1
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Kabir T, Connamacher CA, Nadeem Z, Paul MR, Smutny MR, Lawler ZK, Djomo AM, Carroll T, Gates LA. Short chain fatty acids regulate the chromatin landscape and distinct gene expression changes in human colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.07.652677. [PMID: 40463142 PMCID: PMC12132577 DOI: 10.1101/2025.05.07.652677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Short chain fatty acids (SCFAs) are small metabolites that are produced through the activity of microbes and have important roles in human physiology. These metabolites have varied mechanisms in interacting with the host, of which one such mode is decorating the chromatin landscape. We previously detected specific histone modifications in the mouse gut that can be derived from SCFAs and are regulated by the microbiota. However, the roles of these SCFAs on chromatin and how they impact gene regulation in human cells is largely unknown. Now, our studies demonstrate these microbiota-dependent histone posttranslational modifications (PTMs) are associated with alterations in gene regulation in human cells. We show that histone butyrylation on H3K27 is detected in human colon samples. Furthermore, histone acetylation, butyrylation, and propionylation on H3K9 and H3K27 are responsive to levels of SCFAs in human colon cancer cell lines and are associated with active gene regulatory elements. In addition, treatment of human cancer cell lines with individual metabolites or combinations of SCFAs replicating the intestinal lumen environment result in distinct and overlapping gene program changes, with butyrate largely driving gene regulatory effects of SCFA combinations. Lastly, we define butyrate effects on gene expression that are independent of HDAC inhibition and are dependent on p300/CBP, suggesting potential gene programs regulated by histone butyrylation. Together, these results demonstrate that SCFAs are key regulators of the chromatin landscape and gene programs in human colorectal cancer cells.
Collapse
|
3
|
Zhang B, Schroeder FC. Mechanisms of metabolism-coupled protein modifications. Nat Chem Biol 2025; 21:819-830. [PMID: 39775169 PMCID: PMC12124960 DOI: 10.1038/s41589-024-01805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Intricate coupling between metabolism and protein post-translational modifications (PTMs) has emerged as a fundamental aspect of cellular regulation. Recent studies demonstrate that protein modifications can originate from diverse metabolites, and that their regulation is closely tied to the cellular metabolic state. Here we explore recently uncovered PTMs, including the concept of 'modification of a modification', as well as associated feedback and feedforward regulatory mechanisms, in which modified proteins impact not only related metabolic pathways but also other signaling cascades affecting physiology and diseases. The recently uncovered role of nucleus-localized metabolic enzymes for histone modifications additionally highlights the importance of cell-compartment-specific metabolic states. We further comment on the utility of untargeted metabolomics and proteomics for previously unrecognized PTMs and associated metabolic patterns. Together, these advances have uncovered a dynamic interplay between metabolism and PTMs, offering new perspectives for understanding metabolic regulation and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Borrego-Ruiz A, Borrego JJ. Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse. Genes (Basel) 2025; 16:403. [PMID: 40282363 PMCID: PMC12027173 DOI: 10.3390/genes16040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES This review examines the role of pharmacogenomics in individual responses to the pharmacotherapy of various drugs of abuse, including alcohol, cocaine, and opioids, to identify genetic variants that contribute to variability in substance use disorder treatment outcomes. In addition, it explores the pharmacomicrobiomic aspects of substance use, highlighting the impact of the gut microbiome on bioavailability, drug metabolism, pharmacodynamics, and pharmacokinetics. RESULTS Research on pharmacogenetics has identified