1
|
Ma Y, Sun Y, Ailikenjiang K, Lv C, Li X, Nie Y, Wang C, Xiong Y, Chen Y. Donafenib Induces Mitochondrial Dysfunction in Liver Cancer Cells via DRP1. Cell Biochem Biophys 2025; 83:2379-2388. [PMID: 39937366 DOI: 10.1007/s12013-024-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) represents a significant global health challenge, characterized by a high incidence rate. Mitochondria have emerged as an important therapeutic target for HCC. Donafenib, a multi-receptor tyrosine kinase inhibitor, has been approved for the treatment of advanced HCC. However, the underlying mechanisms remain to be elucidated. In this study, we aim to investigate the effects of Donafenib on mitochondrial function in HCC cells. Firstly, we show that Donafenib induces mitochondrial oxidative stress in SNU-449 liver cancer cells by increasing mitochondrial ROS while reducing glutathione peroxidase (GPx) activity and the expression of Mn-SOD. We also demonstrate that Donafenib decreases mitochondrial membrane potential (MMP) and induces the opening of the mitochondrial permeability transition pore (mPTP). Furthermore, Donafenib reduces mitochondrial respiratory rate, COX IV activity, and ATP production. Notably, Donafenib induces mitochondrial fragmentation and reduces mitochondrial length by increasing the expression of DRP1, without affecting Mfn1 or Mfn2. Silencing of DRP1 protects against mitochondrial dysfunction induced by Donafenib, indicating that DRP1 plays a key role in mediating Donafenib's effects on mitochondrial function in HCC cells.
Collapse
Affiliation(s)
- Yuhua Ma
- Department of Pathology, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Yougang Sun
- Department of General Surgery, Dushanzi People's Hospital, Karamay, Xinjiang, China
| | - Kayishaer Ailikenjiang
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Chuanjiang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Xiang Li
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - YunQiang Nie
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Chang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Yan Xiong
- Department of General Medicine, Karamay Central Hospital, Karamay, Xinjiang, China.
| | - Yong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Karamay Central Hospital, Karamay, Xinjiang, China.
| |
Collapse
|
2
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang X, Xiong X. Mitochondrial Reactive Oxygen Species (mROS) Generation and Cancer: Emerging Nanoparticle Therapeutic Approaches. Int J Nanomedicine 2025; 20:6085-6119. [PMID: 40385494 PMCID: PMC12085131 DOI: 10.2147/ijn.s510972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Mitochondrial reactive oxygen species (mROS) are generated as byproducts of mitochondrial oxidative phosphorylation. Changes in mROS levels are involved in tumorigenesis through their effects on cancer genome instability, sustained cancer cell survival, metabolic reprogramming, and tumor metastasis. Recent advances in nanotechnology offer a promising approach for precise regulation of mROS by either enhancing or depleting mROS generation. This review examines the association between dysregulated mROS levels and key cancer hallmarks. We also discuss the potential applications of mROS-targeted nanoparticles that artificially manipulate ROS levels in the mitochondria to achieve precise delivery of antitumor drugs.
Collapse
Affiliation(s)
- Xinyao Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Queen Mary School of Nanchang University, Nanchang, People’s Republic of China
| | - Xiangyang Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
4
|
Li B, Li B, Qiao X, Meng W, Xie Y, Gong J, Fan Y, Zhao Z, Li L. Targeting mitochondrial transfer as a promising therapeutic strategy. Trends Mol Med 2025:S1471-4914(25)00089-9. [PMID: 40335384 DOI: 10.1016/j.molmed.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
Despite the primary impression of mitochondria as energy factories, these organelles are increasingly recognized for their multifaceted roles beyond energy production. Intriguingly, mitochondria can transfer between cells, influencing physiological and pathological processes through intercellular trafficking termed 'mitochondrial transfer.' This phenomenon is important in maintaining metabolic homeostasis, enhancing tissue regeneration, exacerbating cancer progression, and facilitating immune modulation, depending on the cell type and microenvironment. Recently, mitochondrial transfer has emerged as a promising therapeutic target for tissue repair and antitumor therapy. Here, we summarize and critically review recent advances in this field. We aim to provide an updated overview of the mechanisms and potential therapeutic avenues associated with mitochondrial transfer in various diseases from the perspective of different donor cells.