1
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector-like CD8 + T cells during chronic infection and cancer. Nat Commun 2025; 16:4542. [PMID: 40374625 PMCID: PMC12081725 DOI: 10.1038/s41467-025-59784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
During chronic infection and tumor progression, CD8+ T cells lose their effector functions and become exhausted. These exhausted CD8+ T cells are heterogeneous and comprised of progenitors that give rise to effector-like or terminally-exhausted cells. The precise cues and mechanisms directing subset formation are incompletely understood. Here, we show that growth factor independent-1 (Gfi1) is dynamically regulated in exhausted CD8+ T cells. During chronic LCMV Clone 13 infection, a previously under-described Ly108+CX3CR1+ subset expresses low levels of Gfi1 while other established subsets have high expression. Ly108+CX3CR1+ cells possess distinct chromatin profiles and represent a transitory subset that develops to effector-like and terminally-exhausted cells, a process dependent on Gfi1. Similarly, Gfi1 in tumor-infiltrating CD8+ T cells is required for the formation of terminally differentiated cells and endogenous as well as anti-CTLA-induced anti-tumor responses. Taken together, Gfi1 is a key regulator of the subset formation of exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer T Ingram
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Allan J Zajac
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lewis Z Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Miao R, Liu Y, Shen S, Wang W, Wang S. Chromatin remodeling in lymphocytic function and fate: the multifaceted roles of SWI/SNF complex. Front Immunol 2025; 16:1575857. [PMID: 40342423 PMCID: PMC12058788 DOI: 10.3389/fimmu.2025.1575857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
The Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex comprises 10-15 subunits, which modulate the arrangement, location, or conformation of nucleosomes to upregulate chromatin accessibility. During lymphocytic differentiation and functional development, the SWI/SNF complex exerts its effects by binding to specific transcription factors (TFs) or DNA sequences via its subunits, which are thereafter recruited to the promoter or enhancer regions of target genes, rendering each subunit crucial wherein. The loss of individual subunits during lymphocytic differentiation not only disrupts the targeting of the SWI/SNF complex but also impairs its chromatin remodeling function, ultimately resulting in altered differentiation of immature lymphocytes, dysfunction of mature lymphocytes, and injured immune responses. Therefore, in this paper, we focus on TFs interacting with SWI/SNF complex subunits in lymphocytes, and summarize the effects of the loss of specific subunits of the SWI/SNF complex on lymphocytic differentiation and function, as well as the modification in the expression of key genes. We also summarize the potential clinical treatments and applications targeting the loss of SWI/SNF complex subunits, and focus on the application in Chimeric Antigen Receptor (CAR) technology. In conclusion, the SWI/SNF complex is a key regulatory factor in lymphocytic biology, involved in fundamental cellular processes and closely associated with hematological diseases and immune dysfunction. However, the specific roles of SWI/SNF complex subunits in different lymphocytic subpopulations remain unclear. Future clarification of the specific functions of these subunits in different lymphocytic subsets is expected to promote the development of immunotherapy and personalized therapy.
Collapse
Affiliation(s)
- Renjie Miao
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Liu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shuo Shen
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenxin Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shengjun Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
3
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic landscapes drive CAR-T cell kinetics and fate decisions: Bridging persistence and resistance. Crit Rev Oncol Hematol 2025; 211:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
4
|
Bresser K, Popović B, Wolkers MC. What's in a name: the multifaceted function of DNA- and RNA-binding proteins in T cell responses. FEBS J 2025; 292:1853-1867. [PMID: 39304985 PMCID: PMC12001178 DOI: 10.1111/febs.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 04/17/2025]
Abstract
Cellular differentiation allows cells to transition between different functional states and adapt to various environmental cues. The diversity and plasticity of this process is beautifully exemplified by T cells responding to pathogens, which undergo highly specialized differentiation tailored to the ongoing infection. Such antigen-induced T cell differentiation is regulated at the transcriptional level by DNA-binding proteins and at the post-transcriptional level by RNA-binding proteins. Although traditionally defined as separate protein classes, a growing body of evidence indicates an overlap between these two groups of proteins, collectively coined DNA/RNA-binding proteins (DRBPs). In this review, we describe how DRBPs might bind both DNA and RNA, discuss the putative functional relevance of this dual binding, and provide an exploratory analysis into characteristics that are associated with DRBPs. To exemplify the significance of DRBPs in T cell biology, we detail the activity of several established and putative DRBPs during the T cell response. Finally, we highlight several methodologies that allow untangling of the distinct functionalities of DRBPs at the DNA and RNA level, including key considerations to take into account when applying such methods.