several promising genetic variants that may contribute to the individual variability in responses to existing pharmacotherapies for substance addiction. However, the interpretation of these findings remains limited. It is estimated that genetic factors may account for 20-95% of the variability in individual drug responses. Therefore, genetic factors alone cannot fully explain the differences in drug responses, and factors such as gut microbiome diversity may also play a significant role. Drug microbial biotransformation is produced by microbial exoenzymes that convert low molecular weight organic compounds into analogous compounds by oxidation, reduction, hydrolysis, condensation, isomerization, unsaturation, or by the introduction of heteroatoms. Despite significant advances in pharmacomicrobiomics, challenges persist including the lack of standardized methodologies, inter-individual variability, limited understanding of drug biotransformation mechanisms, and the need for large-scale validation studies to develop microbiota-based biomarkers for clinical use. CONCLUSIONS Progress in the pharmacogenomics of substance use disorders has provided biological insights into the pharmacological needs associated with common genetic variants in drug-metabolizing enzymes. The gut microbiome and its metabolites play a pivotal role in various stages of drug addiction including seeking, reward, and biotransformation. Therefore, integrating pharmacogenomics with pharmacomicrobiomics will form a crucial foundation for significant advances in precision and personalized medicine.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain;
| |
Collapse
|
5
|
Sule R, Hu P, Shoffler C, Petucci C, Wilkins BJ, Rychik J, Pei L. Comprehensive Multiomic Analysis Reveals Metabolic Reprogramming Underlying Human Fontan-Associated Liver Disease. J Am Heart Assoc 2025; 14:e039201. [PMID: 40055870 DOI: 10.1161/jaha.124.039201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The Fontan operation is the current standard of care for single-ventricle congenital heart disease. Almost all patients with Fontan operation develop liver fibrosis at a young age, known as Fontan-associated liver disease (FALD). The pathogenesis and mechanisms underlying FALD remain little understood, and there are no effective therapies. We aimed to present a comprehensive multiomic analysis of human FALD, revealing the fundamental biology and pathogenesis of FALD. METHODS AND RESULTS We recently generated a single-cell transcriptomic and epigenomic atlas of human FALD using single-nucleus multiomic RNA sequencing and assay for transposase-accessible chromatin using sequencing, which uncovered substantial metabolic reprogramming. Here, we applied liquid chromatography-mass spectrometry-based untargeted metabolomics to unveil the metabolomic landscape of human FALD, using liver samples/biopsies from age- and sex-matched donors and patients with FALD (n=12 per group). Results were integrated with liver single-nucleus multiomic RNA sequencing and assay for transposase-accessible chromatin using sequencing and serum metabolomics data to present a comprehensive multiomic atlas of FALD.We discovered significant metabolic abnormalities in livers of adolescent patients with Fontan circulation, particularly amino acid metabolism, peroxisomal fatty acid oxidation, cytochrome P450 system, glycolysis, tricarboxylic acid cycle, ketone body metabolism, and bile acid metabolism. Integrated analyses with liver single-nucleus multiomic RNA sequencing and assay for transposase-accessible chromatin using sequencing results unveiled potential underlying mechanisms of these metabolic changes. Comparison with serum metabolomics data indicate that liver metabolic reprogramming contributes to circulatory metabolomic changes in FALD. Furthermore, comparison with metabolomics data of human metabolic dysfunction-associated fatty liver disease and metabolic dysfunction-associated steatohepatitis highlighted dysregulated amino acid metabolism as a common metabolic abnormality. CONCLUSIONS Our comprehensive multiomic analyses reveal new insights into the fundamental biology and pathogenesis mechanisms of human FALD.