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuhang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajing Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Xu J, Ren F, Wang J, Liu J, Cui X, Hao J, Yang W, Zhang Y, Cao D, Li L, Wang H. Tubeimoside I induces mitophagy by activating the PINK1/Parkin/Mfn2 signaling pathway in acute myeloid leukemia cells. Transl Oncol 2025; 55:102355. [PMID: 40112502 PMCID: PMC11979407 DOI: 10.1016/j.tranon.2025.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent kind of acute leukemia in adults. Despite the availability of new targeted therapies, AML remains connected with a poor prognosis and decreased rate of survival. Tubeimoside I (TBMS1), a critical compound extracted from Bolbostemma paniculatum, has demonstrated potential anticancer effects in lung and colorectal cancers. Nevertheless, the TBMS1 anticancer pathway against AML is still elusive. This study aimed to explore the potential role of TBMS1 in anti-AML and its molecular mechanism. In vitro, TBMS1 treatment suppressed AML cells proliferation, induced apoptosis, and mitochondrial damage, and elevated ROS levels. Network pharmacological analysis suggested, and subsequent studies confirmed, that TBMS1 induced mitophagy in AML cells by modulating the PINK1/Parkin/Mfnh2 signaling pathway, an effect that was effectively reversed following PINK1 knockdown. In vivo, TBMS1 treatment suppressed the proliferation of AML cells after 21 days, improved the survival rates of nude mice, and showed no evident organ toxicity. These evidences suggest that TBMS1 may have significant therapeutic potential in treating AML.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jinjuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohua Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Wanfang Yang
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Dongmin Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan 528437, China.
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China.
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
7
|
Yates J, Kraft A, Boeva V. Filtering cells with high mitochondrial content depletes viable metabolically altered malignant cell populations in cancer single-cell studies. Genome Biol 2025; 26:91. [PMID: 40205439 PMCID: PMC11983838 DOI: 10.1186/s13059-025-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Single-cell transcriptomics has transformed our understanding of cellular diversity, yet noise from technical artifacts and low-quality cells can obscure key biological signals. A common practice is filtering out cells with a high percentage of mitochondrial RNA counts (pctMT), typically indicative of cell death. However, commonly used filtering thresholds, primarily derived from studies on healthy tissues, may be overly stringent for malignant cells, which often naturally exhibit higher baseline mitochondrial gene expression. RESULTS We examine nine public single-cell RNA-seq datasets from various cancers, including 441,445 cells from 134 patients, and public spatial transcriptomics data, assessing the viability of malignant cells with high pctMT. Our analysis reveals that malignant cells exhibit significantly higher pctMT than nonmalignant cells, without a notable increase in dissociation-induced stress scores. Malignant cells with high pctMT show metabolic dysregulation, including increased xenobiotic metabolism, relevant to therapeutic response. Analysis of pctMT in cancer cell lines further reveals links to drug resistance. We also observe associations between pctMT and malignant cell transcriptional heterogeneity, as well as patient clinical features. CONCLUSIONS This study provides insights into the functional characteristics of malignant cells with elevated pctMT, challenging current quality control practices in tumor single-cell RNA-seq analyses and offering potential improvements in data interpretation for future cancer studies.
Collapse
Affiliation(s)
- Josephine Yates
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- ETH AI Center, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Agnieszka Kraft
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland.
- ETH AI Center, Zurich, Switzerland.
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland.
- Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris, 75014, France.