Collapse
Affiliation(s)
- Kaspar Bresser
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
5
|
Mondal J, Zhang J, Qing F, Li S, Kumar D, Huse JT, Giancotti FG. Brd7 loss reawakens dormant metastasis initiating cells in lung by forging an immunosuppressive niche. Nat Commun 2025; 16:1378. [PMID: 39910049 PMCID: PMC11799300 DOI: 10.1038/s41467-025-56347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Metastasis in cancer is influenced by epigenetic factors. Using an in vivo screen, we demonstrate that several subunits of the polybromo-associated BAF (PBAF) chromatin remodeling complex, particularly Brd7, are required for maintaining breast cancer metastatic dormancy in the lungs of female mice. Brd7 loss induces metastatic reawakening, along with modifications in epigenomic landscapes and upregulated oncogenic signaling. Breast cancer cells harboring Brd7 inactivation also reprogram the surrounding immune microenvironment by downregulating MHC-1 expression and promoting a pro-metastatic cytokine profile. Flow cytometric and single-cell analyses reveal increased levels of pro-tumorigenic inflammatory and transitional neutrophils, CD8+ exhausted T cells, and CD4+ stress response T cells in lungs from female mice harboring Brd7-deficient metastases. Finally, attenuating this immunosuppressive milieu by neutrophil depletion, neutrophil extracellular trap (NET) inhibition, or immune checkpoint therapy abrogates metastatic outgrowth. These findings implicate Brd7 and PBAF in triggering metastatic outgrowth in cancer, pointing to targetable underlying mechanisms involving specific immune cell compartments.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junfeng Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China.
| | - Feng Qing
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Shunping Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Johnson and Johnson Enterprise Innovations, Inc, Interventional Oncology, Spring House, PA, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Filippo G Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Fagerberg E, Attanasio J, Dien C, Singh J, Kessler EA, Abdullah L, Shen J, Hunt BG, Connolly KA, De Brouwer E, He J, Iyer NR, Buck J, Borr ER, Damo M, Foster GG, Giles JR, Huang YH, Tsang JS, Krishnaswamy S, Cui W, Joshi NS. KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infection. Science 2025; 387:eadn2337. [PMID: 39946463 DOI: 10.1126/science.adn2337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/06/2024] [Accepted: 11/26/2024] [Indexed: 04/23/2025]
Abstract
Naïve CD8 T cells have the potential to differentiate into a spectrum of functional states during an immune response. How these developmental decisions are made and what mechanisms exist to suppress differentiation toward alternative fates remains unclear. We employed in vivo CRISPR-Cas9-based perturbation sequencing to assess the role of ~40 transcription factors (TFs) and epigenetic modulators in T cell fate decisions. Unexpectedly, we found that knockout of the TF Klf2 resulted in aberrant differentiation to exhausted-like CD8 T cells during acute infection. KLF2 was required to suppress the exhaustion-promoting TF TOX and to enable the TF TBET to drive effector differentiation. KLF2 was also necessary to maintain a polyfunctional tumor-specific progenitor state. Thus, KLF2 provides effector CD8 T cell lineage fidelity and suppresses the exhaustion program.
