1
|
Peng G, Li B, Han H, Yuan Y, Mishra F, Huang Y, Liu ZR. Extracellular PKM2 modulates cancer immunity by regulating macrophage polarity. Cancer Immunol Immunother 2025; 74:195. [PMID: 40343475 PMCID: PMC12064527 DOI: 10.1007/s00262-025-04050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025]
Abstract
Tumor controls its immunity by educating its microenvironment, including regulating polarity of tumor associated macrophages. It is well documented that cancer cells release PKM2 to facilitate tumor progression. We report here that the extracellular PKM2 (EcPKM2) modulates tumor immunity by facilitating M2 macrophage polarization in tumors. EcPKM2 interacts with integrin αvβ3 on macrophage to activate integrin-FAK-PI3K signal axis. Activation of FAK-PI3K by EcPKM2 suppresses PTEN expression, which subsequently upregulates arginase1 (Arg1) expression and activity in macrophage to facilitate M2 polarity. Our studies uncover a novel and important mechanism for modulation of tumor immunity. More importantly, an antibody against PKM2 that disrupts the interaction between EcPKM2 and integrin αvβ3 is effective in converting M2 macrophages to M1 macrophages in tumors, suggesting a new therapeutic strategy and target for cancer therapies. Combination of the anti-PKM2 antibody with checkpoint blockades provides enhanced treatment effects.
Collapse
Affiliation(s)
- Guangda Peng
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Hongwei Han
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Falguni Mishra
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Yang Huang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA, 30303, USA.
| |
Collapse
|
2
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
3
|
Zhou H, Gong H, Zeng X, Zeng C, Liu D, Liu J, Zhang Y. MTHFD2 promotes esophageal squamous cell carcinoma progression via m6A modification‑mediated upregulation and modulation of the PEBP1‑RAF1 interaction. Int J Mol Med 2025; 55:68. [PMID: 40052596 PMCID: PMC11913433 DOI: 10.3892/ijmm.2025.5509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
One‑carbon metabolism plays an important role in cancer progression. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme in one‑carbon metabolism, is dysregulated in several cancer types. However, the precise role and mechanisms of MTHFD2 in esophageal squamous cell carcinoma (ESCC) remain unclear. The present study unravels the multifaceted mechanisms by which MTHFD2 contributes to ESCC pathogenesis. Bioinformatics analyses revealed significant upregulation of MTHFD2 in ESCC tumor tissues, which was associated with advanced disease stage and poor patient prognosis. Validating these findings in clinical samples, MTHFD2 overexpression was confirmed through immunohistochemistry, Reverse transcription‑quantitative PCR and western blotting. Knockdown of MTHFD2 inhibited ESCC cell viability, colony formation, invasion, and tumor growth in vivo, indicating its oncogenic potential. Mechanistically, the present study elucidated a novel regulatory axis involving N6‑methyladenosine modification and MTHFD2 mRNA stability. Specifically, methyltransferase‑like 3 (METTL3) and insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) were identified as key mediators of m6A‑dependent stabilization of MTHFD2 mRNA, contributing to its elevated expression in ESCC. Furthermore, MTHFD2 was found to activate PI3K/AKT and ERK signaling pathways by modulating interaction between phosphatidylethanolamine‑binding protein 1 (PEBP1) and raf‑1 proto‑oncogene (RAF1). This modulation was achieved through direct binding of MTHFD2 to PEBP1, disrupting the inhibitory effect of PEBP1 on RAF1 and promoting downstream pathway activation. The oncogenic functions of MTHFD2 were attenuated upon PEBP1 knockdown, underscoring the role of the MTHFD2‑PEBP1 axis in ESCC progression. In summary, the present study uncovers a novel regulatory mechanism involving m6A modification and the MTHFD2‑PEBP1 axis, unveiling potential therapeutic avenues for targeting MTHFD2 in ESCC.
