1
|
Boff MO, Xavier FAC, Diz FM, Gonçalves JB, Ferreira LM, Zambeli J, Pazzin DB, Previato TTR, Erwig HS, Gonçalves JIB, Bruzzo FTK, Marinowic D, da Costa JC, Zanirati G. mTORopathies in Epilepsy and Neurodevelopmental Disorders: The Future of Therapeutics and the Role of Gene Editing. Cells 2025; 14:662. [PMID: 40358185 PMCID: PMC12071303 DOI: 10.3390/cells14090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 05/15/2025] Open
Abstract
mTORopathies represent a group of neurodevelopmental disorders linked to dysregulated mTOR signaling, resulting in conditions such as tuberous sclerosis complex, focal cortical dysplasia, hemimegalencephaly, and Smith-Kingsmore Syndrome. These disorders often manifest with epilepsy, cognitive impairments, and, in some cases, structural brain anomalies. The mTOR pathway, a central regulator of cell growth and metabolism, plays a crucial role in brain development, where its hyperactivation leads to abnormal neuroplasticity, tumor formation, and heightened neuronal excitability. Current treatments primarily rely on mTOR inhibitors, such as rapamycin, which reduce seizure frequency and tumor size but fail to address underlying genetic causes. Advances in gene editing, particularly via CRISPR/Cas9, offer promising avenues for precision therapies targeting the genetic mutations driving mTORopathies. New delivery systems, including viral and non-viral vectors, aim to enhance the specificity and efficacy of these therapies, potentially transforming the management of these disorders. While gene editing holds curative potential, challenges remain concerning delivery, long-term safety, and ethical considerations. Continued research into mTOR mechanisms and innovative gene therapies may pave the way for transformative, personalized treatments for patients affected by these complex neurodevelopmental conditions.
Collapse
Affiliation(s)
- Marina Ottmann Boff
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Mendonça Diz
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Laura Meireles Ferreira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jean Zambeli
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, University of the Valley of the Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, RS, Brazil
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Fernanda Thays Konat Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| |
Collapse
|
2
|
Packer JM, Giammo SG, Wangler LM, Davis AC, Bray CE, Godbout JP. Diffuse traumatic brain injury induced stimulator of interferons (STING) signaling in microglia drives cortical neuroinflammation, neuronal dysfunction, and impaired cognition. J Neuroinflammation 2025; 22:128. [PMID: 40307881 PMCID: PMC12044788 DOI: 10.1186/s12974-025-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Neuropsychiatric complications including depression and cognitive impairment develop, persist, and worsen in the years after traumatic brain injury (TBI), negatively affecting life and lifespan. Inflammatory responses mediated by microglia are associated with the transition from acute to chronic neuroinflammation after TBI. Moreover, type I interferon (IFN-I) signaling is a key mediator of inflammation during this transition. Thus, the purpose of this study was to determine the degree to which a microglia-specific knockout of the stimulator of interferons (STING) influenced TBI-induced neuroinflammation, neuronal dysfunction, and cognitive impairment. Here, microglial inducible STING knockout (CX₃CR1Cre/ERT2 x STINGfl/fl) mice were created and validated (mSTING-/-). Diffuse brain injury (midline fluid percussion) in male and female mice increased STING expression in microglia, promoted microglial morphological restructuring, and induced robust cortical inflammation and pathology 7 days post injury (dpi). These TBI-associated responses were attenuated in mSTING-/- mice. Increased cortical astrogliosis and rod-shaped microglia induced by TBI were independent of mSTING-/-. 7 dpi, TBI induced 237 differentially expressed genes (DEG) in the cortex of functionally wildtype (STINGfl/fl) associated with STING, NF-κB, and Interferon Alpha signaling and 85% were attenuated by mSTING-/-. Components of neuronal injury including reduced NeuN expression, increased cortical lipofuscin, and increased neurofilament light chain in plasma were increased by TBI and dependent on mSTING. TBI-associated cognitive tasks (novel object recognition/location, NOR/NOL) at 7 dpi were dependent on mSTING. Notably, the TBI-induced cognitive deficits in NOR/NOL and increased cortical inflammation 7 dpi were unaffected in global interferon-α/β receptor 1 knockout (IFNAR1) mice. In the final study, the RNA profile of neurons after TBI in STINGfl/fl and mSTING-/- mice was assessed 7 dpi by single nucleus RNA-sequencing. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and oxytocin signaling and increases in cilium assembly and PTEN signaling. Overall, mSTING-/- prevented 50% of TBI-induced DEGs in cortical neurons. Collectively, ablation of STING in microglia attenuates TBI-induced interferon responses, cortical inflammation, neuronal dysfunction, neuronal pathology, and cognitive impairment.
Collapse
Affiliation(s)
- Jonathan M Packer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Samantha G Giammo
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Lynde M Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Amara C Davis
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, Columbus, OH, USA.