Collapse
Affiliation(s)
- Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - John Attanasio
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Christine Dien
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Jaiveer Singh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emily A Kessler
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Brian G Hunt
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Edward De Brouwer
- Department of Genetics and Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Jiaming He
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nivedita R Iyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Buck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emily R Borr
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Damo
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gena G Foster
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John S Tsang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Systems and Engineering Immunology, Yale University School of Medicine, New Haven, CT, USA
- Chan Zuckerberg Biohub New York, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Smita Krishnaswamy
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT USA
- Applied Math Program, Yale University, New Haven, CT, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Park J, Kirkland JG. The role of the polybromo-associated BAF complex in development. Biochem Cell Biol 2025; 103:1-8. [PMID: 39541575 PMCID: PMC11752563 DOI: 10.1139/bcb-2024-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Chromatin is dynamically regulated during development, where structural changes affect the transcription of genes required to promote different cell types. One of the chromatin regulatory factors responsible for transcriptional regulation during development is the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, an ATP-dependent chromatin remodeling factor conserved throughout eukaryotes. The catalytic subunit of this complex, BRG1, is shared in all three SWI/SNF complexes subfamilies and is essential for developing most cell lineages. Interestingly, many human developmental diseases have correlative or causative mutations in different SWI/SNF subunits. Many polybromo-associated BAF (pBAF) complex-specific subunit genetic alterations result in developmental failures in tissue-specific ways. This observation suggests that the pBAF complex plays a vital role in development and differentiation, and studying the pBAF complex may provide an opportunity to better understand gene regulation during development. In this mini-view, we will focus on the functions of pBAF-specific subunits and their influence on the development of various cell and tissue types by regulating developmental gene expression.
Collapse
Affiliation(s)
- JinYoung Park
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jacob G. Kirkland
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Sun S, Chen Y, Ouyang Y, Tang Z. Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases. Clin Rev Allergy Immunol 2024; 68:2. [PMID: 39751934 DOI: 10.1007/s12016-024-09011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention. This review presents a summary of the significant functions of SWI/SNF complexes during the overall process from the development to the activation of innate and adaptive immune cells. In addition, the correlation between various SWI/SNF subunits and diverse inflammatory diseases is explored. Further investigations are warranted in terms of the mechanism of SWI/SNF complexes' preference for binding sites and opposite pro-/anti-inflammatory effects. In conclusion, further efforts are needed to evaluate the druggability of targeting SWI/SNF complexes in inflammatory diseases, and we hope this review will inspire the development of novel immune modulators in clinical practice.
Collapse
Affiliation(s)
- Shunan Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
9
|
Abraham A, Samaniego-Castruita D, Han I, Ramesh P, Tran MT, Paladino J, Kligfeld H, Morgan RC, Schmitz RL, Southern RM, Shukla A, Shukla V. Arid1a-dependent canonical BAF complex suppresses inflammatory programs to drive efficient germinal center B cell responses. Nat Immunol 2024; 25:1704-1717. [PMID: 39143398 PMCID: PMC12039306 DOI: 10.1038/s41590-024-01920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The mammalian Brg1/Brm-associated factor (BAF) complexes are major regulators of nucleosomal remodeling that are commonly mutated in several cancers, including germinal center (GC)-derived B cell lymphomas. However, the specific roles of different BAF complexes in GC B cell biology are not well understood. Here we show that the AT-rich interaction domain 1a (Arid1a) containing canonical BAF (cBAF) complex is required for maintenance of GCs and high-affinity antibody responses. While Arid1a-deficient B cells undergo initial activation, they fail to sustain the GC program. Arid1a establishes permissive chromatin landscapes for B cell activation and is concomitantly required to suppress inflammatory gene programs. The inflammatory signatures instigated by Arid1a deficiency promoted the recruitment of neutrophils and inflammatory monocytes. Dampening of inflammatory cues through interleukin-1β blockade or glucocorticoid receptor agonist partially rescued Arid1a-deficient GCs, highlighting a critical role for inflammation in impeding GCs. Our work reveals essential functions of Arid1a-dependent cBAF in promoting efficient GC responses.
