1
|
Huang C, Lyu C, Mok HL, Xu Y, Cheng KW, Zhang C, Hu D, Zhu L, Lin C, Chen X, Tan HY, Bian Z. Tolerogenic dendritic cell-mediated regulatory T cell differentiation by Chinese herbal formulation attenuates colitis progression. J Adv Res 2025; 70:499-513. [PMID: 38677546 PMCID: PMC11976409 DOI: 10.1016/j.jare.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.
Collapse
Affiliation(s)
- Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Heung-Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Ka-Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Die Hu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Regions of China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Sachen KL, Hammaker D, Sarabia I, Stoveken B, Hartman J, Leppard KL, Manieri NA, Bao P, Greving C, Lacy ER, DuPrie M, Wertheimer J, Deming JD, Brown J, Hart A, Li H(H, Freeman TC, Keyes B, Kohler K, White I, Karpowich N, Steele R, Elloso MM, Fakharzadeh S, Goyal K, Lavie F, Abreu MT, Allez M, Atreya R, Bissonnette R, Eyerich K, Krueger JG, McGonagle D, McInnes IB, Ritchlin C, Fourie AM. Guselkumab binding to CD64 + IL-23-producing myeloid cells enhances potency for neutralizing IL-23 signaling. Front Immunol 2025; 16:1532852. [PMID: 40145093 PMCID: PMC11937023 DOI: 10.3389/fimmu.2025.1532852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
IL-23 is implicated in the pathogenesis of immune-mediated inflammatory diseases, and myeloid cells that express Fc gamma receptor 1 (FcγRI or CD64) on their surface have been recently identified as a primary source of IL-23 in inflamed tissue. Our complementary analyses of transcriptomic datasets from psoriasis and IBD showed increased expression of CD64 and IL-23 transcripts in inflamed tissue, and greater abundance of cell types with co-expression of CD64 and IL-23. These findings led us to explore potential implications of CD64 binding on the function of IL-23-targeting monoclonal antibodies (mAbs). Guselkumab and risankizumab are mAbs that target the IL-23p19 subunit. Guselkumab has a native Fc domain while risankizumab contains mutations that diminish binding to FcγRs. In flow cytometry assays, guselkumab, but not risankizumab, showed Fc-mediated binding to CD64 on IFNγ-primed monocytes. Guselkumab bound CD64 on IL-23-producing inflammatory monocytes and simultaneously captured IL-23 secreted from these cells. Guselkumab binding to CD64 did not induce cytokine production. In live-cell confocal imaging of CD64+ macrophages, guselkumab, but not risankizumab, mediated IL-23 internalization to low-pH intracellular compartments. Guselkumab and risankizumab demonstrated similar potency for inhibition of IL-23 signaling in cellular assays with exogenous addition of IL-23. However, in a co-culture of IL-23-producing CD64+ THP-1 cells with an IL-23-responsive reporter cell line, guselkumab demonstrated Fc-dependent enhanced potency compared to risankizumab for inhibiting IL-23 signaling. These in vitro data highlight the potential for guselkumab binding to CD64 in inflamed tissue to contribute to the potent neutralization of IL-23 at its cellular source.
Collapse
Affiliation(s)
| | | | | | | | - John Hartman
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Phuc Bao
- Johnson & Johnson, San Diego, CA, United States
| | | | | | | | | | | | | | - Amy Hart
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Brice Keyes
- Johnson & Johnson, San Diego, CA, United States
| | | | - Ian White
- Johnson & Johnson, Spring House, PA, United States
| | | | - Ruth Steele
- Johnson & Johnson, Spring House, PA, United States
| | | | | | | | | | - Maria T. Abreu
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Matthieu Allez
- Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Raja Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kilian Eyerich
- Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine – Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Dennis McGonagle
- Leeds Biomedical Research Centre, University of Leeds, Leeds, United Kingdom
| | - Iain B. McInnes
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher Ritchlin
- Center for Musculoskeletal Research, Allergy, Immunology, and Rheumatology Division, University of Rochester, Rochester, NY, United States
| | | |
Collapse
|
3
|