- 231 IBMR Building, The Ohio State University, 460 Medical Center Dr., Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Bonnycastle K, Nawaz MS, Kind PC, Cousin MA. Convergent depression of activity-dependent bulk endocytosis in rodent models of autism spectrum disorder. Mol Autism 2025; 16:26. [PMID: 40241211 PMCID: PMC12004638 DOI: 10.1186/s13229-025-00660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The key pathological mechanisms underlying autism spectrum disorder (ASD) remain relatively undetermined, potentially due to the heterogenous nature of the condition. Targeted studies of a series of monogenic ASDs have revealed postsynaptic dysfunction as a central conserved mechanism. Presynaptic dysfunction is emerging as an additional disease locus in neurodevelopmental disorders; however, it is unclear whether this dysfunction drives ASD or is an adaptation to the altered brain microenvironment. METHODS To differentiate between these two competing scenarios, we performed a high content analysis of key stages of the synaptic vesicle lifecycle in primary neuronal cultures derived from a series of preclinical rat models of monogenic ASD. These five independent models (Nrxn1+/-, Nlgn3-/y, Syngap+/-, Syngap+/Δ-GAP, Pten+/-) were specifically selected to have perturbations in a diverse palette of genes that were expressed either at the pre- or post-synapse. Synaptic vesicle exocytosis and cargo trafficking were triggered via two discrete trains of activity and monitored using the genetically-encoded reporter synaptophysin-pHluorin. Activity-dependent bulk endocytosis was assessed during intense neuronal activity using the fluid phase marker tetramethylrhodamine-dextran. RESULTS Both synaptic vesicle fusion events and cargo trafficking were unaffected in all models investigated under all stimulation protocols. However, a key convergent phenotype across neurons derived from all five models was revealed, a depression in activity-dependent bulk endocytosis. LIMITATIONS The study is exclusively conducted in primary cultures of hippocampal neurons; therefore, the impact on neurons from other brain regions or altered brain microcircuitry was not assessed. No molecular mechanism has been identified for this depression. CONCLUSION This suggests that depression of activity-dependent bulk endocytosis is a presynaptic homeostatic mechanism to correct for intrinsic dysfunction in ASD neurons.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Mohammed Sarfaraz Nawaz
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
4
|
Corti E, Duarte CB. FMRP Controls Neuronal Architecture and Synaptic Content of NMDA Receptors in Cultured Hippocampal Neurons. J Mol Neurosci 2025; 75:44. [PMID: 40172581 PMCID: PMC11965214 DOI: 10.1007/s12031-025-02325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025]
Abstract
Fragile X syndrome is the most common inherited form of intellectual disability and is caused by the transcriptional silencing of the Fmr1 gene and the lack of fragile X messenger ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that regulates the synthesis of synaptic proteins which are essential for proper brain function. Although circuit hyperexcitability is a hallmark of fragile X syndrome (FXS), the cell-autonomous effects of FMRP deficiency remain poorly understood. In this work, we investigated the functional consequences of the absence of FMRP on neuronal morphology and on ionotropic glutamate receptor surface distribution, using primary cultures of mice hippocampal neurons isolated from wild-type (WT) and Fmr1 knock-out (KO) pups. MAP2 staining of Fmr1 KO neurons showed a decrease in total dendritic length and complexity of the dendritic tree, accompanied by an increase in soma size compared to WT neurons. Moreover, immunolabelling of surface glutamate receptors performed under non-permeabilising conditions showed that Fmr1 KO neurons presented a higher content of synaptic surface GluN2A and a lower content of GluN2B subunits of NMDA receptors, while GluA1 and GluA2 distribution remained unchanged. Finally, multielectrode array data showed that Fmr1 KO neurons presented reduced spontaneous activity compared to control neurons. These data support the hypothesis that at the cellular level, Fmr1 KO hippocampal neurons are less excitable due to altered input processing, driven by structural defects and altered GluN2A expression in the synaptic plasma membrane.
Collapse
Affiliation(s)
- Elisa Corti
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Tan Z, Bussies PL, Sarn NB, Irfan M, DeSilva T, Eng C. Morphological and functional differences between hippocampal and cortical microglia and its impact on neuronal over-excitation in a germline Pten mutant mouse model. Neuroscience 2025; 570:159-172. [PMID: 39984030 DOI: 10.1016/j.neuroscience.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
High-throughput, transcriptomic analyses of the brain have revealed significant differences of microglia between the hippocampus and the cortex. However, it remains unclear whether these regional differences translate into different microglial behaviors and impact disease progression. Here, we show that microglia possess higher morphological complexity and phagocytic capacity in the hippocampus compared to the cortex of wild-type mice. These regional differences are preserved in mice harboring a germline Pten mutation, which have a general increase of microglial ramification and phagocytic capacity. Moreover, we find that Pten-mutant microglia protect neurons from over-excitation through pruning excessive excitatory synapses and forming more microglia-neuron junctions. However, Pten-mutation induced neuronal over-excitation is normalized in the hippocampus but not the cortex which we are attributing to regional differences of microglia in both function and morphology. These Pten-mutant microglia may protect Pten mutant mice from developing spontaneous seizures, but cannot eliminate their heightened risk of provoked seizure. Collectively, our findings have revealed a potential protective role of microglia in an over-excited brain, underscoring the impact of microglial regional heterogeneity in disease development and highlighting their prospect as a therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Zhibing Tan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Parker L Bussies
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nicholas B Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Muhammad Irfan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tara DeSilva
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Goldberg AR, Dovas A, Torres D, Pereira B, Viswanathan A, Das Sharma S, Mela A, Merricks EM, Megino-Luque C, McInvale JJ, Olabarria M, Shokooh LA, Zhao HT, Chen C, Kotidis C, Calvaresi P, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Bushong EA, Boassa D, Ellisman MH, Hillman EMC, Hargus G, Bravo-Cordero JJ, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition. Neuron 2025; 113:858-875.e10. [PMID: 39837324 PMCID: PMC11925689 DOI: 10.1016/j.neuron.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/27/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed these tumor-induced changes. These findings reveal mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma and suggest new strategies for treating glioma-associated neurological symptoms.