Collapse
Affiliation(s)
- Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA
| | | | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Prathyaya Ramesh
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Mi Thao Tran
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Jillian Paladino
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Heather Kligfeld
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Roxroy C Morgan
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Rebecca L Schmitz
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Rebecca M Southern
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Ashima Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Liao J, Ho J, Burns M, Dykhuizen EC, Hargreaves DC. Collaboration between distinct SWI/SNF chromatin remodeling complexes directs enhancer selection and activation of macrophage inflammatory genes. Immunity 2024; 57:1780-1795.e6. [PMID: 38843835 PMCID: PMC11324393 DOI: 10.1016/j.immuni.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.
Collapse
Affiliation(s)
- Jingwen Liao
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92039, USA; Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Mannix Burns
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Ni L. Potential mechanisms of cancer stem-like progenitor T-cell bio-behaviours. Clin Transl Med 2024; 14:e1817. [PMID: 39169517 PMCID: PMC11338842 DOI: 10.1002/ctm2.1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
In situations involving continuous exposure to antigens, such as chronic infections or cancer, antigen-specific CD8+ T cells can become dysfunctional or exhausted. This change is marked by increased expression levels of inhibitory receptors (PD-1 and Tim-3). Stem-like progenitor exhausted (Tpex) cells, a subset of exhausted cells that express TCF-1 and are mainly found in the lymph nodes, demonstrate the ability to self-renew and exhibit a high rate of proliferation. Tpex cells can further differentiate into transitional intermediate exhausted (Tex-int) cells and terminally exhausted (Tex-term) cells. Alternatively, they can directly differentiate into Tex-term cells. Tpex cells are the predominant subset that respond to immune checkpoint inhibitors (ICI), making them a prime candidate for improving the efficacy of ICI therapy. This review article aimed to present the latest developments in the field of Tpex formation, expansion, and differentiation in the context of cancer, as well as their responses to ICIs in cancer immunotherapy. Consequently, it may be possible to develop novel treatments that exclusively target Tpex cells, thus improving overall treatment outcomes. KEY POINTS: Tpex cells are located in lymph nodes and TLS. Several pathways control the differentiation trajectories of Tpex cells, including epigenetic factors, transcription factors, cytokines, age, sex, etc.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Basic MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
12
|
Liu X, Liu K, Wang Y, Meng X, Wang Q, Tao S, Xu Q, Shen X, Gao X, Hong S, Jin H, Wang JQ, Wang D, Lu L, Meng Z, Wang L. SWI/SNF chromatin remodeling factor BAF60b restrains inflammatory diseases by affecting regulatory T cell migration. Cell Rep 2024; 43:114458. [PMID: 38996070 DOI: 10.1016/j.celrep.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Animals
- Cell Movement
- Mice
- Mice, Inbred C57BL
- Inflammation/pathology
- Inflammation/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Humans
- Transcription Factors/metabolism
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Colitis/metabolism
- Colitis/pathology
- Colitis/immunology
- Colitis/genetics
Collapse
Affiliation(s)
- Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuai Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxi Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Shen
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xianzhi Gao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Huihui Jin
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - James Q Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
13
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector CD8 T cells during chronic infection and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.579535. [PMID: 38659890 PMCID: PMC11042319 DOI: 10.1101/2024.04.18.579535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During chronic infections and tumor progression, CD8 T cells gradually lose their effector functions and become exhausted. These exhausted CD8 T cells are heterogeneous and comprised of different subsets, including self-renewing progenitors that give rise to Ly108 - CX3CR1 + effector-like cells. Generation of these effector-like cells is essential for the control of chronic infections and tumors, albeit limited. However, the precise cues and mechanisms directing the formation and maintenance of exhausted effector-like are incompletely understood. Using genetic mouse models challenged with LCMV Clone 13 or syngeneic tumors, we show that the expression of a transcriptional repressor, growth factor independent 1 (Gfi1) is dynamically regulated in exhausted CD8 T cells, which in turn regulates the formation of exhausted effector-like cells. Gfi1 deletion in T cells dysregulates the chromatin accessibility and transcriptomic programs associated with the differentiation of LCMV Clone 13-specific CD8 T cell exhaustion, preventing the formation of effector-like and terminally exhausted cells while maintaining progenitors and a newly identified Ly108 + CX3CR1 + state. These Ly108 + CX3CR1 + cells have a distinct chromatin profile and may represent an alternative target for therapeutic interventions to combat chronic infections and cancer. In sum, we show that Gfi1 is a critical regulator of the formation of exhausted effector-like cells.