Li J, Jacobse J, Pilat JM, Kaur H, Gu W, Kang SW, Rusznak M, Huang HI, Barrera J, Oloo PA, Roland JT, Hawkins CV, Pahnke AP, Khalil M, Washington MK, Wilson KT, Williams CS, Peebles RS, Konnikova L, Choksi YA, Hammer GE, Lau KS, Goettel JA. Interleukin-10 production by innate lymphoid cells restricts intestinal inflammation in mice. Mucosal Immunol 2025:S1933-0219(25)00023-6. [PMID: 39988202 DOI: 10.1016/j.mucimm.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Interleukin-10 (IL-10) is an immunomodulatory cytokine critical for intestinal immune homeostasis. IL-10 is produced by various immune cells but IL-10 receptor signaling in intestinal CX3CR1+ mononuclear phagocytes is necessary to prevent spontaneous colitis in mice. Here, we utilized fluorescent protein reporters and cell-specific targeting and found that Rorc-expressing innate lymphoid cells (ILCs) produce IL-10 in response to anti-CD40-mediated intestinal inflammation. Deletion of Il10 specifically in Rorc-expressing ILCs led to phenotypic changes in intestinal macrophages and exacerbated both innate and adaptive immune-mediated models of experimental colitis. The population of IL-10+ producing ILCs shared markers with both ILC2 and ILC3 with nearly all ILC3s being of the NCR+ subtype. Interestingly, Ccl26 was enriched in IL-10+ ILCs and was markedly reduced in IL-10-deficient ILC3s. Since CCL26 is a ligand for CX3CR1, we employed RNA in situ hybridization and observed increased numbers of ILCs in close proximity to Cx3cr1-expressing cells under inflammatory conditions. Finally, we generated transgenic RorctdTomato reporter mice that faithfully marked RORγt+ cells that could rescue disease pathology and aberrant macrophage phenotype following adoptive transfer into mice with selective Il10 deficiency in ILC3s. These results demonstrate that IL-10 production by a population of ILCs functions to promote immune homeostasis in the intestine possibly via direct effects on intestinal macrophages.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212
| | - Jennifer M Pilat
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Weihong Gu
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Seung Woo Kang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark Rusznak
- Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hsin-I Huang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julio Barrera
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Pauline A Oloo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph T Roland
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Pahnke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marian Khalil
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gianna Elena Hammer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Computational Systems Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Nanì MF, Pagano E, De Cicco P, Lucariello G, Cattaneo F, Tropeano FP, Cicia D, Amico R, Raucci F, Ercolano G, Maione F, Rinaldi MM, Esposito F, Ammendola R, Luglio G, Capasso R, Makriyannis A, Petrosino S, Borrelli F, Romano B, Izzo AA. Pharmacological Inhibition of N-Acylethanolamine Acid Amidase (NAAA) Mitigates Intestinal Fibrosis Through Modulation of Macrophage Activity. J Crohns Colitis 2025; 19:jjae132. [PMID: 39211986 PMCID: PMC11836880 DOI: 10.1093/ecco-jcc/jjae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis, a frequent complication of inflammatory bowel disease, is characterized by stricture formation with no pharmacological treatment to date. N-acylethanolamine acid amidase (NAAA) is responsible for the hydrolysis of acylethanolamides (AEs, eg, palmitoylethanolamide and oleoylethanolamide). Here, we investigated NAAA and AE signaling in gut fibrosis. METHODS NAAA and AE signaling were evaluated in human intestinal specimens from patients with stenotic Crohn's disease (CD). Gut fibrosis was induced by 2,4,6-trinitrobenzenesulfonic acid, monitored by colonoscopy, and assessed by qRT-PCR, histological analyses, and confocal microscopy. Immune cells in mesenteric lymph nodes were analyzed by FACS. Colonic fibroblasts were cultured in conditioned media derived from polarized or non-polarized bone marrow-derived macrophages (BMDMs). IL-23 signaling was evaluated by qRT-PCR, ELISA, FACS, and western blot in BMDMs and in lamina propria CX3CR1+ cells. RESULTS In ileocolonic human CD strictures, increased transcript expression of NAAA was observed with a decrease in its substrates oleoylethanolamide and palmitoylethanolamide. NAAA inhibition reduced intestinal fibrosis in vivo, as indicated by a decrease in inflammatory parameters, collagen deposition, and fibrosis-related genes, including those involved in epithelial-to-mesenchymal transition. More in-depth studies revealed modulation of the immune response related to IL-23 following NAAA inhibition. The antifibrotic actions of NAAA inhibition are mediated by Mφ and M2 macrophages that indirectly affect fibroblast collagenogenesis. NAAA inhibitor AM9053 normalized IL-23 signaling in BMDMs and in lamina propria CX3CR1+ cells. CONCLUSIONS Our findings provide new insights into the pathophysiological mechanism of intestinal fibrosis and identify NAAA as a promising target for the development of therapeutic treatments to alleviate CD-related fibrosis.
