1
|
Hruby AJ, Garcia G, Thorwald MA, Finch CE, Johnson J, Higuchi-Sanabria R. Beyond genes and environment: mapping biological stochasticity in aging. GeroScience 2025:10.1007/s11357-025-01673-y. [PMID: 40301228 DOI: 10.1007/s11357-025-01673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Aging is characterized by extensive variability in the onset of morbidity and mortality, even in genetically identical populations with carefully controlled environments. This points to the important role stochasticity plays in shaping the divergent aging process between individual organisms. Here, we survey how stochastic factors at the level of molecules, cells, tissues, and organisms manifest in and impact the aging process, with a focus on the nematode Caenorhabditis elegans. Findings of stochasticity in C. elegans give additional insights for aspects of aging in the more complex settings of mammals with parallels drawn between organisms when appropriate. The emerging understanding of the stochastic contributors to longevity will enhance research strategies and medical interventions for personalized medicine.
Collapse
Affiliation(s)
- Adam J Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Denver, CO, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Mosley MC, Kinser HE, Martin OMF, Stroustrup N, Schedl T, Kornfeld K, Pincus Z. Similarities and differences in the gene expression signatures of physiological age versus future lifespan. Aging Cell 2025; 24:e14428. [PMID: 39641335 PMCID: PMC11984696 DOI: 10.1111/acel.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Across all taxa of life, individuals within a species exhibit variable lifespans. Differences in genotype or environment are not sufficient to explain this variance, as even isogenic Caenorhabditis elegans nematodes reared under uniform conditions show significant variability in lifespan. To investigate this phenomenon, we used lifespan-predictive biomarkers to isolate, at mid-adulthood, prospectively long- and short-lived individuals from an otherwise identical population. We selected two biomarkers which correlated positively with lifespan, lin-4p::GFP and mir-243p::GFP, and two which correlated negatively, mir-240/786p::GFP and autofluorescence. The gene-expression signature of long versus short future lifespan was strikingly similar across all four biomarkers tested. Since these biomarkers are expressed in different tissues, these results suggest a shared connection to a global health state correlated with future lifespan. To further investigate this underlying state, we compared the transcriptional signature of long versus short future lifespan to that of chronologically young versus old individuals. By comparison to a high-resolution time series of the average aging transcriptome, we determined that subpopulations predicted to be long- or short-lived by biomarker expression had significantly different transcriptional ages despite their shared chronological age. We found that this difference in apparent transcriptional age accounted for the majority of differentially expressed genes associated with future lifespan. Interestingly, we also identified several genes whose expression consistently separated samples by biomarker expression independent of apparent transcriptional age. These results suggest that the commonalities in the long-lived versus short-lived state reported across different biomarkers of aging extends beyond simply transcriptionally young versus transcriptionally old.
Collapse
Affiliation(s)
- Matthew C. Mosley
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Holly E. Kinser
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Olivier M. F. Martin
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Tim Schedl
- Department of GeneticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Kerry Kornfeld
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Zachary Pincus
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of GeneticsWashington University in St. LouisSt. LouisMissouriUSA
- Hexagon BioMenlo ParkCaliforniaUSA
| |
Collapse
|
3
|
Cho J, Lu J, Kim D, Park Y. Determination of health status during aging using bending and pumping rates at various survival rates in Caenorhabditis elegans. Sci Rep 2025; 15:9057. [PMID: 40090929 PMCID: PMC11911424 DOI: 10.1038/s41598-025-93876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Alongside recognizing the importance of extending lifespan, an emerging focus has appeared on improving health in longevity, defined as healthspan. Aging is a process for all animal species; however, due to the time limitation in aging studies, Caenorhabditis elegans is an established model used for studying aging. In the current study, we evaluated various markers of muscle functions and determined that bending or pharyngeal pumping rate can represent worms' healthiness. A new concept named 'dynamic-scaled value' was developed, rescaling health markers to the corresponding markers in the control group at the same survival rate. Using these dynamic-scaled values of bending or pumping rates, we determined the health status of various treatments, including whether health improvement over aging depended on lifespan extension. Co-treatment of cranberry juice with Lactobacillus plantarum significantly improved health status during the mid-late life stage, while cranberry juice alone did not improve compared to the control. The dynamic-scaled value can be used as a complementary indicator to the quality-adjusted values to determine the health status. In addition, the dynamic-scaled values would allow us to compare results from others based on adjustments using their respective controls and relatively simple measurements to obtain the results.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US.
| |
Collapse
|
4
|
Uno M, Nono M, Takahashi C, Kishimoto S, Okabe E, Yamamoto T, Nishida E. A Transition From Interindividual Uniformity to Diversity in Appearance and Transcriptional Features at Midlife in Caenorhabditis elegans. Genes Cells 2025; 30:e13187. [PMID: 39743742 DOI: 10.1111/gtc.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 01/04/2025]
Abstract
During embryogenesis, organisms function as a robust system that ensures uniformity within individuals, but they lose robustness and develop variations at advanced ages. However, when and how organisms lose this robustness remains largely elusive. Here, we identified a sharp transition from interindividual uniformity to diversity in the appearance and transcriptional features of age-matched Caenorhabditis elegans in midlife. Convolutional neural network analysis of individual appearance alterations revealed that the transition occurs in midlife, which coincides with the cessation of egg-laying activity and increased motility defects. This period represents the transition from the young state, marked by shared homogeneous features among same-age individuals, to the old state, marked by shared among old individuals. Transcriptional coherence within the age-matched individuals shows essentially the same transition, coinciding with the appearance features. These findings provide a new framework for understanding the aging trajectory in C. elegans, demonstrating the occurrence of the loss of robust control over appearance and transcriptional homeostasis in midlife.
Collapse
Affiliation(s)
- Masaharu Uno
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, Japan
| | - Masanori Nono
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, Japan
| | - Chika Takahashi
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, Japan
| | - Saya Kishimoto
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, Japan
| | - Emiko Okabe
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Eisuke Nishida
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, Japan
| |
Collapse
|
5
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
6
|
Eder M, Martin OMF, Oswal N, Sedlackova L, Moutinho C, Del Carmen-Fabregat A, Menendez Bravo S, Sebé-Pedrós A, Heyn H, Stroustrup N. Systematic mapping of organism-scale gene-regulatory networks in aging using population asynchrony. Cell 2024; 187:3919-3935.e19. [PMID: 38908368 DOI: 10.1016/j.cell.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.