Collapse
|
14
|
Deng Q, Lakra P, Gou P, Yang H, Meydan C, Teater M, Chin C, Zhang W, Dinh T, Hussein U, Li X, Rojas E, Liu W, Reville PK, Kizhakeyil A, Barisic D, Parsons S, Wilson A, Henderson J, Scull B, Gurumurthy C, Vega F, Chadburn A, Cuglievan B, El-Mallawany NK, Allen C, Mason C, Melnick A, Green MR. SMARCA4 is a haploinsufficient B cell lymphoma tumor suppressor that fine-tunes centrocyte cell fate decisions. Cancer Cell 2024; 42:605-622.e11. [PMID: 38458188 PMCID: PMC11003852 DOI: 10.1016/j.ccell.2024.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/30/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
SMARCA4 encodes one of two mutually exclusive ATPase subunits in the BRG/BRM associated factor (BAF) complex that is recruited by transcription factors (TFs) to drive chromatin accessibility and transcriptional activation. SMARCA4 is among the most recurrently mutated genes in human cancer, including ∼30% of germinal center (GC)-derived Burkitt lymphomas. In mice, GC-specific Smarca4 haploinsufficiency cooperated with MYC over-expression to drive lymphomagenesis. Furthermore, monoallelic Smarca4 deletion drove GC hyperplasia with centroblast polarization via significantly increased rates of centrocyte recycling to the dark zone. Mechanistically, Smarca4 loss reduced the activity of TFs that are activated in centrocytes to drive GC-exit, including SPI1 (PU.1), IRF family, and NF-κB. Loss of activity for these factors phenocopied aberrant BCL6 activity within murine centrocytes and human Burkitt lymphoma cells. SMARCA4 therefore facilitates chromatin accessibility for TFs that shape centrocyte trajectories, and loss of fine-control of these programs biases toward centroblast cell-fate, GC hyperplasia and lymphoma.
Collapse
Affiliation(s)
- Qing Deng
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Lakra
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Panhong Gou
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cem Meydan
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Teater
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wenchao Zhang
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tommy Dinh
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Usama Hussein
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xubin Li
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Estela Rojas
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiguang Liu
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Atish Kizhakeyil
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darko Barisic
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sydney Parsons
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Wilson
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Henderson
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooks Scull
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | | | - Francisco Vega
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Branko Cuglievan
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nader Kim El-Mallawany
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Carl Allen
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Christopher Mason
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Dreier MR, Walia J, de la Serna IL. Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. EPIGENOMES 2024; 8:7. [PMID: 38390898 PMCID: PMC10885108 DOI: 10.3390/epigenomes8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex and sub-complex functions are a prominent feature in cancer, making them attractive targets for therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes. Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical research to clinical trials, indicating a promising stride toward the development of effective cancer therapeutics targeting SWI/SNF complex and sub-complex functions.