Collapse
Affiliation(s)
- Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Paola Tropeano
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rebecca Amico
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Michela Rinaldi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabiana Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gaetano Luglio
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Stefania Petrosino
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Epitech Group SpA, Saccolongo, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Ouranos K, Saleem H, Vassilopoulos S, Vassilopoulos A, Mylona EK, Shehadeh F, Kalligeros M, Abraham BP, Mylonakis E. Risk of Infection in Patients With Inflammatory Bowel Disease Treated With Interleukin-Targeting Agents: A Systematic Review and Meta-Analysis. Inflamm Bowel Dis 2025; 31:37-51. [PMID: 38427714 DOI: 10.1093/ibd/izae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) are at increased risk of infection. The aim of this study was to assess the cumulative incidence and risk of infection in patients with IBD treated with interleukin (IL)-targeting agents. METHODS We searched PubMed, EMBASE, and Web of Science for randomized controlled trials including patients with IBD receiving IL-targeting agents compared with patients receiving placebo or treatment that only differed from the intervention arm in the absence of an IL-targeting agent. The primary outcome of interest was the relative risk (RR) of any-grade and severe infection during the induction phase. RESULTS There was no difference in risk of any-grade (RR, 0.98; 95% confidence interval [CI], 0.89-1.09) or severe (RR, 0.64; 95% CI, 0.38-1.10) infection in patients receiving any IL-targeting agent compared with the control group. During the maintenance period, the cumulative incidence of any-grade infection in patients receiving IL-12/23p40-targeting agents (mean follow-up 29 weeks) was 34.82% (95% CI, 26.78%-43.32%), while the cumulative incidence of severe infection was 3.07% (95% CI, 0.93%-6.21%). The cumulative incidence of any-grade infection in patients receiving IL-23p19-targeting agents (mean follow-up 40.9 weeks) was 32.16% (95% CI, 20.63%-44.88%), while the cumulative incidence of severe infection was 1.75% (95% CI, 0.60%-3.36%). During the maintenance phase of the included studies, the incidence of infection was 30.66% (95% CI, 22.12%-39.90%) for any-grade and 1.59% (95% CI, 0.76%-2.63%) for severe infection in patients in the control group. CONCLUSIONS There was no difference in risk of infection between patients with IBD who received IL-targeting agents compared with the control group. Case registries and randomized controlled trials reporting the safety of IL inhibitors should provide detailed information about the risk of specific infectious complications in patients with IBD receiving IL-targeting agents.
Collapse
Affiliation(s)
| | - Hira Saleem
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Stephanos Vassilopoulos
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Athanasios Vassilopoulos
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Evangelia K Mylona
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Fadi Shehadeh
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Electrical and Computer Engineering, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Markos Kalligeros
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bincy P Abraham
- Division of Gastroenterology and Hepatology, Department of Medicine, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, TX, USA
| | - Eleftherios Mylonakis
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Ploypetch S, Pornthummawat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Wardhani SW, Lacharoje S, Techangamsuwan S. Salivary peptidomic profiling of chronic gingivostomatitis in cats by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and nanoscale liquid chromatography-tandem mass spectrometry. J Vet Intern Med 2025; 39:e17247. [PMID: 39576047 PMCID: PMC11627522 DOI: 10.1111/jvim.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Chronic gingivostomatitis in cats (FCGS) is a moderately to severely painful condition, potentially caused by inadequate immune response to oral antigenic stimulation. Salivary peptidome analysis can identify inflammatory protein mediators and pathways involved in oral mucosal immune activation and may indicate potential therapeutic options for FCGS. OBJECTIVE Evaluate the diversity and abundance of salivary peptides in cats with FCGS using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and nanoscale liquid chromatography-tandem mass spectrometry (nano LC-MS/MS). ANIMALS Thirty-two cats with FCGS and 18 healthy controls. METHODS Case-control cross-sectional study. We compared the salivary peptide profiles of diseased and healthy cats. The diagnosis of FCGS was confirmed by histopathology. Saliva samples were analyzed for viral infections using polymerase chain reaction (PCR), peptide mass fingerprint (PMF) using MALDI-TOF MS, and peptide identification using nano LC-MS/MS. RESULTS Distinct clusters of peptide profiles were