Collapse
Affiliation(s)
- Matthias Eder
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Olivier M F Martin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lucia Sedlackova
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cátia Moutinho
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Andrea Del Carmen-Fabregat
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Menendez Bravo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
8
|
Zane F, MacMurray C, Guillermain C, Cansell C, Todd N, Rera M. Ageing as a two-phase process: theoretical framework. FRONTIERS IN AGING 2024; 5:1378351. [PMID: 38651031 PMCID: PMC11034523 DOI: 10.3389/fragi.2024.1378351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Human ageing, along with the ageing of conventional model organisms, is depicted as a continuous and progressive decline of biological capabilities accompanied by an exponentially increasing mortality risk. However, not all organisms experience ageing identically and our understanding of the phenomenon is coloured by human-centric views. Ageing is multifaceted and influences a diverse range of species in varying ways. Some undergo swift declines post-reproduction, while others exhibit insubstantial changes throughout their existence. This vast array renders defining universally applicable "ageing attributes" a daunting task. It is nonetheless essential to recognize that not all ageing features are organism-specific. These common attributes have paved the way for identifying "hallmarks of ageing," processes that are intertwined with age, amplified during accelerated ageing, and manipulations of which can potentially modulate or even reverse the ageing process. Yet, a glaring observation is that individuals within a single population age at varying rates. To address this, demographers have coined the term 'frailty'. Concurrently, scientific advancements have ushered in the era of molecular clocks. These innovations enable a distinction between an individual's chronological age (time since birth) and biological age (physiological status and mortality risk). In 2011, the "Smurf" phenotype was unveiled in Drosophila, delineating an age-linked escalation in intestinal permeability that presages imminent mortality. It not only acts as a predictor of natural death but identifies individuals exhibiting traits normally described as age-related. Subsequent studies have revealed the phenotype in organisms like nematodes, zebrafish, and mice, invariably acting as a death predictor. Collectively, these findings have steered our conception of ageing towards a framework where ageing is not linear and continuous but marked by two distinct, necessary phases, discernible in vivo, courtesy of the Smurf phenotype. This framework includes a mathematical enunciation of longevity trends based on three experimentally measurable parameters. It facilitates a fresh perspective on the evolution of ageing as a function. In this article, we aim to delineate and explore the foundational principles of this innovative framework, emphasising its potential to reshape our understanding of ageing, challenge its conventional definitions, and recalibrate our comprehension of its evolutionary trajectory.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284, Paris, France
| | | | | | - Céline Cansell
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Nicolas Todd
- Eco-Anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Musée de l’Homme, Paris, France
| | - Michael Rera
- Université Paris Cité, Institut Jacques Monod, CNRS UMR 7592, Paris, France
| |
Collapse
|
9
|
Zavagno G, Raimundo A, Kirby A, Saunter C, Weinkove D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience 2024; 46:2281-2293. [PMID: 37940787 PMCID: PMC10828257 DOI: 10.1007/s11357-023-00998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Finding new interventions that slow ageing and maintain human health is a huge challenge of our time. The nematode Caenorhabditis elegans offers a rapid in vivo method to determine whether a compound extends its 2 to 3-week lifespan. Measuring lifespan is the standard method to monitor ageing, but a compound that extends lifespan will not necessarily maintain health. Here, we describe the automated monitoring of C. elegans movement from early to mid-adulthood as a faster healthspan-based method to measure ageing. Using the WormGazer™ technology, multiple Petri dishes each containing several C. elegans worms are imaged simultaneously and non-invasively by an array of cameras that can be scaled easily. This approach demonstrates that most functional decline in C. elegans occurs during the first week of adulthood. We find 7 days of imaging is sufficient to measure the dose-dependent efficacy of sulfamethoxazole to slow ageing, compared to 40 days required for a parallel lifespan experiment. Understanding any negative consequences of interventions that slow ageing is important. We show that the long-lived mutant age-1(hx546) stays active for longer than the wild type but it moves slower in early adulthood. Thus, continuous analysis of movement can rapidly identify interventions that slow ageing while simultaneously revealing any negative effects on health.
Collapse
Affiliation(s)
- Giulia Zavagno
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Adelaide Raimundo
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Andy Kirby
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Christopher Saunter
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - David Weinkove
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK.
| |
Collapse
|
10
|
Zhu T, Li S, Liu D, Zhang X, Zhou L, Zhou R, Yang B. Single-worm quantitative proteomics reveals aging heterogeneity in isogenic Caenorhabditis elegans. Aging Cell 2024; 23:e14055. [PMID: 38044578 PMCID: PMC10928571 DOI: 10.1111/acel.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
The heterogeneity of aging has been investigated at cellular and organic levels in the mouse model and human, but the exploration of aging heterogeneity at whole-organism level is lacking. C. elegans is an ideal model organism for studying this question as they are self-fertilized and cultured in the same chamber. Despite the tremendous progress made in single-cell proteomic analysis, there is few single-worm proteomics studies about aging. Here, we apply single-worm quantitative mass spectrometry to quantify the heterogenous proteomic changes during aging across individuals, a total of 3524 proteins from 157 C. eleagns individuals were quantified. A reconstructed C. elegans aging trajectory and proteomic landscape of fast-aging individuals were used to analyze the heterogeneity of C. elegans aging. We characterized inter-individual proteomic variation during aging and revealed contributing factors that distinguish fast-aging individuals from their siblings.
Collapse
Affiliation(s)
- Tian‐Yi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | | | - Dan‐Dan Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Xiajun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Lianqi Zhou
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Rong Zhou
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
11
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
12
|
Roux AE, Yuan H, Podshivalova K, Hendrickson D, Kerr R, Kenyon C, Kelley D. Individual cell types in C. elegans age differently and activate distinct cell-protective responses. Cell Rep 2023; 42:112902. [PMID: 37531250 DOI: 10.1016/j.celrep.2023.112902] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Aging is characterized by a global decline in physiological function. However, by constructing a complete single-cell gene expression atlas, we find that Caenorhabditis elegans aging is not random in nature but instead is characterized by coordinated changes in functionally related metabolic, proteostasis, and stress-response genes in a cell-type-specific fashion, with downregulation of energy metabolism being the only nearly universal change. Similarly, the rates at which cells age differ significantly between cell types. In some cell types, aging is characterized by an increase in cell-to-cell variance, whereas in others, variance actually decreases. Remarkably, multiple resilience-enhancing transcription factors known to extend lifespan are activated across many cell types with age; we discovered new longevity candidates, such as GEI-3, among these. Together, our findings suggest that cells do not age passively but instead react strongly, and individualistically, to events that occur during aging. This atlas can be queried through a public interface.
Collapse
Affiliation(s)
| | - Han Yuan
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | - Rex Kerr
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| | - David Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Sohrabi S, Cota V, Murphy CT. CeLab, a microfluidic platform for the study of life history traits, reveals metformin and SGK-1 regulation of longevity and reproductive span. LAB ON A CHIP 2023; 23:2738-2757. [PMID: 37221962 PMCID: PMC11067863 DOI: 10.1039/d3lc00028a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential to carry out high-throughput assays in a whole organism in a small space is one of the benefits of C. elegans, but worm assays often require a large sample size with frequent physical manipulations, rendering them highly labor-intensive. Microfluidic assays have been designed with specific questions in mind, such as analysis of behavior, embryonic development, lifespan, and motility. While these devices have many advantages, current technologies to automate worm experiments have several limitations that prevent widespread adoption, and most do not allow analyses of reproduction-linked traits. We developed a miniature C. elegans lab-on-a-chip device, CeLab, a reusable, multi-layer device with 200 separate incubation arenas that allows progeny removal, to automate a variety of worm assays on both individual and population levels. CeLab enables high-throughput simultaneous analysis of lifespan, reproductive span, and progeny production, refuting assumptions about the disposable soma hypothesis. Because CeLab chambers require small volumes, the chip is ideal for drug screens; we found that drugs previously shown to increase lifespan also increase reproductive span, and we discovered that low-dose metformin increases both. CeLab reduces the limitations of escaping and matricide that typically limit plate assays, revealing that feeding with heat-killed bacteria greatly extends lifespan and reproductive span of mated animals. CeLab allows tracking of life history traits of individuals, which revealed that the nutrient-sensing mTOR pathway mutant, sgk-1, reproduces nearly until its death. These findings would not have been possible to make in standard plate assays, in low-throughput assays, or in normal population assays.