Collapse
Affiliation(s)
- Alexander R Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cristina Megino-Luque
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Julie J McInvale
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Darcy S Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Packer JM, Giammo SG, Wangler LM, Davis AC, Bray CE, Godbout JP. Diffuse Traumatic Brain Injury Induced Stimulator of Interferons (STING) Signaling in Microglia Drives Cortical Neuroinflammation, Neuronal Dysfunction, and Impaired Cognition. RESEARCH SQUARE 2025:rs.3.rs-5960640. [PMID: 40034431 PMCID: PMC11875282 DOI: 10.21203/rs.3.rs-5960640/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuropsychiatric complications including depression and cognitive impairment develop, persist, and worsen in the years after traumatic brain injury (TBI), negatively affecting life and lifespan. Inflammatory responses mediated by microglia are associated with the transition from acute to chronic neuroinflammation after TBI. Moreover, type I interferon (IFN-I) signaling is a key mediator of inflammation during this transition. Thus, the purpose of this study was to determine the degree to which a microglia-specific knockout of the stimulator of interferons (STING) influenced TBI-induced neuroinflammation, neuronal dysfunction, and cognitive impairment. Here, microglial inducible STING knockout (CX3CR1Cre/ERT2 × STINGfl/fl) mice were created and validated (mSTING-/-). Diffuse brain injury (midline fluid percussion) in male and female mice increased STING expression in microglia, promoted microglial morphological restructuring, and induced robust cortical inflammation and pathology 7 days post injury (dpi). These TBI-associated responses were attenuated in mSTING-/- mice. Increased cortical astrogliosis and rod-shaped microglia induced by TBI were independent of mSTING-/-. 7 dpi, TBI induced 237 differentially expressed genes (DEG) in the cortex of functionally wildtype (STING+/+) associated with STING, NF-κB, and Interferon Alpha signaling and 85% were attenuated by mSTING-/-. Components of neuronal injury including reduced NeuN expression, increased cortical lipofuscin, and increased neurofilament light chain in plasma were increased by TBI and dependent on mSTING. TBI-associated cognitive tasks (novel object recognition/location, NOR/NOL) at 7 dpi were dependent on mSTING. Notably, the TBI-induced cognitive deflcits in NOR/NOL and increased cortical inflammation 7 dpi were unaffected in global interferon-α/β receptor 1 knockout (IFNAR1) mice. In the final study, the RNA profile of neurons after TBI in STING+/+ and mSTING-/- mice was assessed 7 dpi by single nucleus RNA-sequencing. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and oxytocin signaling and increases in cilium assembly and PTEN signaling. Overall, mSTING-/- prevented 50% of TBI-induced DEGs in cortical neurons. Collectively, ablation of STING in microglia attenuates TBI-induced IFN-dependent responses, cortical inflammation, neuronal dysfunction, neuronal pathology, and cognitive impairment.