observed between groups. In FCGS, 26 salivary peptides were altered, including apolipoprotein A1, nuclear receptor subfamily 1 group I member 3, fibrinogen alpha chain, interleukin 2 receptor gamma, interleukin 23 receptor, hemoglobin subunit alpha, and serpin peptidase inhibitor clade A (alpha-1 antiproteinase, antitrypsin) member 12, protein-tyrosine-phosphatase, and cholinergic receptor nicotinic alpha 10 subunit. Protein-anti-inflammatory drug interaction networks were observed. CONCLUSIONS AND CLINICAL IMPORTANCE Peptide mass fingerprint and peptide profiles identified distinct clusters between FCGS and healthy cats. The 9 novel salivary peptide markers were associated with the JAK/STAT and PI3K/Akt pathways and immune responses. These potentially noninvasive biomarkers may facilitate understanding of FCGS pathophysiology and guide future therapeutic research.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Apisit Pornthummawat
- Department of Pre‐Clinic and Applied Animal Science, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Sabrina Wahyu Wardhani
- Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Sitthichok Lacharoje
- Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
7
|
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers (Basel) 2024; 17:55. [PMID: 39796684 PMCID: PMC11718844 DOI: 10.3390/cancers17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells. In particular, it is critical for the regulation of T helper 17 cells (Th17). Th17s are a subset of T cells involved in autoimmune and inflammatory diseases, as well as in cancer. The clinical relevance of IL-23R is underscored by its association with an elevated susceptibility or diminished vulnerability to a spectrum of diseases, including psoriasis, ankylosing spondylitis, and inflammatory bowel disease (IBD). Evidence has emerged that suggests it may also serve to predict both tumor progression and therapeutic responsiveness. It is noteworthy that the IL-23/IL-23R pathway is emerging as a promising therapeutic target. A number of biologic drugs, such as monoclonal antibodies, are currently developing with the aim of blocking this interaction, thus reducing inflammation. This represents a significant advancement in the field of medicine, offering new hope for pursuing more effective and personalized treatments. Recent studies have also investigated the role of such a pathway in autoimmune diseases, and its potential impact on infections as well as in carcinogenesis. The aim of this review is to focus on the role of IL-23R in immune genetics and its potential for modulating the natural history of neoplastic disease.
Collapse
Affiliation(s)
- Salvatore Audia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Carolina Brescia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Naomi Torchia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosario Amato
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| |
Collapse
|
8
|
Aebisher D, Bartusik-Aebisher D, Przygórzewska A, Oleś P, Woźnicki P, Kawczyk-Krupka A. Key Interleukins in Inflammatory Bowel Disease-A Review of Recent Studies. Int J Mol Sci 2024; 26:121. [PMID: 39795980 PMCID: PMC11719876 DOI: 10.3390/ijms26010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an immune disorder of the gastrointestinal tract with a complex aetiopathogenesis, whose development is influenced by many factors. The prevalence of IBD is increasing worldwide, in both industrialized and developing countries, making IBD a global health problem that seriously affects quality of life. In 2019, there were approximately 4.9 million cases of IBD worldwide. Such a large number of patients entails significant healthcare costs. In the treatment of patients with IBD, the current therapeutic target is mucosal healing, as intestinal inflammation often persists despite resolution of abdominal symptoms. Treatment strategies include amino salicylates, corticosteroids, immunosuppressants, and biologic therapies that focus on reducing intestinal mucosal inflammation, inducing and prolonging disease remission, and treating complications. The American College of Gastroenterology (ACG) guidelines also indicate that nutritional therapies may be considered in addition to other therapies. However, current therapeutic approaches are not fully effective and are associated with various limitations, such as drug resistance, variable efficacy, and side effects. As the chronic inflammation that accompanies IBD is characterized by infiltration of a variety of immune cells and increased expression of a number of pro-inflammatory cytokines, including IL-6, TNF-α, IL-12, IL-23 and IFN-γ, new therapeutic approaches are mainly targeting immune pathways. Interleukins are one of the molecular targets in IBD therapy. Interleukins and related cytokines serve as a means of communication for innate and adaptive immune cells, as well as nonimmune cells and tissues. These cytokines play an important role in the pathogenesis and course of IBD, making them promising targets for current and future therapies. In our work, we review scientific studies published between January 2022 and November 2024 describing the most important interleukins involved in the pathogenesis of IBD. Some of the papers present new data on the precise role that individual interleukins play in IBD. New clinical data have also been provided, particularly on blocking interleukin 23 and interleukin 1beta. In addition, several new approaches to the use of different interleukins in the treatment of IBD have been described in recent years.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| |