Collapse
Affiliation(s)
- Salman Sohrabi
- Department of Molecular Biology &, LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Vanessa Cota
- Department of Molecular Biology &, LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology &, LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Yang Y, Karin O, Mayo A, Song X, Chen P, Santos AL, Lindner AB, Alon U. Damage dynamics and the role of chance in the timing of E. coli cell death. Nat Commun 2023; 14:2209. [PMID: 37072447 PMCID: PMC10113371 DOI: 10.1038/s41467-023-37930-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/01/2023] [Indexed: 04/20/2023] Open
Abstract
Genetically identical cells in the same stressful condition die at different times. The origin of this stochasticity is unclear; it may arise from different initial conditions that affect the time of demise, or from a stochastic damage accumulation mechanism that erases the initial conditions and instead amplifies noise to generate different lifespans. To address this requires measuring damage dynamics in individual cells over the lifespan, but this has rarely been achieved. Here, we used a microfluidic device to measure membrane damage in 635 carbon-starved Escherichia coli cells at high temporal resolution. We find that initial conditions of damage, size or cell-cycle phase do not explain most of the lifespan variation. Instead, the data points to a stochastic mechanism in which noise is amplified by a rising production of damage that saturates its own removal. Surprisingly, the relative variation in damage drops with age: cells become more similar to each other in terms of relative damage, indicating increasing determinism with age. Thus, chance erases initial conditions and then gives way to increasingly deterministic dynamics that dominate the lifespan distribution.
Collapse
Affiliation(s)
- Yifan Yang
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel.
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France.
| | - Omer Karin
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel
| | - Avi Mayo
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel
| | - Xiaohu Song
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
| | - Peipei Chen
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
- National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Ana L Santos
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Ariel B Lindner
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
| | - Uri Alon
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel.
| |
Collapse
|
15
|
Jushaj A, Churgin M, De La Torre M, Kieswetter A, Driesschaert B, Dhondt I, Braeckman BP, Fang-Yen C, Temmerman L. Adult-restricted gene knock-down reveals candidates that affect locomotive healthspan in C. elegans. Biogerontology 2023; 24:225-233. [PMID: 36662373 DOI: 10.1007/s10522-022-10009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023]
Abstract
Understanding how we can age healthily is a challenge at the heart of biogerontological interest. Whereas myriad genes are known to affect the lifespan of model organisms, effects of such interventions on healthspan-the period of life where an animal is considered healthy, rather than merely alive-are less clear. To understand relationships between life- and healthspan, in recent years several platforms were developed with the purpose of assessing both readouts simultaneously. We here relied on one such platform, the WorMotel, to study effects of adulthood-restricted knock-down of 130 Caenorhabditis elegans genes on the locomotive health of the animals along their lifespans. We found that knock-down of six genes affected healthspan while lifespan remained unchanged. For two of these, F26A3.4 and chn-1, knock-down resulted in an improvement of healthspan. In follow-up experiments we showed that knockdown of F26A3.4 indeed improves locomotive health and muscle structure at old age.
Collapse
Affiliation(s)
- Areta Jushaj
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Matthew Churgin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Miguel De La Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Srivastava V, Zelmanovich V, Shukla V, Abergel R, Cohen I, Ben-Sasson SA, Gross E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023; 19:474-504. [PMID: 35579620 PMCID: PMC9851263 DOI: 10.1080/15548627.2022.2078069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Impaired mitophagy is a primary pathogenic event underlying diverse aging-associated diseases such as Alzheimer and Parkinson diseases and sarcopenia. Therefore, augmentation of mitophagy, the process by which defective mitochondria are removed, then replaced by new ones, is an emerging strategy for preventing the evolvement of multiple morbidities in the elderly population. Based on the scaffold of spermidine (Spd), a known mitophagy-promoting agent, we designed and tested a family of structurally related compounds. A prototypic member, 1,8-diaminooctane (VL-004), exceeds Spd in its ability to induce mitophagy and protect against oxidative stress. VL-004 activity is mediated by canonical aging genes and promotes lifespan and healthspan in C. elegans. Moreover, it enhances mitophagy and protects against oxidative injury in rodent and human cells. Initial structural characterization suggests simple rules for the design of compounds with improved bioactivity, opening the way for a new generation of agents with a potential to promote healthy aging.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Virendra Shukla
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Abergel
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel A. Ben-Sasson
- Department Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Gross
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Einav Gross Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, the Hebrew University of Jerusalem, Ein Kerem. PO Box 12271, Jerusalem9112102, Israel
| |
Collapse
|
17
|
Mulla S, Ludlam AR, Elragig A, Slack C, Balklava Z, Stich M, Cheong A. A biphasic model of lifespan in nematode Caenorhabditis elegans worm. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220991. [PMID: 36756060 PMCID: PMC9890093 DOI: 10.1098/rsos.220991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Ageing research focuses on identifying lifespan modifiers and understanding and appropriately interpreting their effects. One of the most relevant quantities being studied is the shape of the survival curve that can reveal crucial information on the mechanism of action. Here, we introduce a bilogistic model to describe the shape of the lifespan curves of Caenorhabditis elegans populations. Using the corrected Akaike information criterion and the RMSE as goodness-of-fit tests, we show that the bilogistic model provides a better fit to the experimental data from nematode worms than other mathematical models and can identify and confirm biphasic lifespan data. Our parametric model offers a method to interpret replicate experiments data in terms of the shape parameters of the lifespan curve and enables robust statistical analysis of intra- and inter-group variance. We apply the model to novel lifespan data from C. elegans and Drosophila melanogaster and provide a rational statistical analysis of lifespan modifiers such as temperature and daf-16/FOXO mutation.
Collapse
Affiliation(s)
- Suhayl Mulla
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
- Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Adele R. Ludlam
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Aiman Elragig
- Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London W1S 4BS, UK
| | - Cathy Slack
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Zita Balklava
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Michael Stich
- Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
- Departmento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Alex Cheong
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
18
|
Sohrabi S, Cota V, Murphy CT. Ce Lab, a Microfluidic Platform for the Study of Life History Traits, reveals Metformin and SGK-1 regulation of Longevity and Reproductive Span. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523184. [PMID: 36711536 PMCID: PMC9881911 DOI: 10.1101/2023.01.09.523184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The potential to carry out high-throughput assays in a whole organism in a small space is one of the benefits of C. elegans , but worm assays often require a large sample size with frequent physical manipulations, rendering them highly labor-intensive. Microfluidic assays have been designed with specific questions in mind, such as analysis of behavior, embryonic development, lifespan, and motility. While these devices have many advantages, current technologies to automate worm experiments have several limitations that prevent widespread adoption, and most do not allow analyses of reproduction-linked traits. We developed a miniature C. elegans lab-on-a-chip device, Ce Lab, a reusable, multi-layer device with 200 separate incubation arenas that allows progeny removal, to automate a variety of worm assays on both individual and population levels. Ce Lab enables high-throughput simultaneous analysis of lifespan, reproductive span, and progeny production, refuting assumptions about the Disposable Soma hypothesis. Because Ce Lab chambers require small volumes, the chip is ideal for drug screens; we found that drugs previously shown to increase lifespan also increase reproductive span, and we discovered that low-dose metformin increases both. Ce Lab reduces the limitations of escaping and matricide that typically limit plate assays, revealing that feeding with heat-killed bacteria greatly extends lifespan and reproductive span of mated animals. Ce Lab allows tracking of life history traits of individuals, which revealed that the nutrient-sensing mTOR pathway mutant, sgk-1 , reproduces nearly until its death. These findings would not have been possible to make in standard plate assays, in low-throughput assays, or in normal population assays.
