1
|
Mahendran TR, Cynthia B, Thevendran R, Maheswaran S. Prospects of Innovative Therapeutics in Combating the COVID-19 Pandemic. Mol Biotechnol 2025; 67:2598-2606. [PMID: 39085563 DOI: 10.1007/s12033-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The sudden global crisis of COVID-19, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demands swift containment measures due to its rapid spread and numerous problematic mutations, which complicate the establishment of herd immunity. With escalating fatalities across various nations no foreseeable end in sight, there is a pressing need to create swiftly deployable, rapid, cost-effective detection, and treatment methods. While various steps are taken to mitigate the transmission and severity of the disease, vaccination is proven throughout mankind history as the best method to acquire immunity and circumvent the spread of infectious diseases. Nonetheless, relying solely on vaccination might not be adequate to match the relentless viral mutations observed in emerging variants of SARS-CoV-2, including alterations to their RBD domain, acquisition of escape mutations, and potential resistance to antibody binding. Beyond the immune system activation achieved through vaccination, it is crucial to develop new medications or treatment methods to either impede the infection or enhance existing treatment modalities. This review emphasizes innovative treatment strategies that aim to directly disrupt the virus's ability to replicate and spread, which could play a role in ending the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Thamby Rajah Mahendran
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Binsin Cynthia
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ramesh Thevendran
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia
- Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Solayappan Maheswaran
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia.
- Faculty of Applied Sciences, AIMST University, 08100, Bedong, Kedah, Malaysia.
| |
Collapse
|
2
|
Bloom N, Ramirez SI, Cohn H, Parikh UM, Heaps A, Sieg SF, Greninger A, Ritz J, Moser C, Eron JJ, Bajic G, Currier JS, Klekotka P, Wohl DA, Daar ES, Li J, Hughes MD, Chew KW, Smith DM, Crotty S, Coelho CH. SARS-CoV-2 Monoclonal Antibody Treatment Followed by Vaccination Shifts Human Memory B-Cell Epitope Recognition, Suggesting Antibody Feedback. J Infect Dis 2024; 230:1187-1196. [PMID: 39036987 PMCID: PMC11566236 DOI: 10.1093/infdis/jiae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have been studied in humans, but the impact on immune memory of mAb treatment during an ongoing infection remains unclear. We evaluated the effect of infusion of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of MBCs targeting spike toward non-RBD epitopes. Furthermore, the relative affinity of RBD MBCs was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA coronavirus disease 2019 vaccination, MBC differences persisted and mapped to a specific reduction in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating MBC responses to infection, and single mAb administration can continue to impact MBC responses to additional antigen exposures months later.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Middle Aged
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Viral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Epitopes, B-Lymphocyte/immunology
- Memory B Cells/immunology
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Vaccination
- Feedback, Physiological
Collapse
Affiliation(s)
- Nathaniel Bloom
- Center for Vaccine Innovation, La Jolla Institute for Immunology
| | - Sydney I Ramirez
- Center for Vaccine Innovation, La Jolla Institute for Immunology
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla
| | - Hallie Cohn
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Amy Heaps
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Scott F Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio
| | - Alex Greninger
- Department of Medicine, University of Washington, Seattle
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine
| | | | - Judith S Currier
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | | | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine
| | - Eric S Daar
- Lundquist Institute at Harbor, University of California, Los Angeles Medical Center, Torrance
| | - Jonathan Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kara W Chew
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla
| | - Camila H Coelho
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi AN, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. Cell Rep 2024; 43:114530. [PMID: 39058596 DOI: 10.1016/j.celrep.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts are limited by a poor understanding of antibody responses elicited by infection. Here, we analyze S-directed antibody responses in plasma collected from MERS-CoV-infected individuals. We observe that binding and neutralizing antibodies peak 1-6 weeks after symptom onset/hospitalization, persist for at least 6 months, and neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the receptor-binding domain (RBD), account for most plasma neutralizing activity. Antigenic site mapping reveals that plasma antibodies frequently target RBD epitopes, whereas targeting of S2 subunit epitopes is rare. Our data reveal the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Kyung Hee University, Seoul, South Korea
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Freidel MR, Armen RS. Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike. Viruses 2024; 16:712. [PMID: 38793593 PMCID: PMC11125925 DOI: 10.3390/v16050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors. However, given minimal experimental information regarding the exact location of small-molecule binding sites on Spike, it was unclear what the specific mechanism of action was or where the exact binding sites were on Spike for some inhibitor candidates. The work of countless researchers has yielded great progress, with the identification of many viral entry inhibitors that target elements on the S1 receptor-binding domain (RBD) or N-terminal domain (NTD) and disrupt the S1 receptor-binding function. In this review, we will also focus on highlighting fusion inhibitors that target inhibition of the S2 fusion function, either by disrupting the formation of the postfusion S2 conformation or alternatively by stabilizing structural elements of the prefusion S2 conformation to prevent conformational changes associated with S2 function. We highlight experimentally validated binding sites on the S1/S2 interface and on the S2 subunit. While most substitutions to the Spike protein to date in variants of concern (VOCs) have been localized to the S1 subunit, the S2 subunit sequence is more conserved, with only a few observed substitutions in proximity to S2 binding sites. Several recent small molecules targeting S2 have been shown to have robust activity over recent VOC mutant strains and/or greater broad-spectrum antiviral activity for other more distantly related coronaviruses.