| |
Collapse
|
8
|
Lyu X, Yu Y, Jiang Y, Li Z, Qiao Q. The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance. J Pharm Anal 2025; 15:101141. [PMID: 40115812 PMCID: PMC11925581 DOI: 10.1016/j.jpha.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 03/23/2025] Open
Abstract
Mitochondria play a crucial role as organelles, managing several physiological processes such as redox balance, cell metabolism, and energy synthesis. Initially, the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria. Recent scholarly works, however, suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer. This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms. Specifically, we review the role of mitochondria transfer in regulating cellular metabolism restoration, excess reactive oxygen species (ROS) generation, proliferation, invasion, metastasis, mitophagy activation, mitochondrial DNA (mtDNA) inheritance, immune system modulation and therapeutic resistance in cancer. Additionally, we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yangyang Yu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuanjun Jiang
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyuan Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Qiao Qiao
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
9
|
Xu X, Wang J, Chen T, Wang S, Wang F, He J, Meng XY, Shen Y. Deciphering novel mitochondrial signatures: multi-omics analysis uncovers cross-disease markers and oligodendrocyte pathways in Alzheimer's disease and glioblastoma. Front Aging Neurosci 2025; 17:1536142. [PMID: 40018519 PMCID: PMC11865232 DOI: 10.3389/fnagi.2025.1536142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Alzheimer's disease (AD) and glioblastoma (GBM) are severe neurological disorders that pose significant global healthcare challenges. Despite extensive research, the molecular mechanisms, particularly those involving mitochondrial dysfunction, remain poorly understood. A major limitation in current studies is the lack of cell-specific markers that effectively represent mitochondrial dynamics in AD and GBM. Methods In this study, we analyzed single-cell transcriptomic data using 10 machine learning algorithms to identify mitochondria-associated cell-specific markers. We validated these markers through the integration of gene expression and methylation data across diverse cell types. Our dataset comprised single-nucleus RNA sequencing (snRNA-seq) from AD patients, single-cell RNA sequencing (scRNA-seq) from GBM patients, and additional DNA methylation and transcriptomic data from the ROSMAP, ADNI, TCGA, and CGGA cohorts. Results Our analysis identified four significant cross-disease mitochondrial markers: EFHD1, SASH1, FAM110B, and SLC25A18. These markers showed both shared and unique expression profiles in AD and GBM, suggesting a common mitochondrial mechanism contributing to both diseases. Additionally, oligodendrocytes and their interactions with astrocytes were implicated in disease progression, particularly through the APP signaling pathway. Key hub genes, such as HS6ST3 and TUBB2B, were identified across different cellular subpopulations, highlighting a cell-specific co-expression network linked to mitochondrial function.
Collapse
Affiliation(s)
- Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqi Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Shuaibin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Fei Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Junwen He
- College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Xiang-Yu Meng
- School of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, Hubei, China
| | - Yin Shen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, González-Covarrubias V, Pérez-Plasencia C, Rodríguez-Dorantes M. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13:27. [PMID: 39934930 DOI: 10.1186/s40364-025-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Platelets, anucleate blood cells essential for hemostasis, are increasingly recognized for their role in cancer, challenging the traditional notion of their sole involvement in blood coagulation. It has been demonstrated that platelets establish bidirectional communication with tumor cells, contributing to tumor progression and metastasis through diverse molecular mechanisms such as modulation of proliferation, angiogenesis, epithelial-mesenchymal transition, resistance to anoikis, immune evasion, extravasation, chemoresistance, among other processes. Reciprocally, cancer significantly alters platelets in their count and composition, including mRNA, non-coding RNA, proteins, and lipids, product of both internal synthesis and the uptake of tumor-derived molecules. This phenomenon gives rise to tumor-educated platelets (TEPs), which are emerging as promising tools for the development of liquid biopsies. In this review, we provide a detailed overview of the dynamic roles of platelets in tumor development and progression as well as their use in diagnosis and prognosis. We also provide our view on current limitations, challenges and future research areas, including the need to design more efficient strategies for their isolation and analysis, as well as the validation of their sensitivity and specificity through large-scale and rigorous clinical trials. This research will not only enable the evaluation of their clinical viability but could also open new opportunities to enhance diagnostic accuracy and develop personalized treatments in oncology.
Collapse
Affiliation(s)
- Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Miguel Valenzuela-Mayen
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | | | - Gretel Mendoza-Almanza
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Sergio A Cortés-Ramírez
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alberto Losada-García
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
- Laboratorio de Investigación en Patógenos Respiratorios y Producción de Biológicos, Hospital Infantil de México Federico Gómez, Mexico City, 14610, Mexico
| | - Imelda González-Ramírez
- Departamento de Atención a La Salud, Universidad Autónoma Metropolitana Xochimilco, Mexico City, 14610, Mexico
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Karla Vazquez-Santillan
- Laboratorio de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Vanessa González-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla, 54090, Mexico
| | | |
Collapse
|
11
|
Novak J, Nahacka Z, Oliveira GL, Brisudova P, Dubisova M, Dvorakova S, Miklovicova S, Dalecka M, Puttrich V, Grycova L, Magalhaes-Novais S, Correia CM, Levoux J, Stepanek L, Prochazka J, Svec D, Reguera DP, Lopez-Domenech G, Zobalova R, Sedlacek R, Terp MG, Gammage PA, Lansky Z, Kittler J, Oliveira PJ, Ditzel HJ, Berridge MV, Rodriguez AM, Boukalova S, Rohlena J, Neuzil J. The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models. Cell Rep 2025; 44:115154. [PMID: 39792553 DOI: 10.1016/j.celrep.2024.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Recent research has shown that mtDNA-deficient cancer cells (ρ0 cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1KO) mice markedly delayed tumor formation after grafting ρ0 cancer cells. Miro1KO mice with fluorescently labeled mitochondria revealed that this delay was due to hindered mitochondrial transfer from the tumor stromal cells to grafted B16 ρ0 cells, which impeded recovery of mitochondrial respiration and tumor growth. Miro1KO led to the perinuclear accumulation of mitochondria and impaired mobility of the mitochondrial network. In vitro experiments revealed decreased association of mitochondria with microtubules, compromising mitochondrial transfer via tunneling nanotubes (TNTs) in mesenchymal stromal cells. Here we show the role of Miro1 in horizontal mitochondrial transfer in mouse melanoma models in vivo and its involvement with TNTs.