Collapse
Affiliation(s)
- Megan R Dreier
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Jasmine Walia
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| |
Collapse
|
16
|
Pandey S, Cholak ME, Yadali R, Sosman JA, Tetreault MP, Fang D, Pollack SM, Gnjatic S, Obeng RC, Lyerly HK, Sonabend AM, Guevara-Patiño JA, Butterfield LH, Zhang B, Maecker HT, Le Poole IC. Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond. Cancers (Basel) 2024; 16:475. [PMID: 38339227 PMCID: PMC10854499 DOI: 10.3390/cancers16030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
As part of a symposium, current and former directors of Immune Monitoring cores and investigative oncologists presented insights into the past, present and future of immune assessment. Dr. Gnjatic presented a classification of immune monitoring technologies ranging from universally applicable to experimental protocols, while emphasizing the need for assay harmonization. Dr. Obeng discussed physiologic differences among CD8 T cells that align with anti-tumor responses. Dr. Lyerly presented the Soldano Ferrone lecture, commemorating the passionate tumor immunologist who inspired many, and covered a timeline of monitoring technology development and its importance to immuno-oncology. Dr. Sonabend presented recent achievements in glioblastoma treatment, accentuating the range of monitoring techniques that allowed him to refine patient selection for clinical trials. Dr. Guevara-Patiño focused on hypoxia within the tumor environment and stressed that T cell viability is not to be confused with functionality. Dr. Butterfield accentuated monitoring of dendritic cell metabolic (dys)function as a determinant for tumor vaccine success. Lectures were interspersed with select abstract presentations. To summarize the concepts, Dr. Maecker from Stanford led an informative forum discussion, pointing towards the future of immune monitoring. Immune monitoring continues to be a guiding light towards effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Surya Pandey
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
| | - Meghan E. Cholak
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
| | - Rishita Yadali
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
| | - Jeffrey A. Sosman
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Marie-Pier Tetreault
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Deyu Fang
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Seth M. Pollack
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Sacha Gnjatic
- Human Immune Monitoring Center, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Rebecca C. Obeng
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - H. Kim Lyerly
- Center for Applied Therapeutics, Duke Cancer Center, Duke University, Durham, NC 27710, USA;
| | - Adam M. Sonabend
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | | | - Lisa H. Butterfield
- Merck Research Laboratories, Boston, MA 02115, USA;
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Bin Zhang
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Holden T. Maecker
- Human Immune Monitoring Center, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - I. Caroline Le Poole
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| |
Collapse
|
17
|
Abraham A, Samaniego-Castruita D, Paladino J, Han I, Ramesh P, Tran MT, Southern RM, Shukla A, Shukla V. Arid1a-dependent canonical BAF complex suppresses inflammatory programs to drive efficient Germinal Center B cell responses. RESEARCH SQUARE 2024:rs.3.rs-3871185. [PMID: 38313292 PMCID: PMC10836118 DOI: 10.21203/rs.3.rs-3871185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Differentiating B cells in germinal centers (GC) require tightly coordinated transcriptional and epigenetic transitions to generate efficient humoral immune responses. The mammalian Brg1/Brm-associated factor (BAF) complexes are major regulators of nucleosomal remodeling, crucial for cellular differentiation and development, and are commonly mutated in several cancers, including GC-derived B cell lymphomas. However, the specific roles of distinct BAF complexes in GC B cell biology and generation of functional humoral immune responses are not well understood. Here, we show that the A-T Rich Interaction Domain 1a (Arid1a) containing canonical BAF (cBAF) complex is required for maintenance of GCs and therefore high affinity antibody responses. While Arid1a-deficient B cells undergo activation to initiate GC responses, they fail to sustain the GC program resulting in premature GC collapse. We discovered that Arid1a-dependent cBAF activity establishes permissive chromatin landscapes during B cell activation and is concomitantly required to suppress inflammatory gene programs to maintain transcriptional fidelity in early GC B cells. Interestingly, the inflammatory signatures instigated by Arid1a deficiency in early GC B cells recruited neutrophils and inflammatory monocytes and eventually disrupted GC homeostasis. Dampening of inflammatory cues with anti-inflammatory glucocorticoid receptor signaling rescued GC B cell differentiation of Arid1a-deficient B cells, thus highlighting a critical role of inflammation in impeding GC responses. In sum, our work identifies essential functions of Arid1a-dependent BAF activity in promoting efficient GC responses. These findings further support an emerging paradigm in which unrestrained inflammation limits GC-derived humoral responses, as reported in the context of severe bacterial and viral infections.
Collapse
Affiliation(s)
- Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA, 60611
| | | | - Jillian Paladino
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Prathyaya Ramesh
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Mi Thao Tran
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Rebecca M Southern
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Ashima Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA, 60611
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA, 60611
| |
Collapse
|