1
|
Longden T, Isaacs D. Pericyte Electrical Signalling and Brain Haemodynamics. Basic Clin Pharmacol Toxicol 2025; 136:e70030. [PMID: 40159653 PMCID: PMC11955720 DOI: 10.1111/bcpt.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Dominic Isaacs
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Isis Yonza AK, Tao L, Zhang X, Postnov D, Kucharz K, Lind B, Asiminas A, Han A, Sonego V, Kim K, Cai C. Spatially and temporally mismatched blood flow and neuronal activity by high-intensity intracortical microstimulation. Brain Stimul 2025; 18:885-896. [PMID: 40246195 DOI: 10.1016/j.brs.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
INTRODUCTION Intracortial microstimulation (ICMS) is widely used in neuroprosthetic brain-machine interfacing, particularly in restoring lost sensory and motor functions. Spiking neuronal activity requires increased cerebral blood flow to meet local metabolic demands, a process conventionally denoted as neurovascular coupling (NVC). However, it is unknown precisely how and to what extent ICMS elicits NVC and how the neuronal and blood flow responses to ICMS correlate. Suboptimal NVC by ICMS may compromise oxygen and energy delivery to the activated neurons thus impair neuroprosthetic functionality. MATERIAL AND METHOD We used wide-field imaging (WFI), laser speckle imaging (LSI) and two-photon microscopy (TPM) to study living, transgenic mice expressing calcium (Ca2+) fluorescent indicators in either neurons or vascular mural cells (VMC), as well as to measure vascular inner lumen diameters. RESULT By testing a range of stimulation amplitudes and examining cortical tissue responses at different distances from the stimulating electrode tip, we found that high stimulation intensities (≥50 μA) elicited a spatial and temporal neurovascular decoupling in regions most adjacent to electrode tip (<200 μm), with significantly delayed onset times of blood flow responses to ICMS and compromised maximum blood flow increases. We attribute these effects respectively to delayed Ca2+ signalling and decreased Ca2+ sensitivity in VMCs. CONCLUSION Our study offers new insights into ICMS-associated neuronal and vascular physiology with potentially critical implications towards the optimal design of ICMS in neuroprosthetic therapies: low intensities preserve NVC; high intensities disrupt NVC responses and potentially precipitate blood supply deficits.
Collapse
Affiliation(s)
- Alexandra Katherine Isis Yonza
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Lechan Tao
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Xiao Zhang
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | | | - Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Barbara Lind
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Antonios Asiminas
- Center for Translational Neuromedicine, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Anpan Han
- Department of Civil and Mechanical Engineering, Technical University of Denmark, DK2800, Kgs. Lyngby, Denmark
| | - Victor Sonego
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kayeon Kim
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Dalkara T, Østergaard L, Heusch G, Attwell D. Pericytes in the brain and heart: functional roles and response to ischaemia and reperfusion. Cardiovasc Res 2025; 120:2336-2348. [PMID: 39074200 PMCID: PMC11976724 DOI: 10.1093/cvr/cvae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 07/31/2024] Open
Abstract
In the last 20 years, there has been a revolution in our understanding of how blood flow is regulated in many tissues. Whereas it used to be thought that essentially all blood flow control occurred at the arteriole level, it is now recognized that control of capillary blood flow by contractile pericytes plays a key role both in regulating blood flow physiologically and in reducing it in clinically relevant pathological conditions. In this article, we compare and contrast how brain and cardiac pericytes regulate cerebral and coronary blood flow, focusing mainly on the pathological events of cerebral and cardiac ischaemia. The cerebral and coronary capillary beds differ dramatically in morphology, yet in both cases, pericyte-mediated capillary constriction plays a key role in restricting blood flow after ischaemia and possibly in other pathological conditions. We conclude with suggestions for therapeutic approaches to relaxing pericytes, which may prove useful in the long-term for reducing pericyte-induced ischaemia.