Collapse
Affiliation(s)
- Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic.
| | - Gabriela L Oliveira
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Petra Brisudova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Sona Miklovicova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marketa Dalecka
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Verena Puttrich
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Lenka Grycova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | | | - Jennifer Levoux
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France
| | - Ludek Stepanek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Radek Sedlacek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Mikkel G Terp
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Payam A Gammage
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Josef Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paulo J Oliveira
- NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| | | | - Anne-Marie Rodriguez
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France; University Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic.
| |
Collapse
|
12
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
13
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Li H, Sun W, Gong W, Han Y. Transfer and fates of damaged mitochondria: role in health and disease. FEBS J 2024; 291:5342-5364. [PMID: 38545811 DOI: 10.1111/febs.17119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 12/19/2024]
Abstract
Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Kowalczyk P, Krych S, Kramkowski K, Jęczmyk A, Hrapkowicz T. Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. Int J Mol Sci 2024; 25:12467. [PMID: 39596532 PMCID: PMC11594588 DOI: 10.3390/ijms252212467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The literature analysis conducted in this review discusses the latest achievements in the identification of cardiovascular damage induced by oxidative stress with secondary platelet mitochondrial dysfunction. Damage to the platelets of mitochondria as a result of their interactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) can lead to their numerous ischemic events associated with hypoxia or hyperoxia processes in the cell. Disturbances in redox reactions in the platelet mitochondrial membrane lead to the direct oxidation of cellular macromolecules, including nucleic acids (DNA base oxidation), membrane lipids (lipid peroxidation process) and cellular proteins (formation of reducing groups in repair proteins and amino acid peroxides). Oxidative changes in biomolecules inducing tissue damage leads to inflammation, initiating pathogenic processes associated with faster cell aging or their apoptosis. The consequence of damage to platelet mitochondria and their excessive activation is the induction of cardiovascular and neurodegenerative diseases (Parkinson's and Alzheimer's), as well as carbohydrate metabolism disorders (diabetes). The oxidation of mitochondrial DNA can lead to modifications in its bases, inducing the formation of exocyclic adducts of the ethano and propano type. As a consequence, it disrupts DNA repair processes and conduces to premature neoplastic transformation in critical genes such as the p53 suppressor gene, which leads to the development of various types of tumors. The topic of new innovative methods and techniques for the analysis of oxidative stress in platelet mitochondria based on methods such as a nicking assay, oxygen consumption assay, Total Thrombus formation Analysis System (T-Tas), and continuous-flow left ventricular assist devices (CF-LVADs) was also discussed. They were put together into one scientific and research platform. This will enable the facilitation of faster diagnostics and the identification of platelet mitochondrial damage by clinicians and scientists in order to implement adequate therapeutic procedures and minimize the risk of the induction of cardiovascular diseases, including ischemic events correlated with them. A quantitative analysis of the processes of thrombus formation in cardiovascular diseases will provide an opportunity to select specific anticoagulant and thrombolytic drugs under conditions of preserved hemostasis.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Sebastian Krych
- Student’s Scientific Association, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Agata Jęczmyk
- Students’ Scientific Association, III Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Tomasz Hrapkowicz
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
16
|
Krotofil M, Tota M, Siednienko J, Donizy P. Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers (Basel) 2024; 16:3539. [PMID: 39456632 PMCID: PMC11506636 DOI: 10.3390/cancers16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The capacity of cancer cells to migrate from a primary tumor, disseminate throughout the body, and eventually establish secondary tumors is a fundamental aspect of metastasis. A detailed understanding of the cellular and molecular mechanisms underpinning this multifaceted process would facilitate the rational development of therapies aimed at treating metastatic disease. Although various hypotheses and models have been proposed, no single concept fully explains the mechanism of metastasis or integrates all observations and experimental findings. Recent advancements in metastasis research have refined existing theories and introduced new ones. This review evaluates several novel/emerging theories, focusing on ghost mitochondria (GM), vasculogenic mimicry (VM), and polyploid giant cancer cells (PGCCs).