Collapse
|
19
|
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, Ehninger D. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat Commun 2022; 13:6830. [PMID: 36369285 PMCID: PMC9652467 DOI: 10.1038/s41467-022-34515-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - A Cole Edwards
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christina Georgopoulou
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | | | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dimitra Lountzi
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Phillip Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lena L Nover
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Manuela A Oestereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Clemens Overkott
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Brandon L Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Mailman School of Public Health, Columbia University, 630W. 168th St., New York, NY, 10032, USA
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jenny Russ
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Paolo Salomoni
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, 53175, Bonn, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
20
|
Oswal N, Martin OMF, Stroustrup S, Bruckner MAM, Stroustrup N. A hierarchical process model links behavioral aging and lifespan in C. elegans. PLoS Comput Biol 2022; 18:e1010415. [PMID: 36178967 PMCID: PMC9524676 DOI: 10.1371/journal.pcbi.1010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Aging involves a transition from youthful vigor to geriatric infirmity and death. Individuals who remain vigorous longer tend to live longer, and within isogenic populations of C. elegans the timing of age-associated vigorous movement cessation (VMC) is highly correlated with lifespan. Yet, many mutations and interventions in aging alter the proportion of lifespan spent moving vigorously, appearing to “uncouple” youthful vigor from lifespan. To clarify the relationship between vigorous movement cessation, death, and the physical declines that determine their timing, we developed a new version of the imaging platform called “The Lifespan Machine”. This technology allows us to compare behavioral aging and lifespan at an unprecedented scale. We find that behavioral aging involves a time-dependent increase in the risk of VMC, reminiscent of the risk of death. Furthermore, we find that VMC times are inversely correlated with remaining lifespan across a wide range of genotypes and environmental conditions. Measuring and modelling a variety of lifespan-altering interventions including a new RNA-polymerase II auxin-inducible degron system, we find that vigorous movement and lifespan are best described as emerging from the interplay between at least two distinct physical declines whose rates co-vary between individuals. In this way, we highlight a crucial limitation of predictors of lifespan like VMC—in organisms experiencing multiple, distinct, age-associated physical declines, correlations between mid-life biomarkers and late-life outcomes can arise from the contextual influence of confounding factors rather than a reporting by the biomarker of a robustly predictive biological age. Aging produces a variety of outcomes—declines in various measures of health and eventually death. By studying the relationship between two outcomes of aging in the same individual, we can learn about the underlying aging processes that cause them. Here, we consider the relationship between death and an outcome often used to quantify health in C. elegans—vigorous movement cessation which describes the age-associated loss of an individuals’ ability to move long distances. We develop an automated imaging platform that allows us to precisely compare this pair of outcomes in each individual across large populations. We find that individuals who remain vigorous longer subsequently have a shorter remaining lifespan—a pattern that holds even after vigorous movement and lifespan timing are both altered by several different mutations and interventions in aging. Modelling our data using a combination of simulation and analytic studies, we demonstrate how the relative timing of vigorous movement cessation and death suggest that these two outcomes are driven by distinct aging processes. Our data and analyses demonstrate how two outcomes of aging can be correlated across individuals with the timing of one predicting the timing of the other, but nevertheless be driven by mostly distinct underlying physical declines.
Collapse
Affiliation(s)
- Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Olivier M. F. Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sofia Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Monika Anna Matusiak Bruckner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Chen Z, Raj A, Prateek GV, Di Francesco A, Liu J, Keyes BE, Kolumam G, Jojic V, Freund A. Automated, high-dimensional evaluation of physiological aging and resilience in outbred mice. eLife 2022; 11:e72664. [PMID: 35404230 PMCID: PMC9000950 DOI: 10.7554/elife.72664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Behavior and physiology are essential readouts in many studies but have not benefited from the high-dimensional data revolution that has transformed molecular and cellular phenotyping. To address this, we developed an approach that combines commercially available automated phenotyping hardware with a systems biology analysis pipeline to generate a high-dimensional readout of mouse behavior/physiology, as well as intuitive and health-relevant summary statistics (resilience and biological age). We used this platform to longitudinally evaluate aging in hundreds of outbred mice across an age range from 3 months to 3.4 years. In contrast to the assumption that aging can only be measured at the limits of animal ability via challenge-based tasks, we observed widespread physiological and behavioral aging starting in early life. Using network connectivity analysis, we found that organism-level resilience exhibited an accelerating decline with age that was distinct from the trajectory of individual phenotypes. We developed a method, Combined Aging and Survival Prediction of Aging Rate (CASPAR), for jointly predicting chronological age and survival time and showed that the resulting model is able to predict both variables simultaneously, a behavior that is not captured by separate age and mortality prediction models. This study provides a uniquely high-resolution view of physiological aging in mice and demonstrates that systems-level analysis of physiology provides insights not captured by individual phenotypes. The approach described here allows aging, and other processes that affect behavior and physiology, to be studied with improved throughput, resolution, and phenotypic scope.
Collapse
Affiliation(s)
- Zhenghao Chen
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Anil Raj
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - GV Prateek
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Andrea Di Francesco
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Justin Liu
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Brice E Keyes
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Ganesh Kolumam
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Adam Freund
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| |
Collapse
|
23
|
Bates K, Le KN, Lu H. Deep learning for robust and flexible tracking in behavioral studies for C. elegans. PLoS Comput Biol 2022; 18:e1009942. [PMID: 35395006 PMCID: PMC9020731 DOI: 10.1371/journal.pcbi.1009942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/20/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Robust and accurate behavioral tracking is essential for ethological studies. Common methods for tracking and extracting behavior rely on user adjusted heuristics that can significantly vary across different individuals, environments, and experimental conditions. As a result, they are difficult to implement in large-scale behavioral studies with complex, heterogenous environmental conditions. Recently developed deep-learning methods for object recognition such as Faster R-CNN have advantages in their speed, accuracy, and robustness. Here, we show that Faster R-CNN can be employed for identification and detection of Caenorhabditis elegans in a variety of life stages in complex environments. We applied the algorithm to track animal speeds during development, fecundity rates and spatial distribution in reproductive adults, and behavioral decline in aging populations. By doing so, we demonstrate the flexibility, speed, and scalability of Faster R-CNN across a variety of experimental conditions, illustrating its generalized use for future large-scale behavioral studies.