Collapse
Affiliation(s)
- Turgay Dalkara
- Department of Neuroscience, Bilkent University, Ankara 06800 Türkiye
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800 Türkiye
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| |
Collapse
|
4
|
Bohannon DG, Wellman LL, Kaul M, Galkina EV, Guo ML, Datta PK, Kim WK. Type-1-to-type-2 transition of brain microvascular pericytes induced by cytokines and disease-associated proteins: Role in neuroinflammation and blood-brain barrier disruption. J Cereb Blood Flow Metab 2025; 45:405-420. [PMID: 39473432 PMCID: PMC11563511 DOI: 10.1177/0271678x241296270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
While the concept of pericyte heterogeneity in the brain microvasculature is becoming more widely accepted, little is known about how they arise, or their functional contributions to the blood-brain barrier (BBB). We therefore set out to examine the distribution of subtypes of pericytes at the BBB and sought to elucidate some of their functional characteristics by examining their unique mRNA expression patterns. We demonstrate that type-1 pericytes (PC1) that are associated with young healthy brains and BBB homeostasis, can transition into type-2 pericytes (PC2) that are associated with disease and BBB breakdown, both in vitro and in vivo, in the presence of both endogenous and disease associated ligands. We identified PC1 and PC2 in single-cell RNA-sequencing from vascular enriched mouse brain and identified transcriptional differences between PC1 and PC2. PC2 showed increased expression of genes associated with phagocytosis and peripheral immune cell infiltration. On the contrary, PC1 displayed increased expression of genes involved in hedgehog signaling, which is known to promote tight junction formation at the BBB. Our data support the PC1-to-PC2 transition as an origin of PC diversity and suggest a functional role for PC1 in maintaining BBB homeostasis and PC2 in responding to pathological conditions.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laurie L Wellman
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ming-Lei Guo
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Prasun K Datta
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
5
|
Bohannon DG, Long D, Okhravi HR, Lee SC, De Jesus CL, Neubert TA, Rostagno AA, Ghiso JA, Kim W. Functionally distinct pericyte subsets differently regulate amyloid-β deposition in patients with Alzheimer's disease. Brain Pathol 2025; 35:e13282. [PMID: 38932696 PMCID: PMC11835444 DOI: 10.1111/bpa.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Although the concept that the blood-brain barrier (BBB) plays an important role in the etiology and pathogenesis of Alzheimer's disease (AD) has become increasingly accepted, little is known yet about how it actually contributes. We and others have recently identified a novel functionally distinct subset of BBB pericytes (PCs). In the present study, we sought to determine whether these PC subsets differentially contribute to AD-associated pathologies by immunohistochemistry and amyloid beta (Aβ) peptidomics. We demonstrated that a disease-associated PC subset (PC2) expanded in AD patients compared to age-matched, cognitively unimpaired controls. Surprisingly, we found that this increase in the percentage of PC2 (%PC2) was correlated negatively with BBB breakdown in AD patients, unlike in natural aging or other reported disease conditions. The higher %PC2 in AD patients was also correlated with a lower Aβ42 plaque load and a lower Aβ42:Aβ40 ratio in the brain as determined by immunohistochemistry. Colocalization analysis of multicolor confocal immunofluorescence microscopy images suggests that AD patient with low %PC2 have higher BBB breakdown due to internalization of Aβ42 by the physiologically normal PC subset (PC1) and their concomitant cell death leading to more vessels without PCs and increased plaque load. On the contrary, it appears that PC2 can secrete cathepsin D to cleave and degrade Aβ built up outside of PC2 into more soluble forms, ultimately contributing to less BBB breakdown and reducing Aβ plaque load. Collectively our data shows functionally distinct mechanisms for PC1 and PC2 in high Aβ conditions, demonstrating the importance of correctly identifying these populations when investigating the contribution of neurovascular dysfunction to AD pathogenesis.
Collapse
Affiliation(s)
- Diana G. Bohannon
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Danielle Long
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Hamid R. Okhravi
- Glennan Center for Geriatrics and GerontologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Integrated Neurodegenerative Disorders CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | | | | | - Thomas A. Neubert
- Department of Neuroscience and PhysiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Agueda A. Rostagno
- Department of PathologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Jorge A. Ghiso
- Department of PathologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Woong‐Ki Kim
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Integrated Neurodegenerative Disorders CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Division of MicrobiologyTulane National Primate Research CenterCovingtonLouisianaUSA
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
6
|
Navedo MF, Nieves-Cintron M, Santana LF. Electrifying the brain capillary Ca 2+ signal. Proc Natl Acad Sci U S A 2025; 122:e2425994122. [PMID: 39835910 PMCID: PMC11789082 DOI: 10.1073/pnas.2425994122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Affiliation(s)
- Manuel F. Navedo
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA95616
| | - Madeline Nieves-Cintron
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA95616
| | - L. Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA95616
| |
Collapse
|
7
|
Bowen RM, York NW, Padawer-Curry J, Bauer AQ, Lee JM, Nichols CG. Control of neurovascular coupling by ATP-sensitive potassium channels. J Cereb Blood Flow Metab 2025:271678X251313906. [PMID: 39819176 PMCID: PMC11748405 DOI: 10.1177/0271678x251313906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (KATP) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli. We demonstrate that either globally increased (pinacidil-activated) or decreased (glibenclamide-inhibited) KATP activity markedly disrupts NVC; pinacidil-activation is capable of completely abolishing stimulus-evoked cortical hemodynamic responses, while glibenclamide slows and reduces the response. The response is similarly slowed and reduced in SUR2 KO animals, while animals expressing gain-of-function (GOF) mutations in Kir6.1, which underlie Cantú syndrome, exhibit baseline reduction of NVC as well as increased sensitivity to pinacidil. In revealing the dramatic effects of either increasing or decreasing SUR2/Kir6.1-dependent KATP activity on NVC, whether pharmacologically or genetically induced, the study has important implications both for monogenic KATP channel diseases and for more common brain pathologies.