Collapse
|
8
|
D'Amore A, Sundberg M, Lin R, Lubbers ET, Winden KD, Yu L, Gawlinska K, Gawlinski D, Lopez SG, Choe Y, Wightman EV, Liang Y, Modi M, Yuskaitis CJ, Lee HHC, Rotenberg A, Sahin M. Phenotypic rescue via mTOR inhibition in neuron-specific Pten knockout mice reveals AKT and mTORC1-site specific changes. Mol Psychiatry 2025:10.1038/s41380-025-02916-2. [PMID: 39953287 DOI: 10.1038/s41380-025-02916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Phosphatase and Tensin Homolog (PTEN) is a dual-specific protein and lipid phosphatase that regulates AKT and downstream signaling of the mechanistic target of rapamycin (mTOR). PTEN functions as a tumor suppressor gene whose mutations result in PTEN Hamartoma Tumor Syndrome (PHTS) characterized by increased cancer risk and neurodevelopmental comorbidity. Here, we generated a novel neuron-specific Pten knock-out mouse model (Syn-Cre/Pten HOM) to test the ability of pharmacologic mTOR inhibition to rescue Pten mutation-associated disease phenotypes in vivo and in vitro. We found that treatment with the mTOR inhibitor, everolimus, increased the survival of Syn-Cre/Pten HOM mice while some neurologic phenotypes persisted. Transcriptomic analyses revealed that in contrast to mice harboring a neuron-specific deletion of the Tuberous Sclerosis Complex 2 gene (Syn-Cre/Tsc2 KO), genes that are under AKT regulation were significantly increased in the Syn-Cre/Pten HOM mice. In addition, genes associated with synapse, extracellular matrix, and myelination were broadly increased in Syn-Cre/Pten HOM mouse neocortex. These findings were confirmed by immunostaining of cortical sections in vivo, which revealed excessive immunoreactivity of myelin basic protein and perineuronal nets (PNN), the specialized extracellular matrix surrounding fast-spiking parvalbumin (PV) interneurons. We also detected increased expression of Synapsin I/PSD95 positive synapses and network hyperactivity phenotypes in Syn-Cre/Pten HOM mice neurons compared to wild-type (WT) neurons in vitro. Strikingly, everolimus treatment rescued the number of synapses and network hyperactivity in the Syn-Cre/Pten HOM mice cortical neuron cultures. Taken together, our results revealed in vivo and in vitro molecular and neuronal network mechanisms underlying neurological phenotypes of PHTS. Notably, pharmacologic mTOR inhibition by everolimus led to successful downstream signaling rescue, including mTOR complex 1 (mTORC1) site-specific suppression of S6 phosphorylation, correlating with phenotypic rescue found in our novel neuron-specific Syn-Cre/Pten HOM mice.
Collapse
Affiliation(s)
- Angelica D'Amore
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Maria Sundberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Rui Lin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Ella T Lubbers
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kellen D Winden
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Lucy Yu
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kinga Gawlinska
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland
| | - Dawid Gawlinski
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Sam G Lopez
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yongho Choe
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Emma V Wightman
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yini Liang
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Meera Modi
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Christopher J Yuskaitis
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Henry Hing Cheong Lee
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Alexander Rotenberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Mustafa Sahin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
9
|
Karova K, Polcanova Z, Knight L, Suchankova S, Nieuwenhuis B, Holota R, Herynek V, Machova Urdzikova L, Turecek R, Kwok JC, van den Herik J, Verhaagen J, Eva R, Fawcett JW, Jendelova P. Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract. Mol Ther 2025; 33:752-770. [PMID: 39748509 PMCID: PMC11852985 DOI: 10.1016/j.ymthe.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.
Collapse
Affiliation(s)
- Kristyna Karova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Zuzana Polcanova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lydia Knight
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Stepanka Suchankova
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Radovan Holota
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Ecology, Faculty of Science, P.J. Safarik University in Kosice, Srobarova 2, Kosice 041 54, Slovak Republic
| | - Vit Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, 120 00 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rostislav Turecek
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jessica C Kwok
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Joelle van den Herik
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Richard Eva
- Kings College London, Wolfson Sensory Pain and Regeneration Centre (SPaRC), Guy's Campus, London Bridge, London SE1 1UL, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
10
|
Haynes J, Joshi A, Larue RC, Eisenmann ED, Govindarajan R. Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport. Pharmaceutics 2024; 16:1592. [PMID: 39771570 PMCID: PMC11677988 DOI: 10.3390/pharmaceutics16121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of highly active antiretroviral therapy (HAART)-the current standard of care for treating human immunodeficiency virus (HIV) infection. Despite their efficacy, NRTIs cause numerous treatment-limiting adverse effects, including a distinct peripheral neuropathy, called antiretroviral toxic neuropathy (ATN). ATN primarily affects the extremities with shock-like tingling pain, a pins-and-needles prickling sensation, and numbness. Despite its negative impact on patient quality of life, ATN remains poorly understood, which limits treatment options and potential interventions for people living with HIV (PLWH). Elucidating the underlying pathophysiology of NRTI-induced ATN will facilitate the development of effective treatment strategies and improved patient outcomes. In this article, we will comprehensively review ATN in the setting of NRTI treatment for HIV infection.
Collapse
Affiliation(s)
- John Haynes
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
| | - Arnav Joshi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
| | - Ross C. Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Bonetti M, Borsani E, Bonomini F. The Use of Nutraceutical and Pharmacological Strategies in Murine Models of Autism Spectrum Disorder. Cells 2024; 13:2036. [PMID: 39768128 PMCID: PMC11675073 DOI: 10.3390/cells13242036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental condition mainly characterized by both a scarce aptitude for social interactions or communication and engagement in repetitive behaviors. These primary symptoms can manifest with variable severity and are often paired with a heterogeneous plethora of secondary complications, among which include anxiety, ADHD (attention deficit hyperactivity disorder), cognitive impairment, sleep disorders, sensory alterations, and gastrointestinal issues. So far, no treatment for the core symptoms of ASD has yielded satisfactory results in a clinical setting. Consequently, medical and psychological support for ASD patients has focused on improving quality of life and treating secondary complications. Despite no single cause being identified for the onset and development of ASD, many genetic mutations and risk factors, such as maternal age, fetal exposure to certain drugs, or infections have been linked to the disorder. In preclinical contexts, these correlations have acted as a valuable basis for the development of various murine models that have successfully mimicked ASD-like symptoms and complications. This review aims to summarize the findings of the extensive literature regarding the pharmacological and nutraceutical interventions that have been tested in the main animal models for ASD, and their effects on core symptoms and the anatomical, physiological, or molecular markers of the disorder.
