1
|
Foster WS, Marcial-Juárez E, Linterman MA. The cellular factors that impair the germinal center in advanced age. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae039. [PMID: 40073096 DOI: 10.1093/jimmun/vkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations. This review will describe the current knowledge of how aging affects the cells and microenvironment of the GC. A greater understanding of how the GC changes with age, and how to circumvent these changes, will be critical for tailoring vaccines for older people. This area of research is critical given the twenty-first century will witness a doubling of the aging population and an increased frequency of pandemics.
Collapse
Affiliation(s)
- William S Foster
- Immunology Program, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
2
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
3
|
Crowley DE, Falvo CA, Benson E, Hedges J, Jutila M, Ezzatpour S, Aguilar HC, Ruiz-Aravena M, Ma W, Schountz T, Rynda-Apple A, Plowright RK. Bats generate lower affinity but higher diversity antibody responses than those of mice, but pathogen-binding capacity increases if protein is restricted in their diet. PLoS Biol 2024; 22:e3002800. [PMID: 39316608 PMCID: PMC11421821 DOI: 10.1371/journal.pbio.3002800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Bats are reservoirs of many zoonotic viruses that are fatal in humans but do not cause disease in bats. Moreover, bats generate low neutralizing antibody titers in response to experimental viral infection, although more robust antibody responses have been observed in wild-caught bats during times of food stress. Here, we compared the antibody titers and B cell receptor (BCR) diversity of Jamaican fruit bats (Artibeus jamaicensis; JFBs) and BALB/c mice generated in response to T-dependent and T-independent antigens. We then manipulated the diet of JFBs and challenged them with H18N11 influenza A-like virus or a replication incompetent Nipah virus VSV (Nipah-riVSV). Under standard housing conditions, JFBs generated a lower avidity antibody response and possessed more BCR mRNA diversity compared to BALB/c mice. However, withholding protein from JFBs improved serum neutralization in response to Nipah-riVSV and improved serum antibody titers specific to H18 but reduced BCR mRNA diversity.
Collapse
Affiliation(s)
- Daniel E. Crowley
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Caylee A. Falvo
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Evelyn Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Jodi Hedges
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology Colorado State University, Fort Collins, Colorado, United States of America
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
4
|
Mun SK, Jang CJ, Jo S, Park SH, Sim HB, Ramos SC, Kim H, Choi YJ, Park DH, Park KW, Jeong BG, Kim DH, Kang KY, Kim JJ. Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice. Anim Cells Syst (Seoul) 2024; 28:340-352. [PMID: 39011371 PMCID: PMC11249154 DOI: 10.1080/19768354.2024.2374547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.
Collapse
Affiliation(s)
- Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Chang Joo Jang
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Semi Jo
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Si-Hyoun Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Sonny C Ramos
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Kyung-Wuk Park
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Beom-Gyun Jeong
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
- CCRIPO Inc., Daejeon, Republic of Korea
| | - Kyung-Yun Kang
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
5
|
Snijckers RPM, Foks AC. Adaptive immunity and atherosclerosis: aging at its crossroads. Front Immunol 2024; 15:1350471. [PMID: 38686373 PMCID: PMC11056569 DOI: 10.3389/fimmu.2024.1350471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptive immunity plays a profound role in atherosclerosis pathogenesis by regulating antigen-specific responses, inflammatory signaling and antibody production. However, as we age, our immune system undergoes a gradual functional decline, a phenomenon termed "immunosenescence". This decline is characterized by a reduction in proliferative naïve B- and T cells, decreased B- and T cell receptor repertoire and a pro-inflammatory senescence associated secretory profile. Furthermore, aging affects germinal center responses and deteriorates secondary lymphoid organ function and structure, leading to impaired T-B cell dynamics and increased autoantibody production. In this review, we will dissect the impact of aging on adaptive immunity and the role played by age-associated B- and T cells in atherosclerosis pathogenesis, emphasizing the need for interventions that target age-related immune dysfunction to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
6
|
Morabito G, Ryabova A, Valenzano DR. Immune aging in annual killifish. Immun Ageing 2024; 21:18. [PMID: 38459521 PMCID: PMC10921792 DOI: 10.1186/s12979-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Turquoise killifish (Nothobranchius furzeri) evolved a naturally short lifespan of about six months and exhibit aging hallmarks that affect multiple organs. These hallmarks include protein aggregation, telomere shortening, cellular senescence, and systemic inflammation. Turquoise killifish possess the full spectrum of vertebrate-specific innate and adaptive immune system. However, during their recent evolutionary history, they lost subsets of mucosal-specific antibody isoforms that are present in other teleosts. As they age, the immune system of turquoise killifish undergoes dramatic cellular and systemic changes. These changes involve increased inflammation, reduced antibody diversity, an increased prevalence of pathogenic microbes in the intestine, and extensive DNA damage in immune progenitor cell clusters. Collectively, the wide array of age-related changes occurring in turquoise killifish suggest that, despite an evolutionary separation spanning hundreds of millions of years, teleosts and mammals share common features of immune system aging. Hence, the spontaneous aging observed in the killifish immune system offers an excellent opportunity for discovering fundamental and conserved aspects associated with immune system aging across vertebrates. Additionally, the species' naturally short lifespan of only a few months, along with its experimental accessibility, offers a robust platform for testing interventions to improve age-related dysfunctions in the whole organism and potentially inform the development of immune-based therapies for human aging-related diseases.
Collapse
Affiliation(s)
| | - Alina Ryabova
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
- Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|