Collapse
Affiliation(s)
- Ryan M Bowen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Nathaniel W York
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability and Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonah Padawer-Curry
- Imaging Sciences PhD Program, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability and Diseases, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Morton L, Garza AP, Debska‐Vielhaber G, Villafuerte LE, Henneicke S, Arndt P, Meuth SG, Schreiber S, Dunay IR. Pericytes and Extracellular Vesicle Interactions in Neurovascular Adaptation to Chronic Arterial Hypertension. J Am Heart Assoc 2025; 14:e038457. [PMID: 39719419 PMCID: PMC12054408 DOI: 10.1161/jaha.124.038457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic arterial hypertension restructures the vascular architecture of the brain, leading to a series of pathological responses that culminate in cerebral small-vessel disease. Pericytes respond dynamically to vascular challenges; however, how they manifest under the continuous strain of hypertension has not been elucidated. METHODS AND RESULTS In this study, we characterized pericyte behavior alongside hypertensive states in the spontaneously hypertensive stroke-prone rat model, focusing on their phenotypic and metabolic transformation. Flow cytometry was used to characterize pericytes by their expression of platelet-derived growth factor receptor β, neuroglial antigen 2, cluster of differentiation 13-alanyl aminopeptidase, and antigen Kiel 67. Microvessels were isolated for gene expression profiling and in vitro pericyte expansion. Immunofluorescence validated the cell culture model. Plasma-derived extracellular vesicles from hypertensive rodents were applied as a treatment to assess their effects on pericyte function and detailed metabolic assessments on enriched pericytes measured oxidative phosphorylation and glycolysis. Our results reveal a shift in platelet-derived growth factor receptor β+ pericytes toward increased neuroglial antigen 2 and cluster of differentiation 13-alanyl aminopeptidase coexpression, indicative of their critical role in vascular stabilization and inflammatory responses within the hypertensive milieu. Significant alterations were found within key pathways including angiogenesis, blood-brain barrier integrity, hypoxia, and inflammation. Circulating extracellular vesicles from hypertensive rodents distinctly influenced pericyte mitochondrial function, evidencing their dual role as carriers of disease pathology and potential therapeutic agents. Furthermore, a shift toward glycolytic metabolism in hypertensive pericytes was confirmed, coupled with ATP production dysregulation. CONCLUSIONS Our findings demonstrate that cerebral pericytes undergo phenotypic and metabolic reprogramming in response to hypertension, with hypertensive-derived plasma-derived extracellular vesicles impairing their mitochondrial function. Importantly, plasma-derived extracellular vesicles from normotensive controls restore this function, suggesting their potential as both therapeutic agents and precision biomarkers for hypertensive vascular complications. Further investigation into plasma-derived extracellular vesicle cargo is essential to further explore their therapeutic potential in vascular health.
Collapse
Affiliation(s)
- Lorena Morton
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Alejandra P. Garza
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | | | - Luis E. Villafuerte
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Solveig Henneicke
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
| | - Philipp Arndt
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
| | - Sven G. Meuth
- Department of NeurologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stefanie Schreiber
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- German Center for Mental Health (DZPG)Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Halle‐Jena‐MagdeburgGermany
| | - Ildiko R. Dunay
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- German Center for Mental Health (DZPG)Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Halle‐Jena‐MagdeburgGermany
| |
Collapse
|
9
|
Cashion JM, Brown LS, Morris GP, Fortune AJ, Courtney JM, Makowiecki K, Premilovac D, Cullen CL, Young KM, Sutherland BA. Pericyte ablation causes hypoactivity and reactive gliosis in adult mice. Brain Behav Immun 2025; 123:681-696. [PMID: 39406266 DOI: 10.1016/j.bbi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Capillary pericytes are important regulators of cerebral blood flow, blood-brain barrier integrity and neuroinflammation, but can become lost or dysfunctional in disease. The consequences of pericyte loss or dysfunction is extremely difficult to discern when it forms one component of a complex disease process. To evaluate this directly, we examined the effect of adult pericyte loss on mouse voluntary movement and motor function, and physiological responses such as hypoxia, blood-brain barrier (BBB) integrity and glial reactivity. Tamoxifen delivery to Pdgfrβ-CreERT2:: Rosa26-DTA transgenic mice was titrated to produce a dose-dependent ablation of pericytes in vivo. 100mg/kg of tamoxifen ablated approximately half of all brain pericytes, while two consecutive daily doses of 300mg/kg tamoxifen ablated >80% of brain pericytes. In the open field test, mice with ∼50% pericyte loss spent more time immobile and travelled half the distance of control mice. Mice with >80% pericyte ablation also slipped more frequently while performing the beam walk task. Our histopathological analyses of the brain revealed that blood vessel density was unchanged, but vessel lumen width was increased. Pericyte-ablated mice also exhibited: mild BBB disruption; increased neuronal hypoxia; astrogliosis and increased IBA1+ immunoreactivity, suggestive of microgliosis and/or macrophage infiltration. Our results highlight the importance of pericytes in the brain, as pericyte loss can directly compromise brain health and induce behavioural alterations in mice.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jo-Maree Courtney
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
10
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
11
|
Isaacs D, Xiang L, Hariharan A, Longden TA. K ATP channel-dependent electrical signaling links capillary pericytes to arterioles during neurovascular coupling. Proc Natl Acad Sci U S A 2024; 121:e2405965121. [PMID: 39630860 DOI: 10.1073/pnas.2405965121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The brain has evolved mechanisms to dynamically modify blood flow, enabling the timely delivery of energy substrates in response to local metabolic demands. Several such neurovascular coupling (NVC) mechanisms have been identified, but the vascular signal transduction and transmission mechanisms that enable dilation of penetrating arterioles (PAs) remote from sites of increased neuronal activity are unclear. Given the exponential relationship between vessel diameter and blood flow, tight control of arteriole membrane potential and diameter is a crucial aspect of NVC. Recent evidence suggests that capillaries play a major role in sensing neural activity and transmitting signals to modify the diameter of upstream vessels. Thin-strand pericyte cell bodies and processes cover around 90% of the capillary bed, and here we show that these cells play a central role in sensing neural activity and generating and relaying electrical signals to arterioles. We identify a KATP channel-dependent neurovascular signaling pathway that is explained by the recruitment of thin-strand pericytes and we deploy vascular optogenetics to show that currents generated in individual thin-strand pericytes are sent over long distances to upstream arterioles to cause dilations in vivo. Genetic disruption of vascular KATP channels reduces the arteriole diameter response to neural activity and laser ablation of thin-strand pericytes eliminates the KATP-dependent component of NVC. Together, our findings indicate that thin-strand pericytes sense neural activity and transform this into KATP channel-dependent electrometabolic signals that inform upstream arterioles of local energy needs, promoting spatiotemporally precise energy distribution.
