1
|
França RKADO, Barros PHA, Silva JM, Fontinele HGC, Maranhão AQ, Brigido MDM. Naive and Memory B Cell BCR Repertoires in Individuals Immunized with an Inactivated SARS-CoV-2 Vaccine. Vaccines (Basel) 2025; 13:393. [PMID: 40333337 PMCID: PMC12031002 DOI: 10.3390/vaccines13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has spurred a global race for a preventive vaccine, with a few becoming available just one year after describing this novel coronavirus disease. Among these are inactivated virus vaccines like CoronaVac (Sinovac Biotech), which are used in several countries to reduce the pandemic's effects. However, its use was associated with low protection, particularly against novel virus variants that quickly appeared in the following months. Vaccines play a crucial role in activating the immune system to combat infections, with Memory B-cells being a key part of this mechanism, eliciting protective neutralizing antibodies. This work focused on studying B-cell memory repertoire after two consecutive doses of CoronaVac. METHODOLOGY Memory B-cells were isolated from five CoronaVac vaccinated and five pre-pandemic individuals and subsequently stimulated in vitro before high-throughput Illumina sequencing of the Heavy Chain Variable repertoire. RESULTS We observed a shift in the VH repertoire with increased HCDR3 length and enrichment of IGVH 3-23, 3-30, 3-7, 3-72, and 3-74 for IgA BCRs and IGHV 4-39 and 4-59 for IgG BCRs. A high expansion of IgA-specific clonal populations was observed in vaccinated individuals relative to pre-pandemic controls, accompanied by shared IgA variable heavy chain (VH) sequences among memory B cells across different vaccine recipients of IgA clones was also observed in vaccinated individuals compared to pre-pandemic controls, with several IgA VH sharing between memory B cells from different vaccines. Moreover, a high convergence was observed among vaccinees and SARS-CoV-2 neutralizing antibody sequences found in the CoV-abDab database. CONCLUSION These data show the ability of CoronaVac to elicit antibodies with characteristics similar to those previously identified as neutralizing antibodies, supporting its protective efficacy. Furthermore, this analysis of the immunological repertoire in the context of viral infections reinforces the importance of immunization in generating convergent antibodies for the antiviral response.
Collapse
Affiliation(s)
- Renato Kaylan Alves de Oliveira França
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Pedro Henrique Aragão Barros
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Biology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Jacyelle Medeiros Silva
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
| | - Hitallo Guilherme Costa Fontinele
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Andrea Queiroz Maranhão
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- Molecular Biology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- III-Immunology Investigation Institute, National Institute of Science and Technology (iii-INCT), Brasilia 70067-900, DF, Brazil
| | - Marcelo de Macedo Brigido
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.K.A.d.O.F.); (P.H.A.B.); (H.G.C.F.); (A.Q.M.)
- Molecular Pathology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- Molecular Biology Post-Graduation Program, University of Brasília, Brasilia 70910-900, DF, Brazil
- III-Immunology Investigation Institute, National Institute of Science and Technology (iii-INCT), Brasilia 70067-900, DF, Brazil
| |
Collapse
|
2
|
Spangler A, Shimberg GD, Mantus GE, Malek R, Cominsky LY, Tsybovsky Y, Li N, Gillespie RA, Ravichandran M, Creanga A, Raab JE, Gajjala SR, Mendoza F, Houser KV, Dropulic L, McDermott AB, Kanekiyo M, Andrews SF. Early influenza virus exposure shapes the B cell response to influenza vaccination in individuals 50 years later. Immunity 2025; 58:728-744.e9. [PMID: 40023164 PMCID: PMC11979964 DOI: 10.1016/j.immuni.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Pre-existing immunity impacts vaccine responses to influenza, but directly connecting influenza infections early in life with immune responses decades later is difficult. However, H2N2 stopped circulating in the human population in 1968, creating the opportunity to directly evaluate the impact of early H2N2 exposure on vaccine responses 50 years later. Here, we vaccinated individuals born before (H2 exposed) or after (H2 naive) 1968 with an H2 hemagglutinin (HA) DNA plasmid and/or a ferritin nanoparticle vaccine. H2-exposed individuals generated a rapid B cell recall response that was more potent, targeted more conserved epitopes, and differed phenotypically from the de novo response in H2-naive individuals. Furthermore, vaccinating with a DNA versus a protein nanoparticle vaccine altered the response in H2-naive but not H2-exposed individuals. This study establishes and describes the lifelong impact of influenza HA-specific memory B cells formed early in life on vaccine responses decades later.