Collapse
Affiliation(s)
- Kathleen Bates
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kim N. Le
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Statzer C, Reichert P, Dual J, Ewald CY. Longevity interventions temporally scale healthspan in Caenorhabditis elegans. iScience 2022; 25:103983. [PMID: 35310333 PMCID: PMC8924689 DOI: 10.1016/j.isci.2022.103983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Human centenarians and longevity mutants of model organisms show lower incidence rates of late-life morbidities than the average population. However, whether longevity is caused by a compression of the portion of life spent in a state of morbidity, i.e., "sickspan," is highly debated even in isogenic Caenorhabditis elegans. Here, we developed a microfluidic device that employs acoustophoretic force fields to quantify the maximum muscle strength and dynamic power in aging C. elegans. Together with different biomarkers for healthspan, we found a stochastic onset of morbidity, starting with a decline in dynamic muscle power and structural integrity, culminating in frailty. Surprisingly, we did not observe a compression of sickspan in longevity mutants but instead observed a temporal scaling of healthspan. Given the conservation of these longevity interventions, this raises the question of whether the healthspan of mammalian longevity interventions is also temporally scaled.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Peter Reichert
- Eidgenössische Technische Hochschule Zürich, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, Zürich CH-8092, Switzerland
| | - Jürg Dual
- Eidgenössische Technische Hochschule Zürich, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, Zürich CH-8092, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
25
|
Cho Y, Jonas‐Closs RA, Yampolsky LY, Kirschner MW, Peshkin L. Intelligent high-throughput intervention testing platform in Daphnia. Aging Cell 2022; 21:e13571. [PMID: 35195332 PMCID: PMC8920439 DOI: 10.1111/acel.13571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
We present a novel platform for testing the effects of interventions on the life- and healthspan of a short-lived freshwater organism with complex behavior and physiology-the planktonic crustacean Daphnia magna. Within this platform, dozens of complex behavioral features of both routine motion and response to stimuli are continuously quantified over large synchronized cohorts via an automated phenotyping pipeline. We build predictive machine-learning models calibrated using chronological age and extrapolate onto phenotypic age. We further apply the model to estimate the phenotypic age under pharmacological perturbation. Our platform provides a scalable framework for drug screening and characterization in both life-long and instant assays as illustrated using a long-term dose-response profile of metformin and a short-term assay of well-studied substances such as caffeine and alcohol.
Collapse
Affiliation(s)
- Yongmin Cho
- Department of Systems Biology Harvard Medical School Boston Massachusetts USA
| | | | - Lev Y. Yampolsky
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
| | - Marc W. Kirschner
- Department of Systems Biology Harvard Medical School Boston Massachusetts USA
| | - Leonid Peshkin
- Department of Systems Biology Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
26
|
Galimov E, Yakimovich A. A tandem segmentation-classification approach for the localization of morphological predictors of C. elegans lifespan and motility. Aging (Albany NY) 2022; 14:1665-1677. [PMID: 35217630 PMCID: PMC8908923 DOI: 10.18632/aging.203916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
C. elegans is an established model organism for studying genetic and drug effects on aging, many of which are conserved in humans. It is also an important model for basic research, and C. elegans pathologies is a new emerging field. Here we develop a proof-of-principal convolutional neural network-based platform to segment C. elegans and extract features that might be useful for lifespan prediction. We use a dataset of 734 worms tracked throughout their lifespan and classify worms into long-lived and short-lived. We designed WormNet - a convolutional neural network (CNN) to predict the worm lifespan class based on young adult images (day 1 - day 3 old adults) and showed that WormNet, as well as, InceptionV3 CNN can successfully classify lifespan. Based on U-Net architecture we develop HydraNet CNNs which allow segmenting worms accurately into anterior, mid-body and posterior parts. We combine HydraNet segmentation, WormNet prediction and the class activation map approach to determine the segments most important for lifespan classification. Such a tandem segmentation-classification approach shows the posterior part of the worm might be more important for classifying long-lived worms. Our approach can be useful for the acceleration of anti-aging drug discovery and for studying C. elegans pathologies.
Collapse
Affiliation(s)
- Evgeniy Galimov
- Artificial Intelligence for Life Sciences CIC, London, United Kingdom
| | - Artur Yakimovich
- Artificial Intelligence for Life Sciences CIC, London, United Kingdom
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Görlitz, Germany
- Bladder Infection and Immunity Group (BIIG), Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, United Kingdom
| |
Collapse
|
27
|
Sinha DB, Pincus ZS. High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans. PLoS One 2022; 17:e0257591. [PMID: 35108272 PMCID: PMC8809618 DOI: 10.1371/journal.pone.0257591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Collapse
Affiliation(s)
- Drew Benjamin Sinha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary Scott Pincus
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: ,
| |
Collapse
|
28
|
Duangjan C, Curran SP. Oolonghomobisflavans from Camellia sinensis increase Caenorhabditis elegans lifespan and healthspan. GeroScience 2022; 44:533-545. [PMID: 34637108 PMCID: PMC8811050 DOI: 10.1007/s11357-021-00462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Tea polyphenols are widely considered as excellent antioxidant agents which can contribute to human health and longevity. However, the identification of the active biomolecules in complex tea extracts that promote health and longevity are not fully known. Here we used the nematode Caenorhabditis elegans to analyze the health benefits and longevity effects of Camellia sinensis oolong tea extracts (QFT, NFT, and CFT) and oolonghomobisflavan A and oolonghomobisflavan B, which are present in oolong tea extracts. Our results showed that oolong tea extracts and oolonghomobisflavans prolong lifespan and improved healthspan by curtailing the age-related decline in muscle activity and the accumulation of age pigment (lipofuscin). We found that the lifespan and healthspan promoting effects of oolong tea extracts and oolonghomobisflavans were positively correlated with the stress resistance via DAF-16/FOXO transcription factor. Furthermore, oolong tea extracts and oolonghomobisflavans displayed protective effects against Aβ- and polyQ-induced neuro/proteotoxicity. Overall, our study provides new evidence to support the health benefits of oolong tea and importantly identify oolonghomobisflavans as potent bioactive molecules that promote health when supplemented with a normal diet. As such, oolonghomobisflavans represent a valuable new class of compounds that promote healthy aging.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
- Molecular and Computational Biology, Dornsife College of Letters, Arts, and Science, University of Southern California, Los Angeles, USA.
| |
Collapse
|
29
|
Varão AM, Silva JDS, Amaral LO, Aleixo LLP, Onduras A, Santos CS, Silva LPD, Ribeiro DE, Filho JLL, Bornhorst J, Stiboller M, Schwerdtle T, Alves LC, Soares FAA, Gubert P. Toxic effects of thallium acetate by acute exposure to the nematode C. elegans. J Trace Elem Med Biol 2021; 68:126848. [PMID: 34479099 DOI: 10.1016/j.jtemb.2021.126848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Thallium (Tl) is a toxic metalloid and an emerging pollutant due to electronic devices and dispersal nearby base-metal mining. Therefore, Tl poses a threat to human health and especially the long-term impact on younger individuals exposed is still unknown. This study aimed to evaluate the toxic effects of thallium acetate in C. elegans in early larval stages, considering physiological and behavioral endpoints, as well as the Tl absorption and bioaccumulation. METHODS Caenorhabditis elegans (C. elegans) was exposed to Thallium acetate (50, 100, 150, 200, 250, 500, and 1000 μM) in the L1 larval stage, with the purpose to observe the toxic effects invoked until adulthood. Transgenic worms strains were transported GFP, reporters to DAF-16 and were used to verify the antioxidant response. ICP-MS quantified total Tl+ concentration to evidence Tl uptake and bioaccumulation. RESULTS Thallium acetate caused a significant reduction in the number of living worms (p < 0.0001 in 100-1000 μM), a delay in larval development (p < 0.01; p < 0.001 and p < 0.0001 in 100-1000 μM) through the larval stages, and egg production in the worm's uterus was reduced. Thallium acetate also induced behavioral changes. Additionally, thallium acetate activated antioxidant pathway responses in C. elegans by translocating the DAF-16 transcription factor and activation of SOD-3::GFP expression. The Tl+ quantification in worms showed its absorption in the L1 larval stage and bioaccumulation in the body after development. CONCLUSIONS Thallium acetate reduced survival, delayed development, caused behavioral changes, induced responses inherent to oxidative stress, and serious damage to the worm's reproduction. In addition, C. elegans absorbed and bioaccumulated Tl+. Together, our results highlight the impacts of Tl+ exposure in the early stages of life, even for a short period.