Collapse
Affiliation(s)
- Dominic Isaacs
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Liuruimin Xiang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashwini Hariharan
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
12
|
McErlain T, McCulla EC, Glass MJ, Ziemer LE, Branco CM, Murgai M. Pericytes require physiological oxygen tension to maintain phenotypic fidelity. Sci Rep 2024; 14:29581. [PMID: 39609469 PMCID: PMC11604658 DOI: 10.1038/s41598-024-80682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Pericytes function to maintain tissue homeostasis by regulating capillary blood flow and maintaining endothelial barrier function. Pericyte dysfunction is associated with various pathologies and has recently been found to aid cancer progression. Despite having critical functions in health and disease, pericytes remain an understudied population due to a lack of model systems which accurately reflect in vivo biology. In this study we developed a protocol to isolate and culture murine lung, brain, bone, and liver pericytes, that maintains their known phenotypes and functions. We demonstrate that pericytes, being inherently plastic, benefit from controlled oxygen tension culture conditions, aiding their expansion ex vivo. Primary pericytes grown in physiologically relevant oxygen tensions (10% O2 for lung; 5% O2 for brain, bone, and liver) also better retain pericyte phenotypes indicated by stable expression of characteristic transcriptional and protein markers. In functional tube formation assays, pericytes were observed to significantly associate with endothelial junctions. Importantly, we identified growth conditions that limit expression of the plasticity factor Klf4 to prevent spontaneous phenotypic switching in vitro. Additionally, we were able to induce pathological pericyte phenotypic switching in response to metastatic stimuli to accurately recapitulate in vivo biology. Here, we present a robust method for studying pericyte biology in both physiology and disease.
Collapse
Affiliation(s)
- Tamara McErlain
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Elizabeth C McCulla
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, UK
| | - Morgan J Glass
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, UK
| | - Lauren E Ziemer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, UK
| | - Cristina M Branco
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Meera Murgai
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, UK.
| |
Collapse
|
13
|
Fuller PE, Collis VL, Sharma P, Burkett AM, Wang S, Brown KA, Weir N, Goulbourne CN, Nixon RA, Longden TA, Gould TD, Monteiro MJ. Pathophysiologic abnormalities in transgenic mice carrying the Alzheimer disease PSEN1 Δ440 mutation. Hum Mol Genet 2024; 33:2051-2070. [PMID: 39323410 DOI: 10.1093/hmg/ddae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Mutations in PSEN1 were first discovered as a cause of Alzheimer's disease (AD) in 1995, yet the mechanism(s) by which the mutations cause disease still remains unknown. The generation of novel mouse models assessing the effects of different mutations could aid in this endeavor. Here we report on transgenic mouse lines made with the Δ440 PSEN1 mutation that causes AD with parkinsonism:- two expressing the un-tagged human protein and two expressing a HA-tagged version. Detailed characterization of these lines showed that Line 305 in particular, which expresses the untagged protein, develops age-dependent memory deficits and pathologic features, many of which are consistent with features found in AD. Key behavioral and physiological alterations found in the novel 305 line included an age-dependent deficit in spontaneous alternations in the Y-maze, a decrease in exploration of the center of an open field box, a decrease in the latency to fall on a rotarod, a reduction in synaptic strength and pair-pulse facilitation by electrophysiology, and profound alterations to cerebral blood flow regulation. The pathologic alterations found in the line included, significant neuronal loss in the hippocampus and cortex, astrogliosis, and changes in several proteins involved in synaptic and mitochondrial function, Ca2+ regulation, and autophagy. Taken together, these findings suggest that the transgenic lines will be useful for the investigation of AD pathogenesis.