Collapse
Affiliation(s)
- Huijun Zhou
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
- Department of Oncology, Hunan Institute of Schistosomiasis Control/The Third Hospital of Hunan Province, Yueyang, Hunan 414000, P.R. China
| | - Han Gong
- School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaohui Zeng
- Department of Oncology, Hunan Institute of Schistosomiasis Control/The Third Hospital of Hunan Province, Yueyang, Hunan 414000, P.R. China
| | - Chong Zeng
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410119, P.R. China
| | - Dian Liu
- Department of Lymphoma and Abdominal Radiotherapy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Jie Liu
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, P.R. China
| | - Yingying Zhang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
4
|
Liang C, Wang S, Wu C, Wang J, Xu L, Wan S, Zhang X, Hou Y, Xia Y, Xu L, Huang X, Xie H. Role of the AKT signaling pathway in regulating tumor-associated macrophage polarization and in the tumor microenvironment: A review. Medicine (Baltimore) 2025; 104:e41379. [PMID: 39889181 PMCID: PMC11789917 DOI: 10.1097/md.0000000000041379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 02/02/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are present in and are important components of the tumor microenvironment (TME). TAMs differentiate into 2 functionally distinct morphologies, classically activated (M1)-type TAMs and alternatively activated (M2)-type TAMs, when stimulated by different cytokines. The 2 types of TAMs exhibit distinct properties and functions. M1 TAMs secrete high levels of pro-inflammatory and chemotactic factors, exerting proinflammatory, antitumor effects. Conversely, M2 TAMs alter the extracellular matrix, facilitate cellular immune escape, and stimulate tumor angiogenesis, thereby promoting anti-inflammatory responses and tumor growth. The ratio of M1 TAMs to M2 TAMs in the TME is closely related to the prognosis of the tumor. Tumor cells and other cells in the TME can regulate the polarization of TAMs and thus promote tumor progression through the secretion of various substances; however, polarized TAMs can also act on various cells in the TME through the secretion of exosomes, thus forming a positive feedback loop. Therefore, modulating the phenotype of TAMs in the TME or blocking the polarization of M2 TAMs might be a new approach for cancer treatment. However, the intracellular signaling pathways involved in the polarization of TAMs are poorly understood. The AKT signaling pathway is an important signaling pathway involved in the polarization, growth, proliferation, recruitment, and apoptosis of TAMs, as well as the action of TAMs on other cells within the TME. This paper reviews the AKT signaling pathway in the polarization of TAMs and the regulation of the TME and provides new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Changming Liang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Jiawei Wang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Lishuai Xu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Senlin Wan
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Xu Zhang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Yinfen Hou
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
5
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
6
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Macrophage Polarisation in the Tumour Microenvironment: Recent Research Advances and Therapeutic Potential of Different Macrophage Reprogramming. Cancer Control 2025; 32:10732748251316604. [PMID: 39849988 PMCID: PMC11758544 DOI: 10.1177/10732748251316604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Macrophages are a critical component of the innate immune system, derived from monocytes, with significant roles in anti-inflammatory and anti-tumour activities. In the tumour microenvironment, however, macrophages are often reprogrammed into tumour-associated macrophages (TAMs), which promote tumour growth, metastasis, and therapeutic resistance. PURPOSE To review recent advancements in the understanding of macrophage polarisation and reprogramming, highlighting their role in tumour progression and potential as therapeutic targets. RESEARCH DESIGN This is a review article synthesising findings from recent studies on macrophage polarisation and reprogramming in tumour biology. STUDY SAMPLE Not applicable (review of existing literature). DATA