Collapse
Affiliation(s)
- Abby Spangler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey D Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace E Mantus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rory Malek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ning Li
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Ravichandran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suprabhath R Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lesia Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Fujitani M, Lu X, Shinnakasu R, Inoue T, Kidani Y, Seki NM, Ishida S, Mitsuki S, Ishihara T, Aoki M, Suzuki A, Takahashi K, Takayama M, Ota T, Iwata S, Shibata RY, Sonoyama T, Ariyasu M, Kitano A, Terooatea T, Kelly Villa J, Yamashita K, Yamasaki S, Kurosaki T, Omoto S. Longitudinal analysis of immune responses to SARS-CoV-2 recombinant vaccine S-268019-b in phase 1/2 prime-boost study. Front Immunol 2025; 16:1550279. [PMID: 40109335 PMCID: PMC11919840 DOI: 10.3389/fimmu.2025.1550279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Background The durability of vaccine-induced immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing infection, especially severe disease. Methods This follow-up report from a phase 1/2 study of S-268019-b (a recombinant spike protein vaccine) after homologous booster vaccination confirms its long-term safety, tolerability, and immunogenicity. Results Booster vaccination with S-268019-b resulted in an enhancement of serum neutralizing antibody (NAb) titers and a broad range of viral neutralization. Single-cell immune profiling revealed persistent and mature antigen-specific memory B cells and T follicular helper cells, with increased B-cell receptor diversity. The expansion of B- and T-cell repertoires and presence of cross-reactive NAbs targeting conserved epitopes within the receptor-binding domain following a booster accounted for the broad-spectrum neutralizing activity. Conclusion These findings highlight the potential of S-268019-b to provide broad and robust protection against a range of SARS-CoV-2 variants, addressing a critical challenge in the ongoing fight against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Masaya Fujitani
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Xiuyuan Lu
- Laboratory of Molecular Immunology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yujiro Kidani
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Naomi M. Seki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoru Ishida
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Shungo Mitsuki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | | | - Miwa Aoki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Akio Suzuki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Koji Takahashi
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Masahiro Takayama
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Ota
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoshi Iwata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Risa Yokokawa Shibata
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takuhiro Sonoyama
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Mari Ariyasu
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | | | | | - Sho Yamasaki
- Laboratory of Molecular Immunology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Shinya Omoto
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
4
|
Kumar D, Gaikwad K, Gunnale R, Vishwakarma S, Shukla S, Srivastava S, Gopal J, Vaidya B, Saraf A, Gurjar R, Kaviraj S, Singh A, Raghuwanshi A, Agarwal P, Savergave L, Singh S. Cellular immune breadth of an Omicron-specific, self-amplifying monovalent mRNA vaccine booster for COVID-19. NPJ Vaccines 2025; 10:42. [PMID: 40025095 PMCID: PMC11873296 DOI: 10.1038/s41541-025-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/16/2025] [Indexed: 03/04/2025] Open
Abstract