Collapse
Affiliation(s)
- Peyton E Fuller
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Victoria L Collis
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pallavi Sharma
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Angelina M Burkett
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Shaoteng Wang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, 685 W Baltimore Street, Baltimore, MD 21201, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Nick Weir
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood Street, Baltimore, MD 21201, United States
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood Street, Baltimore, MD 21201, United States
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Todd D Gould
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Department of Psychiatry, University of Maryland School of Medicine, 685 W Baltimore Street, Baltimore, MD 21201, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, United States
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
14
|
Raj S, Sarangi P, Goyal D, Kumar H. The Hidden Hand in White Matter: Pericytes and the Puzzle of Demyelination. ACS Pharmacol Transl Sci 2024; 7:2912-2923. [PMID: 39421660 PMCID: PMC11480894 DOI: 10.1021/acsptsci.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Disruption of myelin, the fatty sheath-insulating nerve fibers in the white matter, blocks or slows the rapid transmission of electrical signals along nerve cells and contributes to several neurodegenerative diseases such as multiple sclerosis. Traditionally, research has focused on neuronal dysfunction as the primary factor, including autoimmunity, infections, inflammation, and genetic disorders causing demyelination. However, recent insights emphasize the critical role of pericytes, non-neuronal cells that regulate blood flow and maintain the health of blood vessels within white matter. This Perspective explores the principal mechanisms through which pericyte dysfunction contributes to damage and demyelination, including impaired communication with neurons (neurovascular uncoupling), excessive formation of scar tissue (fibrosis), and the infiltration of detrimental substances from the bloodstream. Understanding these mechanisms of pericyte-driven demyelination may lead to the creation of new therapeutic strategies for tackling a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- Siddharth Raj
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Priyabrata Sarangi
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Divya Goyal
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| | - Hemant Kumar
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India, 382355
| |
Collapse
|
15
|
Lim XR, Abd-Alhaseeb MM, Ippolito M, Koide M, Senatore AJ, Plante C, Hariharan A, Weir N, Longden TA, Laprade KA, Stafford JM, Ziemens D, Schwaninger M, Wenzel J, Postnov DD, Harraz OF. Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow. Nat Commun 2024; 15:8686. [PMID: 39375369 PMCID: PMC11458797 DOI: 10.1038/s41467-024-52969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Hyperemia in response to neural activity is essential for brain health. A hyperemic response delivers O2 and nutrients, clears metabolic waste, and concomitantly exposes cerebrovascular endothelial cells to hemodynamic forces. While neurovascular research has primarily centered on the front end of hyperemia-neuronal activity-to-vascular response-the mechanical consequences of hyperemia have gone largely unexplored. Piezo1 is an endothelial mechanosensor that senses hyperemia-associated forces. Using genetic mouse models and pharmacologic approaches to manipulate endothelial Piezo1 function, we evaluated its role in blood flow control and whether it impacts cognition. We provide evidence of a built-in brake system that sculpts hyperemia, and specifically show that Piezo1 activation triggers a mechano-feedback system that promotes blood flow recovery to baseline. Further, genetic Piezo1 modification led to deficits in complementary memory tasks. Collectively, our findings establish a role for endothelial Piezo1 in cerebral blood flow regulation and a role in its behavioral sequelae.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Michael Ippolito
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Curtis Plante
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kathryn A Laprade
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - James M Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Dorothea Ziemens
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Dmitry D Postnov
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, 8200, Denmark
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
16
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
17
|
Manning D, Rivera EJ, Santana LF. The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol 2024; 156:107393. [PMID: 38857638 PMCID: PMC12051481 DOI: 10.1016/j.vph.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Capillaries are the smallest blood vessels (<10 μm in diameter) in the body and their walls are lined by endothelial cells. These microvessels play a crucial role in nutrient and gas exchange between blood and tissues. Capillary endothelial cells also produce vasoactive molecules and initiate the electrical signals that underlie functional hyperemia and neurovascular coupling. Accordingly, capillary function and density are critical for all cell types to match blood flow to cellular activity. This begins with the process of angiogenesis, when new capillary blood vessels emerge from pre-existing vessels, and ends with rarefaction, the loss of these microvascular structures. This review explores the mechanisms behind these processes, emphasizing their roles in various microvascular diseases and their impact on surrounding cells in health and disease. We discuss recent work on the mechanisms controlling endothelial cell proliferation, migration, and tube formation that underlie angiogenesis under physiological and pathological conditions. The mechanisms underlying functional and anatomical rarefaction and the role of pericytes in this process are also discussed. Based on this work, a model is proposed in which the balance of angiogenic and rarefaction signaling pathways in a particular tissue match microvascular density to the metabolic demands of the surrounding cells. This negative feedback loop becomes disrupted during microvascular rarefaction: angiogenic mechanisms are blunted, reactive oxygen species accumulate, capillary function declines and eventually, capillaries disappear. This, we propose, forms the foundation of the reciprocal relationship between vascular density, blood flow, and metabolic needs and functionality of nearby cells.
Collapse
Affiliation(s)
- Declan Manning
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America.
| | - Ernesto J Rivera
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| |
Collapse
|
18
|
Kempf S, Popp R, Naeem Z, Frömel T, Wittig I, Klatt S, Fleming I. Pericyte-to-Endothelial Cell Communication via Tunneling Nanotubes Is Disrupted by a Diol of Docosahexaenoic Acid. Cells 2024; 13:1429. [PMID: 39273001 PMCID: PMC11394577 DOI: 10.3390/cells13171429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The pericyte coverage of microvessels is altered in metabolic diseases, but the mechanisms regulating pericyte-endothelial cell communication remain unclear. This study investigated the formation and function of pericyte tunneling nanotubes (TNTs) and their impact on endothelial cell metabolism. TNTs were analyzed in vitro in retinas and co-cultures of pericytes and endothelial cells. Using mass spectrometry, the influence of pericytes on endothelial cell metabolism was examined. TNTs were present in the murine retina, and although diabetes was associated with a decrease in pericyte coverage, TNTs were longer. In vitro, pericytes formed TNTs in the presence of PDGF, extending toward endothelial cells and facilitating mitochondrial transport from pericytes to endothelial cells. In experiments with mitochondria-depleted endothelial cells displaying defective TCA cycle metabolism, pericytes restored the mitochondrial network and metabolism. 19,20-Dihydroxydocosapentaenoic acid (19,20-DHDP), known to disrupt pericyte-endothelial cell junctions, prevented TNT formation and metabolic rescue in mitochondria-depleted endothelial cells. 19,20-DHDP also caused significant changes in the protein composition of pericyte-endothelial cell junctions and involved pathways related to phosphatidylinositol 3-kinase, PDGF receptor, and RhoA signaling. Pericyte TNTs contact endothelial cells and support mitochondrial transfer, influencing metabolism. This protective mechanism is disrupted by 19,20-DHDP, a fatty acid mediator linked to diabetic retinopathy.