Collapse
Affiliation(s)
- Matteo Bonetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
12
|
Meng J, Zhang L, Zhang YW. Microglial Dysfunction in Autism Spectrum Disorder. Neuroscientist 2024; 30:744-758. [PMID: 38712859 DOI: 10.1177/10738584241252576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.
Collapse
Affiliation(s)
- Jian Meng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Li M, Yang J, Gao L. YTHDF1 gene inhibits epilepsy progression by epigenetic activation of PTEN gene. Heliyon 2024; 10:e39481. [PMID: 39497959 PMCID: PMC11533598 DOI: 10.1016/j.heliyon.2024.e39481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Epilepsy is a common chronic neurological disorder with high prevalence that profoundly affects millions of people worldwide. Inflammatory dysregulation affects central nervous system disorders including epilepsy, and YTHDF1, the most common "reader" of m6A and m6A-binding protein, can attenuate the inflammatory response and activate PTEN, and here we aimed to investigate its effect on epilepsy through epigenetics. All mice were injected intraperitoneally with 12 mg/kg of sea manic acid to establish an epilepsy model, and the epileptic behaviors of the mice were classified into 6 grades; epileptic behaviors of grade 3 or above were defined as seizures, and consecutive epileptic seizures of more than 30 min were considered as successful modeling. Mouse behavior was examined using the Morris Water Maze tracking assay; inflammatory factors IL-6, TNF-α, and IL-1β were detected by qPCR/WB/ELISA; cell activity was analyzed by CCK-8; apoptotic markers were identified by immunofluorescence assay and Western blot analysis. YTHDF1 knockout mice have poor spatial memory capacity and sensitivity to external stimuli. Under the influence of YTHDF1, the neuroinflammation and nseuron death decreased. YTHDF1 works by repressing the production of pro-inflammatory cytokines and the activation of astrocytes. It was found that YTHDF1 epigenetically activates PTEN through m6A modification, activates glial cells and represses pro-inflammatory cytokines production and inhibits the development of epilepsy.
Collapse
Affiliation(s)
- Mingxia Li
- Department of Paediatrics, Yantaishan Hospital, Yantai, Shandong, 264001, China
| | - Junli Yang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, China
| | - Lixiang Gao
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, China
| |
Collapse
|
14
|
Zheng S, Zhu J, Wang C, Wu Y, Sun S, Guo H, Chang Y, Ma R, Li G. USP9X-mediated deubiquitination of Raptor contributes to autophagy impairment and memory deficits in P301S mice. Cell Commun Signal 2024; 22:516. [PMID: 39449082 PMCID: PMC11515493 DOI: 10.1186/s12964-024-01872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Tauopathies, including Alzheimer's disease, are characterized by the pathological aggregation of tau protein, which is strongly linked to dysregulation of the autophagy-lysosomal degradation pathway. However, therapeutic strategies targeting this pathway remain limited. METHODS We used both in vitro and in vivo models to investigate the role of Raptor in tau pathology. Knockdown of Raptor was performed to assess its impact on mTORC1 activation, autophagy, and tau accumulation. The relationship between USP9X and Raptor was also examined. Pharmacological inhibition of USP9X with WP1130 was employed to further confirm the involvement of the USP9X-Raptor-mTORC1 axis in tau degradation. RESULTS Elevated Raptor levels in the hippocampus of P301S mice led to hyperactivation of mTORC1, impairing autophagy flux. Knockdown of Raptor effectively suppressed mTORC1 activation, promoted autophagy, and mitigated the accumulation of tau and its phosphorylated isoforms. This reduction in tau pathology was accompanied by decreased neuronal loss in the hippocampus, amelioration of synaptic damage, and improvement in cognitive function. The increased Raptor protein observed in the hippocampus of P301S mice was likely attributable to elevated USP9X content, which enhanced Raptor deubiquitination and protected it from proteasomal degradation. Pharmacological inhibition of USP9X with WP1130 in vitro effectively suppressed Raptor, promoted autophagy, and accelerated the degradation of tau and phosphorylated tau. CONCLUSIONS Our findings highlight Raptor and USP9X as promising molecular targets for therapeutic intervention in tauopathies. Targeting the USP9X-Raptor-mTORC1 axis may provide a novel strategy for promoting autophagy and mitigating tau pathology in Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhu
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Guo D, Han L, Godale CM, Rensing NR, Danzer SC, Wong M. A role of dentate gyrus mechanistic target of rapamycin activation in epileptogenesis in a mouse model of posttraumatic epilepsy. Epilepsia 2024; 65:2127-2137. [PMID: 38761065 PMCID: PMC11251851 DOI: 10.1111/epi.18011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE The mechanistic target of rapamycin (mTOR) pathway has been implicated in promoting epileptogenesis in animal models of acquired epilepsy, such as posttraumatic epilepsy (PTE) following traumatic brain injury (TBI). However, the specific anatomical regions and neuronal populations mediating mTOR's role in epileptogenesis are not well defined. In this study, we tested the hypothesis that mTOR activation in dentate gyrus granule cells promotes neuronal death, mossy fiber sprouting, and PTE in the controlled cortical impact (CCI) model of TBI. METHODS An adeno-associated virus (AAV)-Cre viral vector was injected into the hippocampus of Rptorflox/flox (regulatory-associated protein of mTOR) mutant mice to inhibit mTOR activation in dentate gyrus granule cells. Four weeks after AAV-Cre or AAV-vehicle injection, mice underwent CCI injury and were subsequently assessed for mTOR pathway activation by Western blotting, neuronal death, and mossy fiber sprouting by immunopathological analysis, and posttraumatic seizures by video-electroencephalographic monitoring. RESULTS AAV-Cre injection primarily affected the dentate gyrus and inhibited hippocampal mTOR activation following CCI injury. AAV-Cre-injected mice had reduced neuronal death in dentate gyrus detected by Fluoro-Jade B staining and decreased mossy fiber sprouting by ZnT3 immunostaining. Finally, AAV-Cre-injected mice exhibited a decrease in incidence of PTE. SIGNIFICANCE mTOR pathway activation in dentate gyrus granule cells may at least partly mediate pathological abnormalities and epileptogenesis in models of TBI and PTE. Targeted modulation of mTOR activity in this hippocampal network may represent a focused therapeutic approach for antiepileptogenesis and prevention of PTE.