Collapse
Affiliation(s)
- Rasheed Sule
- Center for Mitochondrial and Epigenomic Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
| | - Po Hu
- Center for Mitochondrial and Epigenomic Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Clarissa Shoffler
- Cardiovascular Institute, Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Christopher Petucci
- Cardiovascular Institute, Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jack Rychik
- Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia PA USA
- Cardiovascular Institute, Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
- Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
6
|
Tamburro MK, Bonilla KA, Shetye SS, Leahy TP, Eekhoff JD, Kim M, Petucci C, Tobias JW, Farber DC, Soslowsky LJ. Moderate- and High-Speed Treadmill Running Exercise Have Minimal Impact on Rat Achilles Tendon. J Orthop Res 2025; 43:519-530. [PMID: 39731286 PMCID: PMC11806652 DOI: 10.1002/jor.26030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024]
Abstract
Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches. Three running levels were assessed over the course of 8 weeks: control (cage activity), moderate-speed (treadmill running at 10 m/min, no incline), and high-speed (treadmill running at 20 m/min, 10° incline). We hypothesized that moderate-speed treadmill running would beneficially impact tendon biomechanics through increased tenocyte cellularity, metabolism, and anabolism whereas high-speed treadmill running would cause a tendinopathic phenotype with compromised tendon biomechanics due to pathologic tenocyte differentiation, metabolism, and catabolism. Contrary to our hypothesis, treadmill running exercise at these speeds had a nominal effect on the rat Achilles tendon. Treadmill running modestly influenced tenocyte metabolism and nuclear aspect ratio as well as viscoelastic tendon properties but did not cause a tendinopathic phenotype. These findings highlight the need for improved models of exercise- and loading-related tendon changes that can be leveraged to develop strategies for tendinopathy prevention and treatment.
Collapse
Affiliation(s)
- Margaret K. Tamburro
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kelsey A. Bonilla
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Snehal S. Shetye
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas P. Leahy
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jeremy D. Eekhoff
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Min‐Soo Kim
- Department of MedicinePerelman School of Medicine, Metabolomics Core, Cardiovascular Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christopher Petucci
- Department of MedicinePerelman School of Medicine, Metabolomics Core, Cardiovascular Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John W. Tobias
- Department of MedicinePerelman School of Medicine, Penn Genomics and Sequencing Core, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel C. Farber
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis J. Soslowsky
- McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Tsui Y, Wu X, Zhang X, Peng Y, Mok CKP, Chan FKL, Ng SC, Tun HM. Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Trends Microbiol 2025; 33:302-320. [PMID: 39505671 DOI: 10.1016/j.tim.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Viral infections can cause cellular pathway derangements, cell death, and immunopathological responses, leading to host inflammation. Short-chain fatty acids (SCFAs), produced by the microbiota, have emerged as a potential therapeutic for viral infections due to their ability to modulate these processes. However, SCFAs have been reported to have both beneficial and detrimental effects, necessitating a comprehensive understanding of the underlying mechanisms. This review highlights the complex mechanisms underlying SCFAs' effects on viral infection outcomes. We also emphasize the importance of considering how SCFAs' activities may differ under diverse contexts, including but not limited to target cells with different metabolic wiring, different viral causes of infection, the target organism/cell's nutrient availability and/or energy balance, and hosts with varying microbiome compositions.
Collapse
Affiliation(s)
- Yee Tsui
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqi Wu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hein Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China.
| |
Collapse
|
8
|
Yu W, Sun S, Yan Y, Zhou H, Liu Z, Fu Q. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol 2025; 16:1519925. [PMID: 39991152 PMCID: PMC11842938 DOI: 10.3389/fimmu.2025.1519925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic syndrome (Mets) is an important contributor to morbidity and mortality in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty acid (SCFA), an organismal energy donor, has recently been demonstrated in an increasing number of studies to be an important molecule in ameliorating immuno-inflammation, an important causative factor of Mets, and to improve lipid distribution, blood glucose, and body weight levels in animal models of Mets. This study reviews recent research advances on SCFA in Mets from an immune-inflammatory perspective, including complications dominated by chronic inflammation, as well as the fact that these findings also contribute to the understanding of the specific mechanisms by which gut flora metabolites contribute to metabolic processes in humans. This review proposes an emerging role for SCFA in the inflammatory Mets, followed by the identification of major ambiguities to further understand the anti-inflammatory potential of this substance in Mets. In addition, this study proposes novel strategies to modulate SCFA for the treatment of Mets that may help to mitigate the prognosis of Mets and its complications.