Collapse
Affiliation(s)
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918, Philadelphia, PA 19170, USA;
| |
Collapse
|
5
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi A, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.586409. [PMID: 38617298 PMCID: PMC11014493 DOI: 10.1101/2024.03.31.586409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Most vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts, however, are limited by a poor understanding of antibody responses elicited by infection along with their durability, fine specificity and contribution of distinct S antigenic sites to neutralization. To address this knowledge gap, we analyzed S-directed binding and neutralizing antibody titers in plasma collected from individuals infected with MERS-CoV in 2017-2019 (prior to the COVID-19 pandemic). We observed that binding and neutralizing antibodies peak 1 to 6 weeks after symptom onset/hospitalization, persist for at least 6 months, and broadly neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the RBD, account for most plasma neutralizing activity. Antigenic site mapping revealed that polyclonal plasma antibodies frequently target RBD epitopes, particularly a site exposed irrespective of the S trimer conformation, whereas targeting of S2 subunit epitopes is rare, similar to SARS-CoV-2. Our data reveal in unprecedented details the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Kyung Hee University, Seoul, South Korea
| | - Abeer Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Zech F, Jung C, Jacob T, Kirchhoff F. Causes and Consequences of Coronavirus Spike Protein Variability. Viruses 2024; 16:177. [PMID: 38399953 PMCID: PMC10892391 DOI: 10.3390/v16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.
Collapse
Affiliation(s)
- Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
Coelho CH, Bloom N, Ramirez SI, Parikh UM, Heaps A, Sieg SF, Greninger A, Ritz J, Moser C, Eron JJ, Currier JS, Klekotka P, Wohl DA, Daar ES, Li J, Hughes MD, Chew KW, Smith DM, Crotty S. SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567575. [PMID: 38045374 PMCID: PMC10690233 DOI: 10.1101/2023.11.21.567575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Therapeutic anti-SARS-CoV-2 monoclonal antibodies (mAbs) have been extensively studied in humans, but the impact on immune memory of mAb treatment during an ongoing immune response has remained unclear. Here, we evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific defect in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating human memory B cell responses, both to infection and vaccination. These data indicate that mAb administration can promote alterations in the epitopes recognized by the B cell repertoire, and the single administration of mAb can continue to determine the fate of B cells in response to additional antigen exposures months later.
Collapse
Affiliation(s)
- Camila H Coelho
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
| | - Nathaniel Bloom
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy Heaps
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott F Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Alex Greninger
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Judith S Currier
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | | | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jonathan Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kara W Chew
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Shane Crotty
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| |
Collapse
|
8
|
Engdahl TB, Binshtein E, Brocato RL, Kuzmina NA, Principe LM, Kwilas SA, Kim RK, Chapman NS, Porter MS, Guardado-Calvo P, Rey FA, Handal LS, Diaz SM, Zagol-Ikapitte IA, Tran MH, McDonald WH, Meiler J, Reidy JX, Trivette A, Bukreyev A, Hooper JW, Crowe JE. Antigenic mapping and functional characterization of human New World hantavirus neutralizing antibodies. eLife 2023; 12:e81743. [PMID: 36971354 PMCID: PMC10115451 DOI: 10.7554/elife.81743] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Natalia A Kuzmina
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
| | - Lucia M Principe
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Robert K Kim
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | | | - Félix A Rey
- Institut Pasteur, Université Paris CitéParisFrance
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Irene A Zagol-Ikapitte
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Minh H Tran
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
- Department of Microbiology and Immunology, University of Texas Medical BranchGalvestonUnited States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|