Collapse
Affiliation(s)
- Dongjun Guo
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Lirong Han
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Christin M. Godale
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Nicholas R. Rensing
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA 63110
| |
Collapse
|
16
|
Dhaliwal NK, Weng OY, Dong X, Bhattacharya A, Ahmed M, Nishimura H, Choi WWY, Aggarwal A, Luikart BW, Shu Q, Li X, Wilson MD, Moffat J, Wang LY, Muffat J, Li Y. Synergistic hyperactivation of both mTORC1 and mTORC2 underlies the neural abnormalities of PTEN-deficient human neurons and cortical organoids. Cell Rep 2024; 43:114173. [PMID: 38700984 DOI: 10.1016/j.celrep.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.
Collapse
Affiliation(s)
- Navroop K Dhaliwal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Octavia Yifang Weng
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xiaoxue Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Aditi Aggarwal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China; The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
17
|
Cullen ER, Safari M, Mittelstadt I, Weston MC. Hyperactivity of mTORC1- and mTORC2-dependent signaling mediates epilepsy downstream of somatic PTEN loss. eLife 2024; 12:RP91323. [PMID: 38446016 PMCID: PMC10942640 DOI: 10.7554/elife.91323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Gene variants that hyperactivate PI3K-mTOR signaling in the brain lead to epilepsy and cortical malformations in humans. Some gene variants associated with these pathologies only hyperactivate mTORC1, but others, such as PTEN, PIK3CA, and AKT, hyperactivate both mTORC1- and mTORC2-dependent signaling. Previous work established a key role for mTORC1 hyperactivity in mTORopathies, however, whether mTORC2 hyperactivity contributes is not clear. To test this, we inactivated mTORC1 and/or mTORC2 downstream of early Pten deletion in a new mouse model of somatic Pten loss-of-function (LOF) in the cortex and hippocampus. Spontaneous seizures and epileptiform activity persisted despite mTORC1 or mTORC2 inactivation alone, but inactivating both mTORC1 and mTORC2 simultaneously normalized brain activity. These results suggest that hyperactivity of both mTORC1 and mTORC2 can cause epilepsy, and that targeted therapies should aim to reduce activity of both complexes.
Collapse
Affiliation(s)
- Erin R Cullen
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Mona Safari
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology ResearchRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate ProgramRoanokeUnited States
| | - Isabelle Mittelstadt
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Matthew C Weston
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology ResearchRoanokeUnited States
- School of Neuroscience, Virginia Polytechnic and State UniversityBlacksburgUnited States
| |
Collapse
|
18
|
Packer JM, Bray CE, Beckman NB, Wangler LM, Davis AC, Goodman EJ, Klingele NE, Godbout JP. Impaired cortical neuronal homeostasis and cognition after diffuse traumatic brain injury are dependent on microglia and type I interferon responses. Glia 2024; 72:300-321. [PMID: 37937831 PMCID: PMC10764078 DOI: 10.1002/glia.24475] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Neuropsychiatric complications including depression and cognitive decline develop in the years after traumatic brain injury (TBI), negatively affecting quality of life. Microglial and type 1 interferon (IFN-I) responses are associated with the transition from acute to chronic neuroinflammation after diffuse TBI in mice. Thus, the purpose of this study was to determine if impaired neuronal homeostasis and increased IFN-I responses intersected after TBI to cause cognitive impairment. Here, the RNA profile of neurons and microglia after TBI (single nucleus RNA-sequencing) with or without microglia depletion (CSF1R antagonist) was assessed 7 dpi. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and synaptic migration and increases in RhoGDI and PTEN signaling (Ingenuity Pathway Analysis). Microglial depletion reversed 50% of TBI-induced gene changes in cortical neurons depending on subtype. Moreover, the microglial RNA signature 7 dpi was associated with increased stimulator of interferon genes (STING) activation and IFN-I responses. Therefore, we sought to reduce IFN-I signaling after TBI using STING knockout mice and a STING antagonist, chloroquine (CQ). TBI-associated cognitive deficits in novel object location and recognition (NOL/NOR) tasks at 7 and 30 dpi were STING dependent. In addition, TBI-induced STING expression, microglial morphological restructuring, inflammatory (Tnf, Cd68, Ccl2) and IFN-related (Irf3, Irf7, Ifi27) gene expression in the cortex were attenuated in STINGKO mice. CQ also reversed TBI-induced cognitive deficits and reduced TBI-induced inflammatory (Tnf, Cd68, Ccl2) and IFN (Irf7, Sting) cortical gene expression. Collectively, reducing IFN-I signaling after TBI with STING-dependent interventions attenuated the prolonged microglial activation and cognitive impairment.