Collapse
Affiliation(s)
- Mateusz Krotofil
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Siednienko
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Marabitti V, Vulpis E, Nazio F, Campello S. Mitochondrial Transfer as a Strategy for Enhancing Cancer Cell Fitness:Current Insights and Future Directions. Pharmacol Res 2024; 208:107382. [PMID: 39218420 DOI: 10.1016/j.phrs.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
It is now recognized that tumors are not merely masses of transformed cells but are intricately interconnected with healthy cells in the tumor microenvironment (TME), forming complex and heterogeneous structures. Recent studies discovered that cancer cells can steal mitochondria from healthy cells to empower themselves, while reducing the functions of their target organ. Mitochondrial transfer, i.e. the intercellular movement of mitochondria, is recently emerging as a novel process in cancer biology, contributing to tumor growth, metastasis, and resistance to therapy by shaping the metabolic landscape of the tumor microenvironment. This review highlights the influence of transferred mitochondria on cancer bioenergetics, redox balance and apoptotic resistance, which collectively foster aggressive cancer phenotype. Furthermore, the therapeutic implications of mitochondrial transfer are discussed, emphasizing the potential of targeting these pathways to overcome drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Elisabetta Vulpis
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesca Nazio
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
18
|
Song MY, Zhao L, Huang WJ, Cui MM, Liu YX, Wang RT, Zhang X. Preoperative platelet distribution width predicts bone metastasis in patients with breast cancer. BMC Cancer 2024; 24:1066. [PMID: 39210343 PMCID: PMC11360324 DOI: 10.1186/s12885-024-12837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Bone metastases occur in 50-70% of patients with breast cancer (BC) and result in high mortality. Platelet distribution width (PDW), a commonly used parameter of activated platelets, has been associated with a poor prognosis in BC. We aim to investigate the prognostic role of PDW for bone metastasis in BC patients. METHODS 515 patients who received BC surgery in the Harbin Medical University Cancer Hospital from July 1, 2016, to December 31, 2017, were reviewed. Patients' characteristics and platelet indices upon enrollment in this study were collected. The Kaplan-Meier method was used to estimate the 5-year bone metastasis incidence. The univariate and multivariate Cox regression analyses were utilized to identify risk factors associated with bone metastasis. RESULTS The patients with bone metastases exhibited lower PDW levels than the patients without bone metastases. Moreover, decreased PDW was significantly correlated with histologic type, multifocal disease, and lymph node status. In addition, the patients with reduced PDW levels were more likely to develop bone metastasis. Multivariate analysis showed that PDW was an independent predictor for bone metastasis. CONCLUSION PDW is an independent predictor of bone metastasis in BC. Further research is warranted.