Collapse
|
9
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Shao A, Zhao Q, Chen M. Homocysteine Promotes Intestinal Inflammation in Colitis Mice Through the PGE2/STAT3 Signaling Pathway. Dig Dis Sci 2024; 69:3742-3752. [PMID: 39141200 PMCID: PMC11489288 DOI: 10.1007/s10620-024-08588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Our previous study indicated that Hcy exacerbated DSS-induced colitis by facilitating the differentiation of intestinal T helper cell 17 (Th17), but the precise mechanism remains unidentified. Therefore, our current research aims to elucidate the signaling pathway through which Hcy promotes the differentiation of Th17 cells. METHODS BALb/c mice were randomly assigned into six groups. The model of mice colitis was induced using 3% DSS, while the model of Hyperhomocysteinemia was induced using 1.7% methionine. The concentrations of Hcy and prostaglandin E2 (PGE2) were measured using enzyme-linked immunosorbent assay (ELISA). The protein expressions of cytosolic phospholipase A2 (cPLA2), phosphorylated-cPLA2 (p-cPLA2), cyclooxygenase 2 (COX2), cyclic adenosine monophosphate (cAMP), signal transducer and activator of transcription 3 (STAT3), phosphorylated-STAT3 (p-STAT3), interleukin-17A (IL-17A), and retinoid-related orphan nuclear receptor-γt (RORγt) were assessed using western blot analysis. RESULTS Compared to the DSS + HHcy group, the addition of the COX inhibitor did not significantly alter the protein expression of p-PLA2/PLA2, but led to significant decreases in serum PGE2 concentration, cAMP, and p-STAT3/STAT3 protein expression. The protein expressions of p-PLA2/PLA2, COX2, and cAMP upstream of STAT3 inhibitor addition did not exhibit significant changes. However, PGE2 concentration and p-STAT3/STAT3 protein expression were notably reduced. After the COX inhibitor and STAT3 inhibitor added, the protein expression of IL-17A and RORγt and the levels of IL-17A and IL-23R in CD4+ T cells were significantly reduced. CONCLUSION HHcy aggravated DSS-induced colitis by promoting the differentiation and proliferation of Th17 cells through the PGE2 / STAT3 signaling pathway.
Collapse
Affiliation(s)
- Akang Shao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
- The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
- The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
- The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
11
|
Iliopoulou L, Lianopoulou E, Kollias G. IL-23 exerts dominant pathogenic functions in Crohn's disease-ileitis. Mucosal Immunol 2024; 17:769-776. [PMID: 38844209 DOI: 10.1016/j.mucimm.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Crohn's disease (CD), a main form of Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder, mainly affecting the ileum. Interleukin (IL)-12 and IL-23 are both targeted by Ustekinumab, a commonly used monoclonal antibody for IBD treatment. However, their specific roles in ileitis have not been extensively explored. Here, we utilized the TnfΔΑRE model of CD-ileitis to probe the functions of IL-12 and IL-23 by employing genetically deficient mice for their respective subunits. Our findings highlight that IL-23, rather than IL-12, plays a pivotal role in the progression of ileitis. IL-23 deficiency resulted in reduced immune cell infiltration in the ileum, and decreased expression of effector cytokines downstream of IL-23 signaling. Interestingly, expanding CD14+ neutrophils were highly expressing Il23a in the inflamed ileum. Furthermore, the deletion of IL-12 conferred modest additional protection only in the absence of IL-23, suggesting potential compensatory mechanisms between these cytokines. Furthermore, our study suggests that IL-23 may function independently of IL-17, as Il17a deletion exacerbated murine ileitis, consistent with clinical studies in human CD patients using anti-IL-17 inhibitors. This research underscores the significance of targeting IL-23 in CD-ileitis, while the concurrent targeting of both IL-12 and IL-23 should be also considered as an advantageous therapeutic approach.
Collapse
Affiliation(s)
- Lida Iliopoulou
- Institute for BioInnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Erifili Lianopoulou
- Institute for BioInnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for BioInnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
12
|
Ahmed A, Joseph AM, Zhou J, Horn V, Uddin J, Lyu M, Goc J, Sockolow RE, Wing JB, Vivier E, Sakaguchi S, Sonnenberg GF. CTLA-4-expressing ILC3s restrain interleukin-23-mediated inflammation. Nature 2024; 630:976-983. [PMID: 38867048 PMCID: PMC11298788 DOI: 10.1038/s41586-024-07537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.