Collapse
Affiliation(s)
- Jonathan M Packer
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea E Bray
- College of Medicine, The Ohio State University, Columbus, United States
| | - Nicolas B Beckman
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Lynde M Wangler
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Amara C Davis
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Ethan J Goodman
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Nathaniel E Klingele
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Goldberg AR, Dovas A, Torres D, Sharma SD, Mela A, Merricks EM, Olabarria M, Shokooh LA, Zhao HT, Kotidis C, Calvaresi P, Viswanathan A, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Chen C, Bushong EA, Boassa D, Ellisman MH, Hillman EM, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575092. [PMID: 38293120 PMCID: PMC10827113 DOI: 10.1101/2024.01.10.575092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.
Collapse
Affiliation(s)
- Alexander R. Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M. Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T. Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D. Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B. Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A. Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M.C. Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J. A. Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A. Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, 10032
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032
| | - Darcy S. Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
20
|
Cullen ER, Safari M, Mittelstadt I, Weston MC. Hyperactivity of mTORC1 and mTORC2-dependent signaling mediate epilepsy downstream of somatic PTEN loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553856. [PMID: 37645923 PMCID: PMC10462128 DOI: 10.1101/2023.08.18.553856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Gene variants that hyperactivate PI3K-mTOR signaling in the brain lead to epilepsy and cortical malformations in humans. Some gene variants associated with these pathologies only hyperactivate mTORC1, but others, such as PTEN, PIK3CA, and AKT, hyperactivate both mTORC1- and mTORC2-dependent signaling. Previous work established a key role for mTORC1 hyperactivity in mTORopathies, however, whether mTORC2 hyperactivity contributes is not clear. To test this, we inactivated mTORC1 and/or mTORC2 downstream of early Pten deletion in a new model of somatic Pten loss-of-function (LOF) in the cortex and hippocampus. Spontaneous seizures and epileptiform activity persisted despite mTORC1 or mTORC2 inactivation alone, but inactivating both mTORC1 and mTORC2 simultaneously normalized brain activity. These results suggest that hyperactivity of both mTORC1 and mTORC2 can cause epilepsy, and that targeted therapies should aim to reduce activity of both complexes.
Collapse
Affiliation(s)
- Erin R. Cullen
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Mona Safari
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology Research, Roanoke VA, 24016, USA
| | - Isabelle Mittelstadt
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Matthew C. Weston
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington VT, 05405, USA
- Fralin Biomedical Research Institute at VTC, Center for Neurobiology Research, Roanoke VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg VA, 24060, USA
| |
Collapse
|
21
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
22
|
Nguyen LH, Sharma M, Bordey A. 4E-BP1 expression in embryonic postmitotic neurons mitigates mTORC1-induced cortical malformations and behavioral seizure severity but does not prevent epilepsy in mice. Front Neurosci 2023; 17:1257056. [PMID: 37680968 PMCID: PMC10480503 DOI: 10.3389/fnins.2023.1257056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway during neurodevelopment leads to focal cortical malformations associated with intractable seizures. Recent evidence suggests that dysregulated cap-dependent translation downstream of mTORC1 contributes to cytoarchitectural abnormalities and seizure activity. Here, we examined whether reducing cap-dependent translation by expressing a constitutively active form of the translational repressor, 4E-BP1, downstream of mTORC1 would prevent the development of cortical malformations and seizures. 4E-BP1CA was expressed embryonically either in radial glia (neural progenitor cells) that generate cortical layer 2/3 pyramidal neurons or in migrating neurons destined to layer 2/3 using a conditional expression system. In both conditions, 4E-BP1CA expression reduced mTORC1-induced neuronal hypertrophy and alleviated cortical mislamination, but a subset of ectopic neurons persisted in the deep layers and the white matter. Despite the above improvements, 4E-BP1CA expression in radial glia had no effects on seizure frequency and further exacerbated behavioral seizure severity associated with mTORC1 hyperactivation. In contrast, conditional 4E-BP1CA expression in migratory neurons mitigated the severity of behavioral seizures but the seizure frequency remained unchanged. These findings advise against targeting 4E-BPs by 4E-BP1CA expression during embryonic development for seizure prevention and suggest the presence of a development-dependent role for 4E-BPs in mTORC1-induced epilepsy.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Manas Sharma
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