Collapse
Affiliation(s)
- A M Varão
- MS(4)Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil; Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - J D S Silva
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L O Amaral
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L L P Aleixo
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Onduras
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - C S Santos
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - L P D Silva
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - D E Ribeiro
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J L L Filho
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - M Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - T Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - L C Alves
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil; Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Parasitology, Brazil
| | - F A A Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, 97105900, Santa Maria, RS, Brazil
| | - P Gubert
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil; Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
30
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
31
|
Lin JL, Kuo WL, Huang YH, Jong TL, Hsu AL, Hsu WH. Using Convolutional Neural Networks to Measure the Physiological Age of Caenorhabditis elegans. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2724-2732. [PMID: 32031946 DOI: 10.1109/tcbb.2020.2971992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Caenorhabditis elegans (C. elegans) is a popular and excellent model for studies of aging due to its short lifespan. Methods for precisely measuring the physiological age of C. elegans are critically needed, especially for antiaging drug screening and genetic screening studies. The effects of various antiaging interventions on the rate of aging in the early stage of the aging process can be determined based on the quantification of physiological age. However, in general, the age of C. elegans is evaluated via human visual inspection of morphological changes based on personal experience and subjective judgment. For example, the rate of motor activity decay has been used to predict lifespan in early- to mid-stage aging. Using image processing, the physiological age of C. elegans can be measured and then classified into periods or classes from childhood to elderhood (e.g., 3 periods comprising days 0-2, 4-6 and 10-12) by using texture entropy (Shamir, L. et al., 2009). Our dataset consists of 913 microscopic images of C. elegans, with approximately 60 images per day from day 1 to day 14 of adulthood. We present quantitative methods to measure the physiological age of C. elegans with convolution neural networks (CNNs), which can measure age with a granularity of days rather than periods. The methods achieved a mean absolute error (MAE) of less than 1 day for the measured age of C. elegans. In our experiments, we found that after training and testing our dataset, 5 popular CNN models, 50-layer residual network (ResNet50), InceptionV3, InceptionResNetV2, 16-layer Visual Geometry Group network (VGG16) and MobileNet, measured the physiological age of C. elegans with an average testing MAE of 1.58 days. Furthermore, based on the results, we propose two models, one model for linear regression analysis and the other model for logistic regression, that combine a CNN model and a new attribute: curved_or_straight. The linear regression analysis model achieved a test MAE of 0.94 days; the logistic regression model achieved an accuracy of 84.78 percent with an error tolerance of 1 day.
Collapse
|
32
|
Abstract
Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.
Collapse
Affiliation(s)
- Stewart Frankel
- Biology Department, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
33
|
Faerberg DF, Gurarie V, Ruvinsky I. Inferring temporal organization of postembryonic development from high-content behavioral tracking. Dev Biol 2021; 475:54-64. [PMID: 33636188 PMCID: PMC8107144 DOI: 10.1016/j.ydbio.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Understanding temporal regulation of development remains an important challenge. Whereas average, species-typical timing of many developmental processes has been established, less is known about inter-individual variability and correlations in timing of specific events. We addressed these questions in the context of postembryonic development in Caenorhabditis elegans. Based on patterns of locomotor activity of freely moving animals, we inferred durations of four larval stages (L1-L4) in over 100 individuals. Analysis of these data supports several conclusions. Individuals have consistently faster or slower rates of development because durations of L1 through L3 stages are positively correlated. The last larval stage, the L4, is less variable than the earlier stages and its duration is largely independent of the rate of early larval development, implying existence of two distinct larval epochs. We describe characteristic patterns of variation and correlation, as well as the fact that stage durations tend to scale relative to total developmental time. This scaling relationship suggests that each larval stage is not limited by an absolute duration, but is instead terminated when a subset of events that must occur prior to adulthood have been completed. The approach described here offers a scalable platform that will facilitate the study of temporal regulation of postembryonic development.
Collapse
Affiliation(s)
- Denis F Faerberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Victor Gurarie
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
34
|
Backes C, Martinez-Martinez D, Cabreiro F. C. elegans: A biosensor for host-microbe interactions. Lab Anim (NY) 2021; 50:127-135. [PMID: 33649581 DOI: 10.1038/s41684-021-00724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Microbes are an integral part of life on this planet. Microbes and their hosts influence each other in an endless dance that shapes how the meta-organism interacts with its environment. Although great advances have been made in microbiome research over the past 20 years, the mechanisms by which both hosts and their microbes interact with each other and the environment are still not well understood. The nematode Caenorhabditis elegans has been widely used as a model organism to study a remarkable number of human-like processes. Recent evidence shows that the worm is a powerful tool to investigate in fine detail the complexity that exists in microbe-host interactions. By combining the large array of genetic tools available for both organisms together with deep phenotyping approaches, it has been possible to uncover key effectors in the complex relationship between microbes and their hosts. In this perspective, we survey the literature for insightful discoveries in the microbiome field using the worm as a model. We discuss the latest conceptual and technological advances in the field and highlight the strengths that make C. elegans a valuable biosensor tool for the study of microbe-host interactions.
Collapse
Affiliation(s)
- Cassandra Backes
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | | | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
35
|
Kinser HE, Mosley MC, Plutzer IB, Pincus Z. Global, cell non-autonomous gene regulation drives individual lifespan among isogenic C. elegans. eLife 2021; 10:e65026. [PMID: 33522488 PMCID: PMC7864635 DOI: 10.7554/elife.65026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Across species, lifespan is highly variable among individuals within a population. Even genetically identical Caenorhabditis elegans reared in homogeneous environments are as variable in lifespan as outbred human populations. We hypothesized that persistent inter-individual differences in expression of key regulatory genes drives this lifespan variability. As a test, we examined the relationship between future lifespan and the expression of 22 microRNA promoter::GFP constructs. Surprisingly, expression of nearly half of these reporters, well before death, could effectively predict lifespan. This indicates that prospectively long- vs. short-lived individuals have highly divergent patterns of transgene expression and transcriptional regulation. The gene-regulatory processes reported on by two of the most lifespan-predictive transgenes do not require DAF-16, the FOXO transcription factor that is a principal effector of insulin/insulin-like growth factor (IGF-1) signaling. Last, we demonstrate a hierarchy of redundancy in lifespan-predictive ability among three transgenes expressed in distinct tissues, suggesting that they collectively report on an organism-wide, cell non-autonomous process that acts to set each individual's lifespan.