Collapse
Affiliation(s)
- Anees Ahmed
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jordan Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Veronika Horn
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jazib Uddin
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mengze Lyu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Goc
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Robbyn E Sockolow
- Department of Pediatrics, Division of Gastroenterology, Hepatology, & Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - James B Wing
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Laboratory of Human Single Cell Immunology, WPI IFReC, Osaka University, Suita, Japan
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
13
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
14
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
15
|
Chou CH, Yen CH, Liu CJ, Tu HF, Lin SC, Chang KW. The upregulation of VGF enhances the progression of oral squamous carcinoma. Cancer Cell Int 2024; 24:115. [PMID: 38528565 DOI: 10.1186/s12935-024-03301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a prevalent neoplasm worldwide, necessitating a deeper understanding of its pathogenesis. VGF nerve growth factor inducible (VGF), a neuropeptide, plays critical roles in nerve and endocrine cell regulation. METHODS In this study, the TCGA datasets were initially screened, identifying the upregulation of VGF in various malignancies. We focused on OSCC cell lines, identifying the suppressor mRNA miR-432-5p as a negative regulator of VGF. Additionally, we examined the prognostic value of VGF expression in OSCC tumors and its impact on cellular functions. RESULTS VGF expression was found to be an independent prognostic predictor in OSCC tumors. Cells expressing VGF exhibited increased oncogenicity, influencing the proliferation and migration of oral mucosal fibroblast. Transcriptome analysis revealed associations between VGF and various pathological processes, including malignancies, exosome release, fibrosis, cell cycle disruption, and tumor immune suppression. Moreover, IL23R expression, a favorable OSCC prognostic factor, was inversely correlated with VGF expression. Exogenous IL23R expression was found to suppress VGF-associated mobility phenotypes. CONCLUSIONS This study highlights the multifaceted role of VGF in OSCC pathogenesis and introduces the miR-432-5p-VGF-IL23R regulatory axis as a critical mediator. The combined expression of VGF and IL23R emerges as a potent predictor of survival in oral carcinoma cases, suggesting potential implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Han Yen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Jacobse J, Pilat JM, Li J, Brown RE, Kwag A, Buendia MA, Choksi YA, Washington MK, Williams CS, Markham NO, Short SP, Goettel JA. Distinct roles for interleukin-23 receptor signaling in regulatory T cells in sporadic and inflammation-associated carcinogenesis. Front Oncol 2024; 13:1276743. [PMID: 38375204 PMCID: PMC10876294 DOI: 10.3389/fonc.2023.1276743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction The pro-inflammatory cytokine interleukin-23 (IL-23) has been implicated in colorectal cancer (CRC). Yet, the cell-specific contributions of IL-23 receptor (IL-23R) signaling in CRC remain unknown. One of the cell types that highly expresses IL-23R are colonic regulatory T cells (Treg cells). The aim of this study was to define the contribution of Treg cell-specific IL-23R signaling in sporadic and inflammation-associated CRC. Methods In mice, the role of IL-23R in Treg cells in colitis-associated cancer (CAC) was investigated using azoxymethane/dextran sodium sulphate in wild-type Treg cell reporter mice (WT, Foxp3 YFP-iCre), and mice harboring a Treg cell-specific deletion of IL-23 (Il23r ΔTreg). The role of IL-23R signaling in Treg cells in sporadic CRC was examined utilizing orthotopic injection of the syngeneic colon cancer cell line MC-38 submucosally into the colon/rectum of mice. The function of macrophages was studied using clodronate. Finally, single-cell RNA-seq of a previously published dataset in human sporadic cancer was reanalyzed to corroborate these findings. Results In CAC, Il23r ΔTreg mice had increased tumor size and increased dysplasia compared to WT mice that was associated with decreased tumor-infiltrating macrophages. In the sporadic cancer model, Il23r ΔTreg mice had increased survival and decreased tumor size compared to WT mice. Additionally, MC-38 tumors of Il23r ΔTreg mice exhibited a higher frequency of pro-inflammatory macrophages and IL-17 producing CD4+ T cells. The decreased tumor size in Il23r ΔTreg mice was macrophage-dependent. These data suggest that loss of IL-23R signaling in Treg cells permits IL-17 production by CD4+ T cells that in turn promotes pro-inflammatory macrophages to clear tumors. Finally, analysis of TCGA data and single-cell RNA-seq analysis of a previously published dataset in human sporadic cancer, revealed that IL23R was highly expressed in CRC compared to other cancers and specifically in tumor-associated Treg cells. Conclusion Inflammation in colorectal carcinogenesis differs with respect to the contribution of IL-23R signaling in regulatory T cells.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Jennifer M. Pilat
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rachel E. Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aaron Kwag
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Matthew A. Buendia
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yash A. Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nicholas O. Markham
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Sarah P. Short
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeremy A. Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
17
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
18
|
Grova M, Vitello A, Mannino M, Casà A, Renna S, Macaluso FS, Orlando A. Role of ustekinumab in treatment of ulcerative colitis: a narrative review. Immunotherapy 2023; 15:1539-1552. [PMID: 38018475 DOI: 10.2217/imt-2023-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
The therapeutic armamentarium for gastroenterologists in treating ulcerative colitis (UC) has been rapidly growing since the introduction of monoclonal antibodies directed against anti-TNFs. Ustekinumab is a monoclonal antibody binding the shared p40 subunit of IL-12 and IL-23, and the inhibition of these two cytokines, implicated in host response to microbial pathogens, has demonstrated clinical efficacy in different immune-mediated diseases, including moderate-to-severe UC. This narrative review summarizes the newest clinical evidence regarding the efficacy, effectiveness and safety of ustekinumab in moderate-to-severe UC, including specific situations (pregnancy, breastfeeding, elderly/pediatric populations, extraintestinal manifestations, acute severe UC, pouchitis and dual biological therapy). Finally, positioning is discussed in light of the existing evidence.