Collapse
Affiliation(s)
- Mei-Yue Song
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lin Zhao
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ming-Ming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yu-Xi Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
19
|
Frisbie L, Pressimone C, Dyer E, Baruwal R, Garcia G, St Croix C, Watkins S, Calderone M, Gorecki G, Javed Z, Atiya HI, Hempel N, Pearson A, Coffman LG. Carcinoma-associated mesenchymal stem cells promote ovarian cancer heterogeneity and metastasis through mitochondrial transfer. Cell Rep 2024; 43:114551. [PMID: 39067022 PMCID: PMC11420855 DOI: 10.1016/j.celrep.2024.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is characterized by early metastatic spread. This study demonstrates that carcinoma-associated mesenchymal stromal cells (CA-MSCs) enhance metastasis by increasing tumor cell heterogeneity through mitochondrial donation. CA-MSC mitochondrial donation preferentially occurs in ovarian cancer cells with low levels of mitochondria ("mito poor"). CA-MSC mitochondrial donation rescues the phenotype of mito poor cells, restoring their proliferative capacity, resistance to chemotherapy, and cellular respiration. Receipt of CA-MSC-derived mitochondria induces tumor cell transcriptional changes leading to the secretion of ANGPTL3, which enhances the proliferation of tumor cells without CA-MSC mitochondria, thus amplifying the impact of mitochondrial transfer. Donated CA-MSC mitochondrial DNA persisted in recipient tumor cells for at least 14 days. CA-MSC mitochondrial donation occurs in vivo, enhancing tumor cell heterogeneity and decreasing mouse survival. Collectively, this work identifies CA-MSC mitochondrial transfer as a critical mediator of ovarian cancer cell survival, heterogeneity, and metastasis and presents a unique therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emma Dyer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geyon Garcia
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Calderone
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zaineb Javed
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Huda I Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alexander Pearson
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Lan G Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Kast RE. IC Regimen: Delaying Resistance to Lorlatinib in ALK Driven Cancers by Adding Repurposed Itraconazole and Cilostazol. Cells 2024; 13:1175. [PMID: 39056757 PMCID: PMC11274432 DOI: 10.3390/cells13141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.
Collapse
|
21
|
Guan F, Wu X, Zhou J, Lin Y, He Y, Fan C, Zeng Z, Xiong W. Mitochondrial transfer in tunneling nanotubes-a new target for cancer therapy. J Exp Clin Cancer Res 2024; 43:147. [PMID: 38769583 PMCID: PMC11106947 DOI: 10.1186/s13046-024-03069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Fan Guan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaomin Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiatong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuzhe Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuqing He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, Hunan Province, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| |
Collapse
|
22
|
Liao P, Chen L, Zhou H, Mei J, Chen Z, Wang B, Feng JQ, Li G, Tong S, Zhou J, Zhu S, Qian Y, Zong Y, Zou W, Li H, Zhang W, Yao M, Ma Y, Ding P, Pang Y, Gao C, Mei J, Zhang S, Zhang C, Liu D, Zheng M, Gao J. Osteocyte mitochondria regulate angiogenesis of transcortical vessels. Nat Commun 2024; 15:2529. [PMID: 38514612 PMCID: PMC10957947 DOI: 10.1038/s41467-024-46095-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jerry Q Feng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Weiguo Zou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senyao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Cereceda L, Cardenas JC, Khoury M, Silva-Pavez E, Hidalgo Y. Impact of platelet-derived mitochondria transfer in the metabolic profiling and progression of metastatic MDA-MB-231 human triple-negative breast cancer cells. Front Cell Dev Biol 2024; 11:1324158. [PMID: 38283990 PMCID: PMC10811077 DOI: 10.3389/fcell.2023.1324158] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: An active role of platelets in the progression of triple-negative breast cancer (TNBC) cells has been described. Even the role of platelet-derived extracellular vesicles on the migration of MDA-MB-231 cells has been reported. Interestingly, upon activation, platelets release functional mitochondria into the extracellular environment. However, the impact of these platelet-derived mitochondria on the metabolic properties of MDA-MB-231 cells remains unclear. Methods: MDA-MB-231 and MDA-MB-231-Rho-0 cells were co-cultured with platelets, which were isolated from donor blood. Mitochondrial transfer was assessed through confocal microscopy and flow cytometry, while metabolic analyses were conducted using a Seahorse XF HS Mini Analyzer. The mito-chondrial DNA (mtDNA) copy number was determined via quantitative PCR (qPCR) following platelet co-culture. Finally, cell proliferation and colony formation assay were performed using crystal violet staining. Results and Discussion: We have shown that platelet-derived mitochondria are internalized by MDA-MB-231 cells in co-culture with platelets, increasing ATP production, oxygen (O2) consumption rate (OCR), cell proliferation, and metabolic adaptability. Additionally, we observed that MDA-MB-231 cells depleted from mtDNA restore cell proliferation in uridine/pyruvate-free cell culture medium and mitochondrial O2 consumption after co-culture with platelets, indicating a reconstitution of mtDNA facilitated by platelet-derived mitochondria. In conclusion, our study provides new insights into the role of platelet-derived mitochondria in the metabolic adaptability and progression of metastatic MDA-MB-231 TNBC cells.
Collapse
Affiliation(s)
- Lucas Cereceda
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - J. Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|