Collapse
Affiliation(s)
- Sebastian Kempf
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (R.P.); (Z.N.); (T.F.); (S.K.)
| | - Rüdiger Popp
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (R.P.); (Z.N.); (T.F.); (S.K.)
| | - Zumer Naeem
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (R.P.); (Z.N.); (T.F.); (S.K.)
| | - Timo Frömel
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (R.P.); (Z.N.); (T.F.); (S.K.)
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, 60596 Frankfurt am Main, Germany;
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt am Main, Germany
| | - Stephan Klatt
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (R.P.); (Z.N.); (T.F.); (S.K.)
| | - Ingrid Fleming
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (R.P.); (Z.N.); (T.F.); (S.K.)
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Metwally E, Sanchez Solano A, Lavanderos B, Yamasaki E, Thakore P, McClenaghan C, Rios N, Radi R, Feng Earley Y, Nichols CG, Earley S. Mitochondrial Ca2+-coupled generation of reactive oxygen species, peroxynitrite formation, and endothelial dysfunction in Cantú syndrome. JCI Insight 2024; 9:e176212. [PMID: 39088268 PMCID: PMC11385080 DOI: 10.1172/jci.insight.176212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Boris Lavanderos
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Conor McClenaghan
- Departments of Pharmacology and Medicine, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, and
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, and
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases and Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
20
|
Liu R, Collier JM, Abdul-Rahman NH, Capuk O, Zhang Z, Begum G. Dysregulation of Ion Channels and Transporters and Blood-Brain Barrier Dysfunction in Alzheimer's Disease and Vascular Dementia. Aging Dis 2024; 15:1748-1770. [PMID: 38300642 PMCID: PMC11272208 DOI: 10.14336/ad.2023.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function. Disruption in ion, pH, and fluid balance at the BBB is associated with brain pathology and has been implicated in various neurological conditions, including stroke, epilepsy, trauma, and neurodegenerative diseases such as Alzheimer's disease (AD). However, knowledge gaps exist regarding the impact of ion transport dysregulation on BBB function in neurodegenerative dementias. Several factors contribute to this gap: the complex nature of these conditions, historical research focus on neuronal mechanisms and technical challenges in studying the ion transport mechanisms in in vivo models and the lack of efficient in vitro BBB dementia models. This review provides an overview of current research on the roles of ion transporters and channels at the BBB and poses specific research questions: 1) How are the expression and activity of key ion transporters altered in AD and vascular dementia (VaD); 2) Do these changes contribute to BBB dysfunction and disease progression; and 3) Can restoring ion transport function mitigate BBB dysfunction and improve clinical outcomes. Addressing these gaps will provide a greater insight into the vascular pathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jenelle M Collier
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Okan Capuk
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Floryanzia S, Lee S, Nance E. Isolation methods and characterization of primary rat neurovascular cells. J Biol Eng 2024; 18:39. [PMID: 38992711 PMCID: PMC11241874 DOI: 10.1186/s13036-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND There is significant interest in isolating cells of the blood-brain barrier (BBB) for use in in vitro screening of therapeutics and analyzing cell specific roles in neurovascular pathology. Primary brain cells play an advantageous role in BBB models; however, isolation procedures often do not produce cells at high enough yields for experiments. In addition, although numerous reports provide primary cell isolation methods, the field is lacking in documentation and detail of expected morphological changes that occur throughout culturing and there are minimal troubleshooting resources. Here, we present simplified, robust, and reproducible methodology for isolating astrocytes, pericytes, and endothelial cells, and demonstrate several morphological benchmarks for each cell type throughout the process and culture timeframe. We also analyze common considerations for developing neurovascular cell isolation procedures and recommend solutions for troubleshooting. RESULTS The presented methodology isolated astrocytes, pericytes, and endothelial cells and enabled cell attachment, maturation, and cell viability. We characterized milestones in cell maturation over 12 days in culture, a common timeline for applications of these cell types in BBB models. Phase contrast microscopy was used to show initial cell plating, attachment, and daily growth of isolated cells. Confocal microscopy images were analyzed to determine the identity of cell types and changes to cell morphology. Nuclear staining was also used to show the viability and proliferation of glial cells at four time points. Astrocyte branches became numerous and complex with increased culture time. Microglia, oligodendrocytes, and neurons were present in mixed glial cultures for 12 days, though the percentage of microglia and neurons expectedly decreased after passaging, with microglia demonstrating a less branched morphology. CONCLUSIONS Neurovascular cells can be isolated through our optimized protocols that minimize cell loss and encourage the adhesion and proliferation of isolated cells. By identifying timepoints of viable glia and neurons within an astrocyte-dominant mixed culture, these cells can be used to evaluate drug targeting, uptake studies, and response to pathological stimulus in the neurovascular unit.