Collapse
Affiliation(s)
- Wenqian Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
10
|
Nshanian M, Gruber JJ, Geller BS, Chleilat F, Lancaster SM, White SM, Alexandrova L, Camarillo JM, Kelleher NL, Zhao Y, Snyder MP. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. Nat Metab 2025; 7:196-211. [PMID: 39789354 PMCID: PMC11774759 DOI: 10.1038/s42255-024-01191-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate bind and act as promoters of genes involved in growth, differentiation and ion transport. We propose a mechanism involving direct modification of specific genomic regions by SCFAs resulting in increased chromatin accessibility and, in the case of butyrate, opposing effects on the proliferation of normal versus CRC cells.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Joshua J Gruber
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Benjamin S Geller
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Faye Chleilat
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Samuel M Lancaster
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shannon M White
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ludmila Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Yingming Zhao
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA.
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Yuen Jian Cheong
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Sophie Trefely
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge, UK.
| |
Collapse
|
12
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
13
|
Mitchell J, Chi Y, Zheng S, Thapa M, Wang E, Li S. Annotation of Metabolites in Stable Isotope Tracing Untargeted Metabolomics via Khipu-web. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2824-2835. [PMID: 39348378 PMCID: PMC11623168 DOI: 10.1021/jasms.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
Stable isotope tracing is a crucial technique for understanding the metabolic wiring of biological systems, determining metabolic flux through pathways of interest, and detecting novel metabolites and pathways. Despite the potential insights provided by this technique, its application remains limited to a small number of targeted molecules and pathways. Because previous software tools usually require chemical formulas to find relevant features, and the data are highly complex, especially in untargeted metabolomics and when the downstream reactions and metabolites are poorly characterized. We report here Khipu version 2 and its new user-friendly web application. New functions are added to enhance analyzing stable isotope tracing data including metrics that evaluate peak enrichment in labeled samples, scoring methods to facilitate robust detection of intensity patterns and integrated natural abundance correction. We demonstrate that this approach can be applied to untargeted metabolomics to systematically extract isotope-labeled compounds and annotate the unidentified metabolites.
Collapse
Affiliation(s)
- Joshua
M. Mitchell
- The
Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Yuanye Chi
- The
Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Shujian Zheng
- The
Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Maheshwor Thapa
- The
Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Eric Wang
- The
Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06032, United States
| | - Shuzhao Li
- The
Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06032, United States
- University
of Connecticut School of Medicine, Farmington, Connecticut 06032, United States
| |
Collapse
|
14
|
Pepke ML, Hansen SB, Limborg MT. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol 2024; 32:1229-1240. [PMID: 38839511 DOI: 10.1016/j.tim.2024.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Recent studies of dynamic interactions between epigenetic modifications of a host organism and the composition or activity of its associated gut microbiota suggest an opportunity for the host to shape its microbiome through epigenetic alterations that lead to changes in gene expression and noncoding RNA activity. We use insights from microbiota-induced epigenetic changes to review the potential of the host to epigenetically regulate its gut microbiome, from which a bidirectional 'epigenome-microbiome axis' emerges. This axis embeds environmentally induced variation, which may influence the adaptive evolution of host-microbe interactions. We furthermore present our perspective on how the epigenome-microbiome axis can be understood and investigated within a holo-omic framework with potential applications in the applied health and food sciences.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| |
Collapse
|
15
|
Hanstock S, Chew B, Lange D. The Role of the Gut Microbiome in Kidney Stone Disease. Urol Clin North Am 2024; 51:475-482. [PMID: 39349015 DOI: 10.1016/j.ucl.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Microbiome dysbiosis is closely related to the etiology of kidney stone disease (KSD) and influences a multitude of pathways. Due to our knowledge gaps on this topic, it is still unclear if microbiome interventions can be translated to demonstrate clinical efficacy. Current evidence suggests that the enhancement of butyrate-producing pathways should be the next step for KSD research. While we are not yet at a point where we can make clinical recommendations for KSD, there are many simple dietary or supplement-based approaches that could be applied in the future for prophylaxis or treatment of KSD.