Selecting a booster vaccine strategy that generates cellular immune breadth is crucial for effectively recalling cellular reservoirs upon infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. This post hoc analysis from a multicentre, randomized phase 3 study (CTRI/2022/10/046475) compared the cellular immune breadth induced by self-replicating mRNA (samRNA) vaccine GEMCOVAC-OM, encoding Omicron B.1.1.529 Spike protein, with the adenovector vaccine ChAdOx1 nCoV-19, encoding Wuhan variant Spike protein, when administered as a booster. GEMCOVAC-OM elicited significant expansion of memory B-cells (MBCs) specific to Omicron B.1.1.529, compared to ChAdOx1 nCoV-19. GEMCOVAC-OM also induced more B-cells reactive to Omicron XBB.1.5 and BA.2.86 Spike proteins. Additionally, GEMCOVAC-OM triggered higher frequencies of Omicron-Spike-specific T-cells, including stem cell, central, and effector memory subsets. In summary, while ChAdOx1 nCoV-19 showed some cross-reactivity, GEMCOVAC-OM induced a more targeted immune response. GEMCOVAC-OM offers a broader, longer-lasting immunity, making it a promising candidate for future vaccine development and global distribution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Amit Saraf
- Gennova Biopharmaceutical Limited, Pune, India
| | | | | | - Ajay Singh
- Gennova Biopharmaceutical Limited, Pune, India
| | | | | | | | | |
Collapse
|
5
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Schnormeier AK, Budeus B. Single Cell VDJ Sequencing of Normal and Malignant B and T Cells. Methods Mol Biol 2025; 2865:295-346. [PMID: 39424731 DOI: 10.1007/978-1-0716-4188-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Recent developments in single cell sequencing technologies enable researchers to examine heterogeneity of cell types and subclusters even deeper. First assays were only available for transcriptome analysis of up to 10,000 cells, but nowadays up to 60,000 cells or even more can be analyzed. Whereas initially only analysis of mRNA expression was possible, currently single cell methods multiplied, with extension of assays for examination of surface molecule expression, DNA accessibility (ATAC-seq), antigen specificity, and B or T cell receptor repertoires. Also, spatial transcriptomics or CRISPR screenings, augmenting classical CRISPR/Cas9 screens by combining them with transcriptomic data at single cell level, can be evaluated. The composition of B and T cell clones-of malignant cells in lymphomas and leukemia, as well as of infiltrating B or T cell clones in other types of cancer-is especially important in tumor research, as these clones may give valuable hints for tumor development and control. This chapter presents detailed methods for implementation and analysis of single cell B and/or T cell receptor repertoire sequencing on the Chromium system from 10× Genomics and the Rhapsody™ system from BD Bioscience.
Collapse
Affiliation(s)
- Ann-Kathrin Schnormeier
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
7
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Ramirez SI, Faraji F, Hills LB, Lopez PG, Goodwin B, Stacey HD, Sutton HJ, Hastie KM, Saphire EO, Kim HJ, Mashoof S, Yan CH, DeConde AS, Levi G, Crotty S. Immunological memory diversity in the human upper airway. Nature 2024; 632:630-636. [PMID: 39085605 PMCID: PMC11895801 DOI: 10.1038/s41586-024-07748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The upper airway is an important site of infection, but immune memory in the human upper airway is poorly understood, with implications for COVID-19 and many other human diseases1-4. Here we demonstrate that nasal and nasopharyngeal swabs can be used to obtain insights into these challenging problems, and define distinct immune cell populations, including antigen-specific memory B cells and T cells, in two adjacent anatomical sites in the upper airway. Upper airway immune cell populations seemed stable over time in healthy adults undergoing monthly swabs for more than 1 year, and prominent tissue resident memory T (TRM) cell and B (BRM) cell populations were defined. Unexpectedly, germinal centre cells were identified consistently in many nasopharyngeal swabs. In subjects with SARS-CoV-2 breakthrough infections, local virus-specific BRM cells, plasma cells and germinal centre B cells were identified, with evidence of local priming and an enrichment of IgA+ memory B cells in upper airway compartments compared with blood. Local plasma cell populations were identified with transcriptional profiles of longevity. Local virus-specific memory CD4+ TRM cells and CD8+ TRM cells were identified, with diverse additional virus-specific T cells. Age-dependent upper airway immunological shifts were observed. These findings provide new understanding of immune memory at a principal mucosal barrier tissue in humans.