Collapse
Affiliation(s)
- Sydney Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Seoyoung Lee
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
22
|
Daoud HAS, Kokoti L, Al-Karagholi MAM. K ATP channels in cerebral hemodynamics: a systematic review of preclinical and clinical studies. Front Neurol 2024; 15:1417421. [PMID: 39022739 PMCID: PMC11252034 DOI: 10.3389/fneur.2024.1417421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Cumulative evidence suggests that ATP-sensitive potassium (KATP) channels act as a key regulator of cerebral blood flow (CBF). This implication seems to be complicated, since KATP channels are expressed in several vascular-related structures such as smooth muscle cells, endothelial cells and pericytes. In this systematic review, we searched PubMed and EMBASE for preclinical and clinical studies addressing the involvement of KATP channels in CBF regulation. A total of 216 studies were screened by title and abstract. Of these, 45 preclinical and 6 clinical studies were included. Preclinical data showed that KATP channel openers (KCOs) caused dilation of several cerebral arteries including pial arteries, the middle cerebral artery and basilar artery, and KATP channel inhibitor (KCI) glibenclamide, reversed the dilation. Glibenclamide affected neither the baseline CBF nor the baseline vascular tone. Endothelium removal from cerebral arterioles resulted in an impaired response to KCO/KCI. Clinical studies showed that KCOs dilated cerebral arteries and increased CBF, however, glibenclamide failed to attenuate these vascular changes. Endothelial KATP channels played a major role in CBF regulation. More studies investigating the role of KATP channels in CBF-related structures are needed to further elucidate their actual role in cerebral hemodynamics in humans. Systematic review registration: Prospero: CRD42023339278 (preclinical data) and CRD42022339152 (clinical data).
Collapse
Affiliation(s)
- Hassan Ali Suleiman Daoud
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Lili Kokoti
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Nordsjaellands Hospital- Hilleroed, Hilleroed, Denmark
| |
Collapse
|
23
|
Weber CM, Moiz B, Clyne AM. Brain microvascular endothelial cell metabolism and its ties to barrier function. VITAMINS AND HORMONES 2024; 126:25-75. [PMID: 39029976 PMCID: PMC11756814 DOI: 10.1016/bs.vh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain microvascular endothelial cells, which lie at the interface between blood and brain, are critical to brain energetics. These cells must precisely balance metabolizing nutrients for their own demands with transporting nutrients into the brain to sustain parenchymal cells. It is essential to understand this integrated metabolism and transport so that we can develop better diagnostics and therapeutics for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury. In this chapter, we first describe brain microvascular endothelial cell metabolism and how these cells regulate both blood flow and nutrient transport. We then explain the impact of brain microvascular endothelial cell metabolism on the integrity of the blood-brain barrier, as well as how metabolites produced by the endothelial cells impact other brain cells. We detail some ways that cell metabolism is typically measured experimentally and modeled computationally. Finally, we describe changes in brain microvascular endothelial cell metabolism in aging and neurodegenerative diseases. At the end of the chapter, we highlight areas for future research in brain microvascular endothelial cell metabolism. The goal of this chapter is to underscore the importance of nutrient metabolism and transport at the brain endothelium for cerebral health and neurovascular disease treatment.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.
| |
Collapse
|
24
|
Efthymiou S, Scala M, Nagaraj V, Ochenkowska K, Komdeur FL, Liang RA, Abdel-Hamid MS, Sultan T, Barøy T, Van Ghelue M, Vona B, Maroofian R, Zafar F, Alkuraya FS, Zaki MS, Severino M, Duru KC, Tryon RC, Brauteset LV, Ansari M, Hamilton M, van Haelst MM, van Haaften G, Zara F, Houlden H, Samarut É, Nichols CG, Smeland MF, McClenaghan C. Novel loss-of-function variants expand ABCC9-related intellectual disability and myopathy syndrome. Brain 2024; 147:1822-1836. [PMID: 38217872 PMCID: PMC11068106 DOI: 10.1093/brain/awae010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/22/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harbouring different homozygous loss-of-function variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intra-uterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 loss-of-function in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 loss-of-function-related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marcello Scala
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Vini Nagaraj
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Fenne L Komdeur
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Robin A Liang
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Tipu Sultan
- Department of Pediatric Neurology, Children Hospital, University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Barbara Vona
- Institute of Human Genetics and Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children’s Hospital and Institute of Child Health, Multan, Punjab 60000, Pakistan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Lin Vigdis Brauteset
- Division of Habilitation for Children, Innlandet Hospital Sanderud, Hamar 2312, Norway
| | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Mieke M van Haelst
- Section Clinical Genetics, Department of Human Genetics and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center, Utrecht, 3584 CX, The Netherlands
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), and Department of Neuroscience, Université de Montréal, Montreal H2X 0A9, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO 63110, USA
| | - Marie F Smeland
- Department of Pediatric Rehabilitation, University Hospital of North Norway, 9019 Tromsø, Norway
- Institute of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscatway, NJ 08854, USA
| |
Collapse
|
25
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
26
|
Celentano C, Carotenuto L, Miceli F, Carleo G, Corrado B, Baroli G, Iervolino S, Vecchione R, Taglialatela M, Barrese V. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage. Am J Physiol Cell Physiol 2024; 326:C893-C904. [PMID: 38284124 PMCID: PMC11193483 DOI: 10.1152/ajpcell.00709.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Camilla Celentano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giusy Carleo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Stefania Iervolino
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Shrouder JJ, Calandra GM, Filser S, Varga DP, Besson-Girard S, Mamrak U, Dorok M, Bulut-Impraim B, Seker FB, Gesierich B, Laredo F, Wehn AC, Khalin I, Bayer P, Liesz A, Gokce O, Plesnila N. Continued dysfunction of capillary pericytes promotes no-reflow after experimental stroke in vivo. Brain 2024; 147:1057-1074. [PMID: 38153327 DOI: 10.1093/brain/awad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.