Collapse
Affiliation(s)
- Mauro Grova
- Digestive Endoscopy Unit, Department of Medicine, "Villa Sofia-Cervello" Hospital, Palermo, 90100, Italy
| | - Alessandro Vitello
- Gastroenterology & Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, 93100, Italy
| | - Mariella Mannino
- Inflammatory Bowel Disease Unit, Department of Medicine, "Villa Sofia-Cervello" Hospital, Palermo, 90100, Italy
| | - Angelo Casà
- Inflammatory Bowel Disease Unit, Department of Medicine, "Villa Sofia-Cervello" Hospital, Palermo, 90100, Italy
| | - Sara Renna
- Inflammatory Bowel Disease Unit, Department of Medicine, "Villa Sofia-Cervello" Hospital, Palermo, 90100, Italy
| | - Fabio Salvatore Macaluso
- Inflammatory Bowel Disease Unit, Department of Medicine, "Villa Sofia-Cervello" Hospital, Palermo, 90100, Italy
| | - Ambrogio Orlando
- Inflammatory Bowel Disease Unit, Department of Medicine, "Villa Sofia-Cervello" Hospital, Palermo, 90100, Italy
| |
Collapse
|
19
|
He Y, Wang Y, He R, Abdelsalam AM, Zhong G. IL-23 receptor signaling licenses group 3-like innate lymphoid cells to restrict a live-attenuated oral Chlamydia vaccine in the gut. Infect Immun 2023; 91:e0037123. [PMID: 37850749 PMCID: PMC10652955 DOI: 10.1128/iai.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
An IFNγ-susceptible mutant of Chlamydia muridarum is attenuated in pathogenicity in the genital tract and was recently licensed as an intracellular Oral vaccine vector or intrOv. Oral delivery of intrOv induces transmucosal protection in the genital tract, but intrOv itself is cleared from the gut (without shedding any infectious particles externally) by IFNγ from group 3-like innate lymphoid cells (ILC3s). We further characterized the intrOv interactions with ILC3s in the current study, since the interactions may impact both the safety and efficacy of intrOv as an oral Chlamydia vaccine. Intracolonic inoculation with intrOv induced IFNγ that in return inhibited intrOv. The intrOv-IFNγ interactions were dependent on RORγt, a signature transcriptional factor of ILC3s. Consistently, the transfer of oral intrOv-induced ILC3s from RORγt-GFP reporter mice to IFNγ-deficient mice rescued the inhibition of intrOv. Thus, IFNγ produced by intrOv-induced ILC3s is likely responsible for inhibiting intrOv, which is further supported by the observation that oral intrOv did induce significant levels of IFNγ-producing LC3s (IFNγ+ILC3s). Interestingly, IL-23 receptor knockout (IL-23R-/-) mice no longer inhibited intrOv, which was accompanied by reduced colonic IFNγ. Transfer of oral intrOv-induced ILC3s rescued the IL-23R-/- mice to inhibit intrOv, validating the dependence of ILC3s on IL-23R signaling for inhibiting intrOv. Clearly, intrOv induces intestinal IFNγ+ILC3s for its own inhibition in the gut, which is facilitated by IL-23R signaling. These findings have provided a mechanism for ensuring the safety of intrOv as an oral Chlamydia vaccine and a platform for investigating how oral intrOv induces transmucosal protection in the genital tract.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rongze He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ahmed Mohamed Abdelsalam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Vietsch EE, Latifi D, Verheij M, van der Oost EW, de Wilde RF, Haen R, van den Boom AL, Koerkamp BG, Doornebosch PG, van Verschuer VM, Ooms AH, Mohammad F, Willemsen M, Aerts JG, Krog RT, de Miranda NF, van den Bosch TP, Mueller YM, Katsikis PD, van Eijck CH. B cell immune profiles in dysbiotic vermiform appendixes of pancreatic cancer patients. Front Immunol 2023; 14:1230306. [PMID: 38022530 PMCID: PMC10667699 DOI: 10.3389/fimmu.2023.1230306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors and is resistant to immunotherapy. B cells play an essential role in PDAC progression and immune responses, both locally and systemically. Moreover, increasing evidence suggests that microbial compositions inside the tumor, as well as in the oral cavity and the gut, are important factors in shaping the PDAC immune landscape. However, the gut-associated lymphoid tissue (GALT) has not previously been explored in PDAC patients. In this study, we analyzed healthy vermiform appendix (VA) from 20 patients with PDAC and 32 patients with colon diseases by gene expression immune profiling, flow cytometry analysis, and microbiome sequencing. We show that the VA GALT of PDAC patients exhibits markers of increased inflammation