Collapse
Affiliation(s)
- Sarah Hanstock
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ben Chew
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
16
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 231.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Xie Q, Li Q, Fang H, Zhang R, Tang H, Chen L. Gut-Derived Short-Chain Fatty Acids and Macrophage Modulation: Exploring Therapeutic Potentials in Pulmonary Fungal Infections. Clin Rev Allergy Immunol 2024; 66:316-327. [PMID: 38965168 DOI: 10.1007/s12016-024-08999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, modulate immune cell functions, particularly macrophages. This review explores the potential therapeutic applications of SCFAs in pulmonary fungal infections, a critical concern due to their high mortality rates and antifungal resistance. SCFAs enhance macrophage functions by promoting phagosome-lysosome fusion, increasing reactive oxygen species production, and balancing cytokine responses. Pulmonary fungal infections, caused by pathogens like Aspergillus fumigatus, are prevalent in immunocompromised patients, including those with diabetes, chronic obstructive pulmonary disease, and those on high-dose corticosteroids. SCFAs have shown promise in improving macrophage function in these contexts. However, the application of SCFAs must be balanced against potential side effects, including gut microbiota disruption and metabolic disorders. Further research is needed to optimize SCFA therapy for managing pulmonary fungal infections.
Collapse
Affiliation(s)
- Qian Xie
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Qinhui Li
- Medical Services Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Hong Fang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Rong Zhang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Huan Tang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
18
|
Gates LA, Reis BS, Lund PJ, Paul MR, Leboeuf M, Djomo AM, Nadeem Z, Lopes M, Vitorino FN, Unlu G, Carroll TS, Birsoy K, Garcia BA, Mucida D, Allis CD. Histone butyrylation in the mouse intestine is mediated by the microbiota and associated with regulation of gene expression. Nat Metab 2024; 6:697-707. [PMID: 38413806 PMCID: PMC11520355 DOI: 10.1038/s42255-024-00992-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Post-translational modifications (PTMs) on histones are a key source of regulation on chromatin through impacting cellular processes, including gene expression1. These PTMs often arise from metabolites and are thus impacted by metabolism and environmental cues2-7. One class of metabolically regulated PTMs are histone acylations, which include histone acetylation, butyrylation, crotonylation and propionylation3,8. As these PTMs can be derived from short-chain fatty acids, which are generated by the commensal microbiota in the intestinal lumen9-11, we aimed to define how microbes impact the host intestinal chromatin landscape, mainly in female mice. Here we show that in addition to acetylation, intestinal epithelial cells from the caecum and distal mouse intestine also harbour high levels of butyrylation and propionylation on lysines 9 and 27 of histone H3. We demonstrate that these acylations are regulated by the microbiota and that histone butyrylation is additionally regulated by the metabolite tributyrin. Tributyrin-regulated gene programmes are correlated with histone butyrylation, which is associated with active gene-regulatory elements and levels of gene expression. Together, our study uncovers a regulatory layer of how the microbiota and metabolites influence the intestinal epithelium through chromatin, demonstrating a physiological setting in which histone acylations are dynamically regulated and associated with gene regulation.
Collapse
Affiliation(s)
- Leah A Gates
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA.