Collapse
Affiliation(s)
- Joshua James Shrouder
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Gian Marco Calandra
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Severin Filser
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Core Research Facilities and Services-Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Daniel Peter Varga
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Maximilian Dorok
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Buket Bulut-Impraim
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fatma Burcu Seker
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fabio Laredo
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Neurosurgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France
| | - Patrick Bayer
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
28
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Duarte JMN, Schwaninger M. Unraveling the brain's response to hypoglycemia: Neurovascular coupling. J Cereb Blood Flow Metab 2024; 44:313-314. [PMID: 38069865 PMCID: PMC10993880 DOI: 10.1177/0271678x231220082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 02/06/2024]
Abstract
Functional magnetic resonance imaging has suggested the possibility that hypoglycemia could interfere with neurovascular coupling. Here we discuss the implications of a study by Nippert and colleagues showing that hypoglycemia does not impair neurovascular coupling.
Collapse
Affiliation(s)
- João MN Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| |
Collapse
|
31
|
Sziraki A, Zhong Y, Neltner AM, Niedowicz D, Rogers CB, Wilcock DM, Nehra G, Neltner JH, Smith RR, Hartz AM, Cao J, Nelson PT. A high-throughput single-cell RNA expression profiling method identifies human pericyte markers. Neuropathol Appl Neurobiol 2023; 49:e12942. [PMID: 37812061 PMCID: PMC10842535 DOI: 10.1111/nan.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
AIMS We sought to identify and optimise a universally available histological marker for pericytes in the human brain. Such a marker could be a useful tool for researchers. Further, identifying a gene expressed relatively specifically in human pericytes could provide new insights into the biological functions of this fascinating cell type. METHODS We analysed single-cell RNA expression profiles derived from different human and mouse brain regions using a high-throughput and low-cost single-cell transcriptome sequencing method called EasySci. Through this analysis, we were able to identify specific gene markers for pericytes, some of which had not been previously characterised. We then used commercially (and therefore universally) available antibodies to immunolabel the pericyte-specific gene products in formalin-fixed paraffin-embedded (FFPE) human brains and also performed immunoblots to determine whether appropriately sized proteins were recognised. RESULTS In the EasySci data sets, highly pericyte-enriched expression was notable for SLC6A12 and SLC19A1. Antibodies against these proteins recognised bands of approximately the correct size in immunoblots of human brain extracts. Following optimisation of the immunohistochemical technique, staining for both antibodies was strongly positive in small blood vessels and was far more effective than a PDGFRB antibody at staining pericyte-like cells in FFPE human brain sections. In an exploratory sample of other human organs (kidney, lung, liver, muscle), immunohistochemistry did not show the same pericyte-like pattern of staining. CONCLUSIONS The SLC6A12 antibody was well suited for labelling pericytes in human FFPE brain sections, based on the combined results of single-cell RNA-seq analyses, immunoblots and immunohistochemical studies.
Collapse
Affiliation(s)
- Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Allison M. Neltner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Dana Niedowicz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Geetika Nehra
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Janna H. Neltner
- Department of Pathology and Laboratory Science, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca R. Smith
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anika M. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|
33
|
Phillips B, Clark J, Martineau É, Rungta RL. Orai, RyR, and IP 3R channels cooperatively regulate calcium signaling in brain mid-capillary pericytes. Commun Biol 2023; 6:493. [PMID: 37149720 PMCID: PMC10164186 DOI: 10.1038/s42003-023-04858-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Pericytes are multifunctional cells of the vasculature that are vital to brain homeostasis, yet many of their fundamental physiological properties, such as Ca2+ signaling pathways, remain unexplored. We performed pharmacological and ion substitution experiments to investigate the mechanisms underlying pericyte Ca2+ signaling in acute cortical brain slices of PDGFRβ-Cre::GCaMP6f mice. We report that mid-capillary pericyte Ca2+ signalling differs from ensheathing type pericytes in that it is largely independent of L- and T-type voltage-gated calcium channels. Instead, Ca2+ signals in mid-capillary pericytes were inhibited by multiple Orai channel blockers, which also inhibited Ca2+ entry triggered by endoplasmic reticulum (ER) store depletion. An investigation into store release pathways indicated that Ca2+ transients in mid-capillary pericytes occur through a combination of IP3R and RyR activation, and that Orai store-operated calcium entry (SOCE) is required to sustain and amplify intracellular Ca2+ increases evoked by the GqGPCR agonist endothelin-1. These results suggest that Ca2+ influx via Orai channels reciprocally regulates IP3R and RyR release pathways in the ER, which together generate spontaneous Ca2+ transients and amplify Gq-coupled Ca2+ elevations in mid-capillary pericytes. Thus, SOCE is a major regulator of pericyte Ca2+ and a target for manipulating their function in health and disease.
Collapse
Affiliation(s)
- Braxton Phillips
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Jenna Clark
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Éric Martineau
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Ravi L Rungta
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|