23
|
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The Synaptic and Circuit Functions of Vitamin D in Neurodevelopment Disorders. Neuropsychiatr Dis Treat 2023; 19:1515-1530. [PMID: 37424961 PMCID: PMC10327924 DOI: 10.2147/ndt.s407731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Vitamin D deficiency/insufficiency is a public health issue around the world. According to epidemiological studies, low vitamin D levels have been associated with an increased risk of some neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). Animal models reveal that vitamin D has a variety of impacts on the synapses and circuits in the brain. A lack of vitamin D affects the expression of synaptic proteins, as well as the synthesis and metabolism of various neurotransmitters. Depending on where vitamin D receptors (VDRs) are expressed, vitamin D may also regulate certain neuronal circuits through the endocannabinoid signaling, mTOR pathway and oxytocin signaling. While inconsistently, some data suggest that vitamin D supplementation may be able to reduce the core symptoms of ASD and ADHD. This review emphasizes vitamin D's role in the synaptic and circuit mechanisms of neurodevelopmental disorders including ASD and ADHD. Future application of vitamin D in these disorders will depend on both basic research and clinical studies, in order to make the transition from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaoshan Ye
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| | - Qionglin Zhou
- International School of Public Health and One Health, Hainan Medical University, Haikou, People’s Republic of China
| | - Pengcheng Ren
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, People’s Republic of China
| | - Wei Xiang
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
| | - Le Xiao
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
24
|
Narvaiz DA, Nolan SO, Smith GD, Holley AJ, Reynolds CD, Blandin KJ, Nguyen PH, Tran DLK, Lugo JN. Rapamycin improves social and stereotypic behavior abnormalities induced by pre-mitotic neuronal subset specific Pten deletion. GENES, BRAIN, AND BEHAVIOR 2023:e12854. [PMID: 37376966 PMCID: PMC10393422 DOI: 10.1111/gbb.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is a signaling system integral to neural growth and migration. In both patients and rodent models, mutations to the phosphatase and tensin homolog gene (PTEN) on chromosome 10 results in hyperactivation of the mTOR pathway, as well as seizures, intellectual disabilities and autistic behaviors. Rapamycin, an inhibitor of mTOR, can reverse the epileptic phenotype of neural subset specific Pten knockout (NS-Pten KO) mice, but its impact on behavior is not known. To determine the behavioral effects of rapamycin, male and female NS-Pten KO and wildtype (WT) mice were assigned as controls or administered 10 mg/kg of rapamycin for 2 weeks followed by behavioral testing. Rapamycin improved social behavior in both genotypes and stereotypic behaviors in NS-Pten KO mice. Rapamycin treatment resulted in a reduction of several measures of activity in the open field test in both genotypes. Rapamycin did not reverse the reduced anxiety behavior in KO mice. These data show the potential clinical use of mTOR inhibitors by showing its administration can reduce the production of autistic-like behaviors in NS-Pten KO mice.
Collapse
Affiliation(s)
- David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Gregory D Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Conner D Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Katherine J Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Phuoc H Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Doan L K Tran
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
25
|
Ramamurthy A, Carvill GL. Raptor Preys on mTOR Imbalance in Tuberous Sclerosis. Epilepsy Curr 2023; 23:193-195. [PMID: 37334409 PMCID: PMC10273816 DOI: 10.1177/15357597231176235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Raptor Downregulation Rescues Neuronal Phenotypes in Mouse Models of Tuberous Sclerosis Complex Karalis V, Caval-Holme F, Bateup HS. Nat Commun. 2022;13(1):4665. doi:10.1038/S41467-022-31961-6 Tuberous Sclerosis Complex (TSC) is a neurodevelopmental disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that negatively regulate mTOR complex 1 (mTORC1) signaling. Current treatment strategies focus on mTOR inhibition with rapamycin and its derivatives. While effective at improving some aspects of TSC, chronic rapamycin inhibits both mTORC1 and mTORC2 and is associated with systemic side-effects. It is currently unknown which mTOR complex is most relevant for TSC-related brain phenotypes. Here we used genetic strategies to selectively reduce neuronal mTORC1 or mTORC2 activity in mouse models of TSC. We find that reduction of the mTORC1 component Raptor, but not the mTORC2 component Rictor, rebalanced mTOR signaling in Tsc1 knock-out neurons. Raptor reduction was sufficient to improve several TSC-related phenotypes including neuronal hypertrophy, macrocephaly, impaired myelination, network hyperactivity, and premature mortality. Raptor downregulation represents a promising potential therapeutic intervention for the neurological manifestations of TSC.
Collapse
Affiliation(s)
- Aishwarya Ramamurthy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Gemma Louise Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| |
Collapse
|