Collapse
Affiliation(s)
- Holly E Kinser
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| | - Matthew C Mosley
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University in St. LouisSt. LouisUnited States
| | - Isaac B Plutzer
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
36
|
Rahman M, Edwards H, Birze N, Gabrilska R, Rumbaugh KP, Blawzdziewicz J, Szewczyk NJ, Driscoll M, Vanapalli SA. NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci Rep 2020; 10:16190. [PMID: 33004810 PMCID: PMC7530743 DOI: 10.1038/s41598-020-73002-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (daf-2, age-1, eat-2, and daf-16) and animals subjected to RNAi knockdown of age-related genes (age-1 and daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hunter Edwards
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nikolajs Birze
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rebecca Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79430, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
37
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Martineau CN, Brown AEX, Laurent P. Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans. PLoS Comput Biol 2020; 16:e1008002. [PMID: 32692770 PMCID: PMC7394451 DOI: 10.1371/journal.pcbi.1008002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2020] [Accepted: 05/30/2020] [Indexed: 11/21/2022] Open
Abstract
Ageing affects a wide range of phenotypes at all scales, but an objective measure of ageing remains challenging, even in simple model organisms. To measure the ageing process, we characterized the sequence of alterations of multiple phenotypes at organismal scale. Hundreds of morphological, postural, and behavioral features were extracted from high-resolution videos. Out of the 1019 features extracted, 896 are ageing biomarkers, defined as those that show a significant correlation with relative age (age divided by lifespan). We used support vector regression to predict age, remaining life and lifespan of individual C. elegans. The quality of these predictions (age R2 = 0.79; remaining life R2 = 0.77; lifespan R2 = 0.72) increased with the number of features added to the model, supporting the use of multiple features to quantify ageing. We quantified the rate of ageing as how quickly animals moved through a phenotypic space; we quantified health decline as the slope of the declining predicted remaining life. In both ageing dimensions, we found that short lived-animals aged faster than long-lived animals. In our conditions, for isogenic wild-type worms, the health decline of the individuals was scaled to their lifespan without significant deviation from the average for short- or long-lived animals.
Collapse
Affiliation(s)
- Céline N. Martineau
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles, Brussels, Belgium
| | - André E. X. Brown
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Patrick Laurent
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
39
|
An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun Biol 2020; 3:297. [PMID: 32523044 PMCID: PMC7287092 DOI: 10.1038/s42003-020-1013-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022] Open
Abstract
Health and longevity in all organisms are strongly influenced by the environment. To fully understand how environmental factors interact with genetic and stochastic factors to modulate the aging process, it is crucial to precisely control environmental conditions for long-term studies. In the commonly used model organism Caenorhabditis elegans, existing assays for healthspan and lifespan have inherent limitations, making it difficult to perform large-scale longitudinal aging studies under precise environmental control. To address these constraints, we developed the Health and Lifespan Testing Hub (HeALTH), an automated, microfluidic-based system for robust longitudinal behavioral monitoring. Our system provides long-term (i.e. entire lifespan) spatiotemporal environmental control. We demonstrate healthspan and lifespan studies under a variety of genetic and environmental perturbations while observing how individuality plays a role in the aging process. This system is generalizable beyond aging research, particularly for short- or long-term behavioral assays, and could be adapted for other model systems. Kim N. Le, Mei Zhan et al. develop an automated microfluidic-based system, HeALTH, which provides spatiotemporal environmental control and allows for long-term behavioral monitoring. Using Caenorhabditis elegans they demonstrate the robustness of this platform for health and lifespan studies, and highlight its adaptability to other model systems.
Collapse
|
40
|
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB, Kapahi P. GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 2020; 30:2749-2760.e3. [PMID: 32502405 DOI: 10.1016/j.cub.2020.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) is the most robust means to extend lifespan and delay age-related diseases across species. An underlying assumption in the aging field is that DR enhances both lifespan and physical activity through similar mechanisms, but this has not been rigorously tested in different genetic backgrounds. Furthermore, nutrient response genes responsible for lifespan extension or age-related decline in functionality remain underexplored in natural populations. To address this, we measured nutrient-dependent changes in lifespan and age-related decline in climbing ability in the Drosophila Genetic Reference Panel fly strains. On average, DR extended lifespan and delayed decline in climbing ability, but there was a lack of correlation between these traits across individual strains, suggesting that distinct genetic factors modulate these traits independently and that genotype determines response to diet. Only 50% of strains showed positive response to DR for both lifespan and climbing ability, 14% showed a negative response for one trait but not both, and 35% showed no change in one or both traits. Through GWAS, we uncovered a number of genes previously not known to be diet responsive nor to influence lifespan or climbing ability. We validated decima as a gene that alters lifespan and daedalus as one that influences age-related decline in climbing ability. We found that decima influences insulin-like peptide transcription in the GABA receptor neurons downstream of short neuropeptide F precursor (sNPF) signaling. Modulating these genes produced independent effects on lifespan and physical activity decline, which suggests that these age-related traits can be regulated through distinct mechanisms.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA
| | | | - Tyler A Hilsabeck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Di Rosa G, Brunetti G, Scuto M, Trovato Salinaro A, Calabrese EJ, Crea R, Schmitz-Linneweber C, Calabrese V, Saul N. Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson's Models. Int J Mol Sci 2020; 21:E3893. [PMID: 32486023 PMCID: PMC7312680 DOI: 10.3390/ijms21113893] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its "natural" environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.
Collapse
Affiliation(s)
- Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Giovanni Brunetti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Christian Schmitz-Linneweber
- Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Humboldt University of Berlin, Philippstr. 13, House 22, 10115 Berlin, Germany; (C.S.-L.); (N.S.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.D.R.); (G.B.); (M.S.); (A.T.S.)
| | - Nadine Saul
- Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Humboldt University of Berlin, Philippstr. 13, House 22, 10115 Berlin, Germany; (C.S.-L.); (N.S.)
| |
Collapse
|
42
|
Gaitanidis A, Dimitriadou A, Dowse H, Sanyal S, Duch C, Consoulas C. Longitudinal assessment of health-span and pre-death morbidity in wild type Drosophila. Aging (Albany NY) 2020; 11:1850-1873. [PMID: 30923256 PMCID: PMC6461171 DOI: 10.18632/aging.101880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/20/2019] [Indexed: 01/22/2023]
Abstract
The increase in human life expectancy is accompanied by age-related cognitive and motor disability, thus raising the demand for strategies toward healthy aging. This requires understanding the biology of normal aging and late-life functional phenotypes. Genetic model organisms, such as Drosophila melanogaster, can help identifying evolutionary conserved mechanisms underlying aging. Longitudinal assessment of motor performance of more than 1000 individual flies revealed age-related motor performance decline and specific late-life motor disabilities. This allows defining heath- and ill-span and scoring late-life quality of individual flies. As in mammals, including humans, onset, duration, severity, and progression dynamics of decline are heterogenic and characterized by both, progressive worsening and sudden late-life events. Flies either become increasingly incapacitated by accumulating disability over multiple days prior to death, or they escape disability until few hours prior to death. Both late-life trajectories converge into a terminal stage characterized by stereotypical signs of functional collapse and death within 3 hours. Drosophila can now be used to evaluate life prolonging manipulations in the context of late-life quality. High sugar diet increases lifespan and late-life quality, whereas lifespan prolonging antioxidant supplementation has either no, or negative effects on late-life quality, depending on base diet and gender.