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | | - Peder J Lund
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Marylene Leboeuf
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
| | - Annaelle M Djomo
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
| | - Zara Nadeem
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
- Hunter College of the City University of New York, Yalow Honors Scholar Program, New York, NY, USA
| | - Mariana Lopes
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Francisca N Vitorino
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation & Genetics, The Rockefeller University, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Kivanç Birsoy
- Laboratory of Metabolic Regulation & Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
19
|
Fernandes MF, Vinolo MAR. Histone acylations as a mechanism for regulation of intestinal epithelial cells. DIGESTIVE MEDICINE RESEARCH 2024; 7:4. [PMID: 39399394 PMCID: PMC11469631 DOI: 10.21037/dmr-23-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Histone post-translational modifications are reversible epigenetic mechanisms that regulate chromatin structure and gene transcription. In recent years, in addition to the well-characterized histone acetylation, new acylations such as propionylation, crotonylation, butyrylation and beta-hydroxybutyrylation have been described and explored in different cell types at contexts of health and disease. Understanding how histone acylations contribute to gene expression regulation is especially important in intestinal epithelial cells (IECs) because they receive many different signals from other cells and the external environment and must adapt to maintain essential functions such as nutrient and water absorption, maintenance of tolerance and protection against pathogens. In this review, we describe how cells regulate these modifications, how they are recognized by other proteins and impact gene expression. We summarize recent studies that explored the role of these distinct epigenetic marks in the regulation of IECs and discuss their biological importance for the intestinal epithelium's adaptations to changes in metabolism and to respond to environmental signals provided, for example, by the diet, components of the intestinal microbiota and pathogens. Finally, we discuss how the histone acylations are affected by inflammatory signals and how this knowledge may provide new targets for treatment of pathologies such as the inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
21
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
22
|
Boris V, Vanessa V. Molecular systems biology approaches to investigate mechanisms of gut-brain communication in neurological diseases. Eur J Neurol 2023; 30:3622-3632. [PMID: 37038632 DOI: 10.1111/ene.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Whilst the incidence of neurological diseases is increasing worldwide, treatment remains mostly limited to symptom management. The gut-brain axis, which encompasses the communication routes between microbiota, gut and brain, has emerged as a crucial area of investigation for identifying new preventive and therapeutic targets in neurological disease. METHODS Due to the inter-organ, systemic nature of the gut-brain axis, together with the multitude of biomolecules and microbial species involved, molecular systems biology approaches are required to accurately investigate the mechanisms of gut-brain communication. High-throughput omics profiling, together with computational methodologies such as dimensionality reduction or clustering, machine learning, network inference and genome-scale metabolic models, allows novel biomarkers to be discovered and elucidates mechanistic insights. RESULTS In this review, the general concepts of experimental and computational methodologies for gut-brain axis research are introduced and their applications are discussed, mainly in human cohorts. Important aspects are further highlighted concerning rational study design, sampling procedures and data modalities relevant for gut-brain communication, strengths and limitations of methodological approaches and some future perspectives. CONCLUSION Multi-omics analyses, together with advanced data mining, are essential to functionally characterize the gut-brain axis and put forward novel preventive or therapeutic strategies in neurological disease.
Collapse
Affiliation(s)
- Vandemoortele Boris
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vermeirssen Vanessa
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Liang B, Wang Y, Xu J, Shao Y, Xing D. Unlocking the potential of targeting histone-modifying enzymes for treating IBD and CRC. Clin Epigenetics 2023; 15:146. [PMID: 37697409 PMCID: PMC10496233 DOI: 10.1186/s13148-023-01562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Dysregulation of histone modifications has been implicated in the pathogenesis of both inflammatory bowel disease (IBD) and colorectal cancer (CRC). These diseases are characterized by chronic inflammation, and alterations in histone modifications have been linked to their development and progression. Furthermore, the gut microbiota plays a crucial role in regulating immune responses and maintaining gut homeostasis, and it has been shown to exert effects on histone modifications and gene expression in host cells. Recent advances in our understanding of the roles of histone-modifying enzymes and their associated chromatin modifications in IBD and CRC have provided new insights into potential therapeutic interventions. In particular, inhibitors of histone-modifying enzymes have been explored in clinical trials as a possible therapeutic approach for these diseases. This review aims to explore these potential therapeutic interventions and analyze previous and ongoing clinical trials that examined the use of histone-modifying enzyme inhibitors for the treatment of IBD and CRC. This paper will contribute to the current body of knowledge by exploring the latest advances in the field and discussing the limitations of existing approaches. By providing a comprehensive analysis of the potential benefits of targeting histone-modifying enzymes for the treatment of IBD and CRC, this review will help to inform future research in this area and highlight the significance of understanding the functions of histone-modifying enzymes and their associated chromatin modifications in gastrointestinal disorders for the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China.
- Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|