Collapse
Affiliation(s)
- Sydney I Ramirez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - L Benjamin Hills
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Paul G Lopez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Hannah D Stacey
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Henry J Sutton
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Hyun Jik Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sara Mashoof
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Carol H Yan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Adam S DeConde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, CA, USA
| | - Gina Levi
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
10
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
11
|
Chen L, Wan Y, Yang T, Zhang Q, Zeng Y, Zheng S, Ling Z, Xiao Y, Wan Q, Liu R, Yang C, Huang G, Zeng Q. Bibliometric and visual analysis of single-cell sequencing from 2010 to 2022. Front Genet 2024; 14:1285599. [PMID: 38274109 PMCID: PMC10808606 DOI: 10.3389/fgene.2023.1285599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Single-cell sequencing (SCS) is a technique used to analyze the genome, transcriptome, epigenome, and other genetic data at the level of a single cell. The procedure is commonly utilized in multiple fields, including neurobiology, immunology, and microbiology, and has emerged as a key focus of life science research. However, a thorough and impartial analysis of the existing state and trends of SCS-related research is lacking. The current study aimed to map the development trends of studies on SCS during the years 2010-2022 through bibliometric software. Methods: Pertinent papers on SCS from 2010 to 2022 were obtained using the Web of Science Core Collection. Research categories, nations/institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords were analyzed using VOSviewer, the R package "bibliometric", and CiteSpace. Results: The bibliometric analysis included 9,929 papers published between 2010 and 2022, and showed a consistent increase in the quantity of papers each year. The United States was the source of the highest quantity of articles and citations in this field. The majority of articles were published in the periodical Nature Communications. Butler A was the most frequently quoted author on this topic, and his article "Integrating single-cell transcriptome data across diverse conditions, technologies, and species" has received numerous citations to date. The literature and keyword analysis showed that studies involving single-cell RNA sequencing (scRNA-seq) were prominent in this discipline during the study period. Conclusion: This study utilized bibliometric techniques to visualize research in SCS-related domains, which facilitated the identification of emerging patterns and future directions in the field. Current hot topics in SCS research include COVID-19, tumor microenvironment, scRNA-seq, and neuroscience. Our results are significant for scholars seeking to identify key issues and generate new research ideas.
Collapse
Affiliation(s)
- Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of BasicMedical Sciences, Southern Medical University, Guangzhou, China
| | - Tingting Yang
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qi Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqi Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Zhishan Ling
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yupeng Xiao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qingyi Wan
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ruili Liu
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Hoehn KB, Kleinstein SH. B cell phylogenetics in the single cell era. Trends Immunol 2024; 45:62-74. [PMID: 38151443 PMCID: PMC10872299 DOI: 10.1016/j.it.2023.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
The widespread availability of single-cell RNA sequencing (scRNA-seq) has led to the development of new methods for understanding immune responses. Single-cell transcriptome data can now be paired with B cell receptor (BCR) sequences. However, RNA from BCRs cannot be analyzed like most other genes because BCRs are genetically diverse within individuals. In humans, BCRs are shaped through recombination followed by mutation and selection for antigen binding. As these processes co-occur with cell division, B cells can be studied using phylogenetic trees representing the mutations within a clone. B cell trees can link experimental timepoints, tissues, or cellular subtypes. Here, we review the current state and potential of how B cell phylogenetics can be combined with single-cell data to understand immune responses.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Kim IS. DNA Barcoding Technology for Lineage Recording and Tracing to Resolve Cell Fate Determination. Cells 2023; 13:27. [PMID: 38201231 PMCID: PMC10778210 DOI: 10.3390/cells13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In various biological contexts, cells receive signals and stimuli that prompt them to change their current state, leading to transitions into a future state. This change underlies the processes of development, tissue maintenance, immune response, and the pathogenesis of various diseases. Following the path of cells from their initial identity to their current state reveals how cells adapt to their surroundings and undergo transformations to attain adjusted cellular states. DNA-based molecular barcoding technology enables the documentation of a phylogenetic tree and the deterministic events of cell lineages, providing the mechanisms and timing of cell lineage commitment that can either promote homeostasis or lead to cellular dysregulation. This review comprehensively presents recently emerging molecular recording technologies that utilize CRISPR/Cas systems, base editing, recombination, and innate variable sequences in the genome. Detailing their underlying principles, applications, and constraints paves the way for the lineage tracing of every cell within complex biological systems, encompassing the hidden steps and intermediate states of organism development and disease progression.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|