidence demonstrates reactive astrocytes have myelin-containing lysosomes near the microelectrode, suggesting its role of myelin engulfment during acute implantation period. Together, this study sheds light on the process of brain tissue degeneration caused by long-term microelectrode implantation, with a specific focus on impaired intracellular waste degradation.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Zhang T, Bhambri A, Zhang Y, Barbosa D, Bae HG, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control oligodendrocyte number. Cell Rep 2023; 42:112943. [PMID: 37543947 PMCID: PMC10529879 DOI: 10.1016/j.celrep.2023.112943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/20/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Oligodendrocytes are the sole myelin-producing cells in the central nervous system. Oligodendrocyte number is tightly controlled across diverse brain regions to match local axon type and number, yet the underlying mechanisms remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under physiological conditions, elicits premyelinating oligodendrocyte apoptosis during development. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy functions cell autonomously in the premyelinating oligodendrocyte to trigger cell apoptosis, and it genetically interacts with the TFEB pathway to limit oligodendrocyte number across diverse brain regions. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrogenesis.
Collapse
Affiliation(s)
- Tingxin Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aksheev Bhambri
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Gyu Bae
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabeen Wazir
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara B Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
López-Muguruza E, Matute C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int J Mol Sci 2023; 24:12912. [PMID: 37629092 PMCID: PMC10454078 DOI: 10.3390/ijms241612912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system (CNS), characterized by demyelination and neurodegeneration. Oligodendrocytes play a vital role in maintaining the integrity of myelin, the protective sheath around nerve fibres essential for efficient signal transmission. However, in MS, oligodendrocytes become dysfunctional, leading to myelin damage and axonal degeneration. Emerging evidence suggests that metabolic changes, including mitochondrial dysfunction and alterations in glucose and lipid metabolism, contribute significantly to the pathogenesis of MS. Mitochondrial dysfunction is observed in both immune cells and oligodendrocytes within the CNS of MS patients. Impaired mitochondrial function leads to energy deficits, affecting crucial processes such as impulse transmission and axonal transport, ultimately contributing to neurodegeneration. Moreover, mitochondrial dysfunction is linked to the generation of reactive oxygen species (ROS), exacerbating myelin damage and inflammation. Altered glucose metabolism affects the energy supply required for oligodendrocyte function and myelin synthesis. Dysregulated lipid metabolism results in changes to the composition of myelin, affecting its stability and integrity. Importantly, low levels of polyunsaturated fatty acids in MS are associated with upregulated lipid metabolism and enhanced glucose catabolism. Understanding the intricate relationship between these mechanisms is crucial for developing targeted therapies to preserve myelin and promote neurological recovery in individuals with MS. Addressing these metabolic aspects may offer new insights into potential therapeutic strategies to halt disease progression and improve the quality of life for MS patients.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
29
|
Kaplanis SI, Kaffe D, Ktena N, Lygeraki A, Kolliniati O, Savvaki M, Karagogeos D. Nicotinamide enhances myelin production after demyelination through reduction of astrogliosis and microgliosis. Front Cell Neurosci 2023; 17:1201317. [PMID: 37663127 PMCID: PMC10469866 DOI: 10.3389/fncel.2023.1201317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Caloric restriction is the chronic reduction of total caloric intake without malnutrition and has attracted a lot of attention as, among multiple other effects, it attenuates demyelination and stimulates remyelination. In this study we have evaluated the effect of nicotinamide (NAM), a well-known caloric restriction mimetic, on myelin production upon demyelinating conditions. NAM is the derivative of nicotinic acid (vitamin B3) and a precursor of nicotinamide adenine dinucleotide (NAD+), a ubiquitous metabolic cofactor. Here, we use cortical slices ex vivo subjected to demyelination or cultured upon normal conditions, a lysolecithin (LPC)-induced focal demyelination mouse model as well as primary glial cultures. Our data show that NAM enhances both myelination and remyelination ex vivo, while it also induces myelin production after LPC-induced focal demyelination ex vivo and in vivo. The increased myelin production is accompanied by reduction in both astrogliosis and microgliosis in vivo. There is no direct effect of NAM on the oligodendrocyte lineage, as no differences are observed in oligodendrocyte precursor cell proliferation or differentiation or in the number of mature oligodendrocytes. On the other hand, NAM affects both microglia and astrocytes as it decreases the population of M1-activated microglia, while reducing the pro-inflammatory phenotype of astrocytes as assayed by the reduction of TNF-α. Overall, we show that the increased myelin production that follows NAM treatment in vivo is accompanied by a decrease in both astrocyte and microglia accumulation at the lesion site. Our data indicate that NAM influences astrocytes and microglia directly, in favor of the remyelination process by promoting a less inflammatory environment.
Collapse
Affiliation(s)
- Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Despoina Kaffe
- Department of Biology, University of Crete, Heraklion, Greece
| | - Niki Ktena
- Department of Basic Science, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | | | - Ourania Kolliniati
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
- Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Maria Savvaki
- Department of Basic Science, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|
30
|
Razick DI, Akhtar M, Wen J, Alam M, Dean N, Karabala M, Ansari U, Ansari Z, Tabaie E, Siddiqui S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023; 15:e40463. [PMID: 37456463 PMCID: PMC10349546 DOI: 10.7759/cureus.40463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Sirtuins (SIRT) are a class of histone deacetylases that regulate important metabolic pathways and play a role in several disease processes. Of the seven mammalian homologs currently identified, sirtuin 1 (SIRT1) is the best understood and most studied. It has been associated with several neurodegenerative diseases and cancers. As such, it has been further investigated as a therapeutic target in the treatment of disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). SIRT1 deacetylates histones such as H1 lysine 26, H3 lysine 9, H3 lysine 56, and H4 lysine 16 to regulate chromatin remodeling and gene transcription. The homolog has also been observed to express contradictory responses to tumor suppression and tumor promotion. Studies have shown that SIRT1 may have anti-inflammatory properties by inhibiting the effects of NF-κB, as well as stimulating upregulation of autophagy. The SIRT1 activators resveratrol and cilostazol have been shown to improve Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores in AD patients. In this review, we aim to explore the various roles of SIRT1 with regard to neuroprotection and neurodegeneration.
Collapse
Affiliation(s)
- Daniel I Razick
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Muzammil Akhtar
- Surgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Jimmy Wen
- Physical Medicine and Rehabilitation, California Northstate University College of Medicine, Elk Grove, USA
| | - Meraj Alam
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Nabeal Dean
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Muhammad Karabala
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Ubaid Ansari
- Internal Medicine, California Northstate University College of Medicine, Elk Grove, USA
| | - Zaid Ansari
- Internal Medicine, University of California Berkeley, Berkeley, USA
| | - Ethan Tabaie
- Neurosurgery, California Northstate University College of Medicine, Elk Grove, USA
| | - Shakeel Siddiqui
- Anesthesiology, OrthoMed Staffing Anesthesiology Group, Dallas, USA
| |
Collapse
|
31
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
32
|
Zhang T, Bae HG, Bhambri A, Zhang Y, Barbosa D, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control myelination specificity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522394. [PMID: 36712125 PMCID: PMC9881874 DOI: 10.1101/2022.12.31.522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.
Collapse
|
33
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|