COLLECTION AND/OR ANALYSIS Key studies were identified and summarised to explore mechanisms of macrophage polarisation and reprogramming, focusing on M1/M2 polarisation, metabolic and epigenetic changes, and pathway regulation. RESULTS Macrophage reprogramming in the tumour microenvironment involves complex mechanisms, including phenotypic and functional alterations. These processes are influenced by M1/M2 polarisation, metabolic and epigenetic reprogramming, and various signalling pathways. TAMs play a pivotal role in tumour progression, metastasis, and therapy resistance, making them prime targets for combination therapies. CONCLUSIONS Understanding the mechanisms underlying macrophage polarisation and reprogramming offers promising avenues for developing therapies to counteract tumour progression. Future research should focus on translating these insights into clinical applications for effective cancer treatment.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| |
Collapse
|
7
|
Yao M, Li M, Peng D, Wang Y, Li S, Zhang D, Yang B, Qiu HJ, Li LF. Unraveling Macrophage Polarization: Functions, Mechanisms, and "Double-Edged Sword" Roles in Host Antiviral Immune Responses. Int J Mol Sci 2024; 25:12078. [PMID: 39596148 PMCID: PMC11593441 DOI: 10.3390/ijms252212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous viruses that propagate through the respiratory tract may be initially engulfed by macrophages (Mφs) within the alveoli, where they complete their first replication cycle and subsequently infect the adjacent epithelial cells. This process can lead to significant pathological damage to tissues and organs, leading to various diseases. As essential components in host antiviral immune systems, Mφs can be polarized into pro-inflammatory M1 Mφs or anti-inflammatory M2 Mφs, a process involving multiple signaling pathways and molecular mechanisms that yield diverse phenotypic and functional features in response to various stimuli. In general, when infected by a virus, M1 macrophages secrete pro-inflammatory cytokines to play an antiviral role, while M2 macrophages play an anti-inflammatory role to promote the replication of the virus. However, recent studies have shown that some viruses may exhibit the opposite trend. Viruses have evolved various strategies to disrupt Mφ polarization for efficient replication and transmission. Notably, various factors, such as mechanical softness, the altered pH value of the endolysosomal system, and the homeostasis between M1/M2 Mφs populations, contribute to crucial events in the viral replication cycle. Here, we summarize the regulation of Mφ polarization, virus-induced alterations in Mφ polarization, and the antiviral mechanisms associated with these changes. Collectively, this review provides insights into recent advances regarding Mφ polarization in host antiviral immune responses, which will contribute to the development of precise prevention strategies as well as management approaches to disease incidence and transmission.
Collapse
Affiliation(s)
- Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| |
Collapse
|
8
|
Sun HY, Ma YY, Cao XQ, Li H, Han W, Qu LJ, Lamont SJ. PTEN regulated by gga-miR-20a-5p is involved in chicken macrophages inflammatory response to APEC infection via autophagy. Poult Sci 2024; 103:104170. [PMID: 39154611 PMCID: PMC11381812 DOI: 10.1016/j.psj.2024.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Colibacillosis, a bacterial disease caused by avian pathogenic E. coli (APEC), is a prevalent condition in the poultry industry, resulting in substantial economic losses annually. Previously, we identified PTEN as a crucial candidate gene that may play a significant role in chicken's immune response to APEC infection. Bioinformatics analysis indicated that the PTEN protein was unstable, hydrophilic and nuclear localization, with multiple putative phosphorylation sites and a high degree of similarity to duck and goose PTEN. Moreover, PTEN exhibited high expression levels in various tissues such as the stomach, cecum, small intestine, spleen, thymus, harderian gland, muscle, cerebrum, cerebellum, lung, and liver in comparison to heart tissue. Overexpression of PTEN resulted in a significant promotion of the expression level of pro-apoptosis genes and inflammatory mediators, as well as the production of NO, with or without APEC infection, which led to cellular injury. Furthermore, overexpression of PTEN was found to regulate the expression levels of autophagy related genes, regardless of APEC infection. Additionally, PTEN was a target gene of gga-miR-20a-5p and regulated by gga-miR-20a-5p upon APEC infection. Taken together, these findings establish a foundation for investigating the biological function of chicken PTEN, providing a potential target for future treatments against APEC infection as well as the breeding of genetically resistant poultry.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yu-Yi Ma