and cytotoxic cell activity. In contrast, B cell function is decreased in PDAC VA GALT based on gene expression profiling; B cells express significantly fewer MHC class II surface receptors, whereas plasma cells express the immune checkpoint molecule HLA-G. Additionally, the vermiform appendix microbiome of PDAC patients is enriched with Klebsiella pneumoniae, Bifidobacterium animalis, and Adlercreutzia equolifaciens, while certain commensals are depleted. Our findings may suggest impaired B cell function within the GALT of PDAC patients, which could potentially be linked to microbial dysbiosis. Additional investigations are imperative to validate our observations and explore these potential targets of future therapies.
Collapse
Affiliation(s)
- Eveline E. Vietsch
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Diba Latifi
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Maaike Verheij
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | | | - Roel Haen
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Anne Loes van den Boom
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Department of Surgery, Reinier de Graaf Hospital, Delft, Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | | | - Ariadne H.A.G. Ooms
- Department of Pathology, Pathan BV, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Farzana Mohammad
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Marcella Willemsen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Joachim G.J.V. Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ricki T. Krog
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
21
|
Jacobse J, Aziz Z, Sun L, Chaparro J, Pilat JM, Kwag A, Buendia M, Wimbiscus M, Nasu M, Saito T, Mine S, Orita H, Revetta F, Short SP, Kay Washington M, Hiremath G, Gibson MK, Coburn LA, Koyama T, Goettel JA, Williams CS, Choksi YA. Eosinophils Exert Antitumorigenic Effects in the Development of Esophageal Squamous Cell Carcinoma. Cell Mol Gastroenterol Hepatol 2023; 16:961-983. [PMID: 37574015 PMCID: PMC10630122 DOI: 10.1016/j.jcmgh.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND AIMS Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), as their role in ESCC is unknown. METHODS Eosinophils were enumerated in tissues from 2 ESCC cohorts. Mice were treated with 4-NQO for 8 weeks to induce precancer or 16 weeks to induce carcinoma. The eosinophil number was modified by a monoclonal antibody to interleukin-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 (Ccl11-/-). Esophageal tissue and eosinophil-specific RNA sequencing was performed to understand eosinophil function. Three-dimensional coculturing of eosinophils with precancer or cancer cells was done to ascertain direct effects of eosinophils. RESULTS Activated eosinophils are present in higher numbers in early-stage vs late-stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in precancer vs cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with precancer. Eosinophil depletion using 3 mouse models (Ccl11-/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against precancer and carcinoma. Tissue and eosinophil RNA sequencing revealed eosinophils drive oxidative stress in precancer. In vitro coculturing of eosinophils with precancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with NAC, a reactive oxygen species scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 protumorigenic pathways. CONCLUSION Eosinophils likely protect against ESCC through reactive oxygen species release during degranulation and suppression of IL-17.
Collapse
Affiliation(s)
- Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee
| | - Zaryab Aziz
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jasmine Chaparro
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aaron Kwag
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew Buendia
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Mae Wimbiscus
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Motomi Nasu
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Orita
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frank Revetta
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah P Short
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Girish Hiremath
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Michael K Gibson
- Department of Internal Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S Williams
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|