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xin-Qi Cao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Li
- Department of Food Science, School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Wei Han
- Department of Resource Conservation and Evaluation, The Poultry Research Institute of Chinese Academy of Agricultural Sciences, Yangzhou 225009, China
| | - Lu-Jiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
9
|
Cao F, Li Y, Peng T, Li Y, Yang L, Hu L, Zhang H, Wang J. PTEN in kidney diseases: a potential therapeutic target in preventing AKI-to-CKD transition. Front Med (Lausanne) 2024; 11:1428995. [PMID: 39165377 PMCID: PMC11333338 DOI: 10.3389/fmed.2024.1428995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Renal fibrosis, a critical factor in the development of chronic kidney disease (CKD), is predominantly initiated by acute kidney injury (AKI) and subsequent maladaptive repair resulting from pharmacological or pathological stimuli. Phosphatase and tensin homolog (PTEN), also known as phosphatase and tensin-associated phosphatase, plays a pivotal role in regulating the physiological behavior of renal tubular epithelial cells, glomeruli, and renal interstitial cells, thereby preserving the homeostasis of renal structure and function. It significantly impacts cell proliferation, apoptosis, fibrosis, and mitochondrial energy metabolism during AKI-to-CKD transition. Despite gradual elucidation of PTEN's involvement in various kidney injuries, its specific role in AKI and maladaptive repair after injury remains unclear. This review endeavors to delineate the multifaceted role of PTEN in renal pathology during AKI and CKD progression along with its underlying mechanisms, emphasizing its influence on oxidative stress, autophagy, non-coding RNA-mediated recruitment and activation of immune cells as well as renal fibrosis. Furthermore, we summarize prospective therapeutic targeting strategies for AKI and CKD-treatment related diseases through modulation of PTEN.
Collapse
Affiliation(s)
- Fangfang Cao
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanyuan Li
- Division of Science and Education, Mianyang Central Hospital, Mianyang, China
| | - Ting Peng
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanmei Li
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lihua Yang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lanping Hu
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Han Zhang
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| |
Collapse
|
10
|
Zhou P, Meng X, Nie Z, Wang H, Wang K, Du A, Lei Y. PTEN: an emerging target in rheumatoid arthritis? Cell Commun Signal 2024; 22:246. [PMID: 38671436 PMCID: PMC11046879 DOI: 10.1186/s12964-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a critical tumor suppressor protein that regulates various biological processes such as cell proliferation, apoptosis, and inflammatory responses by controlling the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT) signaling pathway. PTEN plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Loss of PTEN may contribute to survival, proliferation, and pro-inflammatory cytokine release of fibroblast-like synoviocytes (FLS). Also, persistent PI3K signaling increases myeloid cells' osteoclastic potential, enhancing localized bone destruction. Recent studies have shown that the expression of PTEN protein in the synovial lining of RA patients with aggressive FLS is minimal. Experimental upregulation of PTEN protein expression could reduce the damage caused by RA. Nonetheless, a complete comprehension of aberrant PTEN drives RA progression and its interactions with other crucial molecules remains elusive. This review is dedicated to promoting a thorough understanding of the signaling mechanisms of aberrant PTEN in RA and aims to furnish pertinent theoretical support for forthcoming endeavors in both basic and clinical research within this domain.
Collapse
Affiliation(s)
- Pan Zhou
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Xingwen Meng
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Zhimin Nie
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Hua Wang
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Kaijun Wang
- Nanjing Tongshifeng Hospital, Nanjing, Jiangsu Province, China
| | - Aihua Du
- Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, Henan Province, China
| | - Yu Lei
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
11
|
Cui Y, Li Z, Ni L, Yu S, Shan X, Hu P, Ji Z, Jing W, Zhou Y, Wang B, Dong H, Zhou J, Xie K, Yu Q. Induction of MTHFD2 in Macrophages Inhibits Reactive Oxygen Species-mediated NF-κB Activation and Protects against Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1345-1356. [PMID: 38407485 DOI: 10.4049/jimmunol.2300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is critical for cancer cell proliferation and immune cell phenotypes, but whether it can contribute to macrophage inflammatory responses remains unclear. In this study, we show that MTHFD2 was upregulated by LPS in murine macrophages upon activation of the TLR4-MyD88-IKKα/β-NF-κB signaling pathway. MTHFD2 significantly attenuated LPS-induced macrophage proinflammatory cytokine production through its enzymatic activity. Notably, ablation of myeloid MTHFD2 rendered mice more sensitive to septic shock and CCl4-induced acute hepatitis. Mechanistically, MTHFD2 restrained IKKα/β-NF-κB activation and macrophage inflammatory phenotype by scavenging reactive oxygen species through the generation of NADPH. Our study reveals MTHFD2 as a "self-control" mechanism in macrophage-mediated inflammatory responses.
Collapse
Affiliation(s)
- Yan Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihan Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Ni
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Sujun Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Shan
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Weijia Jing
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanzhao Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baochen Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiujing Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Wang Y, Hongu T, Nishimura T, Takeuchi Y, Takano H, Daikoku T, Yao R, Gotoh N. Mitochondrial one-carbon metabolic enzyme MTHFD2 facilitates mammary gland development during pregnancy. Biochem Biophys Res Commun 2023; 674:183-189. [PMID: 37450958 DOI: 10.1016/j.bbrc.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.
Collapse
Affiliation(s)
- Yuming Wang
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Tsunaki Hongu
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa Univerisity, Japan.
| |
Collapse
|
13
|
Wang Q, Gao QC, Wang QC, Wu L, Yu Q, He PF. A compendium of mitochondrial molecular characteristics provides novel perspectives on the treatment of rheumatoid arthritis patients. J Transl Med 2023; 21:561. [PMID: 37608254 PMCID: PMC10463924 DOI: 10.1186/s12967-023-04426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that exhibits a high degree of heterogeneity, marked by unpredictable disease flares and significant variations in the response to available treatments. The lack of optimal stratification for RA patients may be a contributing factor to the poor efficacy of current treatment options. The objective of this study is to elucidate the molecular characteristics of RA through the utilization of mitochondrial genes and subsequently construct and authenticate a diagnostic framework for RA. Mitochondrial proteins were obtained from the MitoCarta database, and the R package limma was employed to filter for differentially expressed mitochondrial genes (MDEGs). Metascape was utilized to perform enrichment analysis, followed by an unsupervised clustering algorithm using the ConsensuClusterPlus package to identify distinct subtypes based on MDEGs. The immune microenvironment, biological pathways, and drug response were further explored in these subtypes. Finally, a multi-biomarker-based diagnostic model was constructed using machine learning algorithms. Utilizing 88 MDEGs present in transcript profiles, it was possible to classify RA patients into three distinct subtypes, each characterized by unique molecular and cellular signatures. Subtype A exhibited a marked activation of inflammatory cells and pathways, while subtype C was characterized by the presence of specific innate lymphocytes. Inflammatory and immune cells in subtype B displayed a more modest level of activation (Wilcoxon test P < 0.05). Notably, subtype C demonstrated a stronger correlation with a superior response to biologics such as infliximab, anti-TNF, rituximab, and methotrexate/abatacept (P = 0.001) using the fisher test. Furthermore, the mitochondrial diagnosis SVM model demonstrated a high degree of discriminatory ability in distinguishing RA in both training (AUC = 100%) and validation sets (AUC = 80.1%). This study presents a pioneering analysis of mitochondrial modifications in RA, offering a novel framework for patient stratification and potentially enhancing therapeutic decision-making.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Qi-Chuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|