Collapse
Affiliation(s)
- Alexandros Gaitanidis
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agapi Dimitriadou
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Harold Dowse
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA
| | - Subhabrata Sanyal
- Cell Biology Department, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christos Consoulas
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Jushaj A, Churgin M, Yao B, De La Torre M, Fang-Yen C, Temmerman L. Optimized criteria for locomotion-based healthspan evaluation in C. elegans using the WorMotel system. PLoS One 2020; 15:e0229583. [PMID: 32126105 PMCID: PMC7053758 DOI: 10.1371/journal.pone.0229583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/11/2020] [Indexed: 01/17/2023] Open
Abstract
Getting a grip on how we may age healthily is a central interest of biogerontological research. To this end, a number of academic teams developed platforms for life- and healthspan assessment in Caenorhabditis elegans. These are very appealing for medium- to high throughput screens, but a broader implementation is lacking due to many systems relying on custom scripts for data analysis that others struggle to adopt. Hence, user-friendly recommendations would help to translate raw data into interpretable results. The aim of this communication is to streamline the analysis of data obtained by the WorMotel, an economically and practically appealing screening platform, in order to facilitate the use of this system by interested researchers. We here detail recommendations for the stepwise conversion of raw image data into activity values and explain criteria for assessment of health in C. elegans based on locomotion. Our analysis protocol can easily be adopted by researchers, and all needed scripts and a tutorial are available in S1 and S2 Files.
Collapse
Affiliation(s)
- Areta Jushaj
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Matthew Churgin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States of America
| | - Bowen Yao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States of America
| | - Miguel De La Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States of America
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
44
|
Essmann CL, Martinez-Martinez D, Pryor R, Leung KY, Krishnan KB, Lui PP, Greene NDE, Brown AEX, Pawar VM, Srinivasan MA, Cabreiro F. Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. Nat Commun 2020; 11:1043. [PMID: 32098962 PMCID: PMC7042263 DOI: 10.1038/s41467-020-14785-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing.
Collapse
Affiliation(s)
- Clara L Essmann
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK.
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosina Pryor
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Kit-Yi Leung
- UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kalaivani Bala Krishnan
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
| | - Prudence Pokway Lui
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vijay M Pawar
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK
| | - Mandayam A Srinivasan
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK
- Department of Mechanical Engineering and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Filipe Cabreiro
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK.
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
45
|
Felker DP, Robbins CE, McCormick MA. Automation of C. elegans lifespan measurement. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Felker DP, Robbins CE, McCormick MA. Automation of C. elegans lifespan measurement. TRANSLATIONAL MEDICINE OF AGING 2019; 4:1-10. [PMID: 33134648 PMCID: PMC7597742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Aging is a fundamental biological process that is still not fully understood. As many of the most significant human diseases have aging as their greatest risk factor, a better understanding of aging potentially has enormous practical implications in treating these diseases. The nematode C. elegans is an exceptionally useful genetic model organism that had been used with great success to shed light on many genes and pathways that are involved in aging. Many of these pathways and mechanisms have been shown to be conserved through mammals. The standard methods for assaying survival in C. elegans to measure changes in lifespan are tedious and time consuming. This limits the throughput and productivity of C. elegans aging researchers. In recent years, many inroads have been made into automating various facets of the collection and analysis of C. elegans lifespan experimental data. The advances described in this review all work to ameliorate some of the hurdles that come with manual worm lifespan scoring, by automating or eliminating some of the most time consuming aspects of the assay. By greatly increasing the throughput of lifespan assays, these methods will enable types of experiments (e.g., drug library screens) whose scale is currently impractical. These methods have already proved exceptionally useful, and some of them are likely to be the predecessors of even more refined methods that could lead to breakthroughs in the ability to study lifespan in C. elegans. This could in turn potentially revolutionize our understanding of the basic biology of aging, and one day lead to treatments that could offset or delay age-related diseases in humans.
Collapse
Affiliation(s)
- Daniel P Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Christine E Robbins
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence
| |
Collapse
|
47
|
From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019; 571:183-192. [PMID: 31292558 DOI: 10.1038/s41586-019-1365-2] [Citation(s) in RCA: 829] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
For several decades, understanding ageing and the processes that limit lifespan have challenged biologists. Thirty years ago, the biology of ageing gained unprecedented scientific credibility through the identification of gene variants that extend the lifespan of multicellular model organisms. Here we summarize the milestones that mark this scientific triumph, discuss different ageing pathways and processes, and suggest that ageing research is entering a new era that has unique medical, commercial and societal implications. We argue that this era marks an inflection point, not only in ageing research but also for all biological research that affects the human healthspan.
Collapse
|
48
|
Patel DS, Xu N, Lu H. Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans. Lab Anim (NY) 2019; 48:207-216. [PMID: 31217565 DOI: 10.1038/s41684-019-0326-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
Deep phenotyping is an emerging conceptual paradigm and experimental approach aimed at measuring and linking many aspects of a phenotype to understand its underlying biology. To date, deep phenotyping has been applied mostly in cultured cells and used less in multicellular organisms. However, in the past decade, it has increasingly been recognized that deep phenotyping could lead to a better understanding of how genetics, environment and stochasticity affect the development, physiology and behavior of an organism. The nematode Caenorhabditis elegans is an invaluable model system for studying how genes affect a phenotypic trait, and new technologies have taken advantage of the worm's physical attributes to increase the throughput and informational content of experiments. Coupling of these technical advancements with computational and analytical tools has enabled a boom in deep-phenotyping studies of C. elegans. In this Review, we highlight how these new technologies and tools are digging into the biological origins of complex, multidimensional phenotypes.
Collapse
Affiliation(s)
- Dhaval S Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nan Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
49
|
Singh PP, Demmitt BA, Nath RD, Brunet A. The Genetics of Aging: A Vertebrate Perspective. Cell 2019; 177:200-220. [PMID: 30901541 PMCID: PMC7592626 DOI: 10.1016/j.cell.2019.02.038] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Aging negatively impacts vitality and health. Many genetic pathways that regulate aging were discovered in invertebrates. However, the genetics of aging is more complex in vertebrates because of their specialized systems. This Review discusses advances in the genetic regulation of aging in vertebrates from work in mice, humans, and organisms with exceptional lifespans. We highlight challenges for the future, including sex-dependent differences in lifespan and the interplay between genes and environment. We also discuss how the identification of reliable biomarkers of age and development of new vertebrate models can be leveraged for personalized interventions to counter aging and age-related diseases.
Collapse
Affiliation(s)
- Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Ravi D Nath
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Cortijo S, Aydin Z, Ahnert S, Locke JC. Widespread inter-individual gene expression variability in Arabidopsis thaliana. Mol Syst Biol 2019; 15:e8591. [PMID: 30679203 PMCID: PMC6346214 DOI: 10.15252/msb.20188591] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A fundamental question in biology is how gene expression is regulated to give rise to a phenotype. However, transcriptional variability is rarely considered although it could influence the relationship between genotype and phenotype. It is known in unicellular organisms that gene expression is often noisy rather than uniform, and this has been proposed to be beneficial when environmental conditions are unpredictable. However, little is known about inter-individual transcriptional variability in multicellular organisms. Using transcriptomic approaches, we analysed gene expression variability between individual Arabidopsis thaliana plants growing in identical conditions over a 24-h time course. We identified hundreds of genes that exhibit high inter-individual variability and found that many are involved in environmental responses, with different classes of genes variable between the day and night. We also identified factors that might facilitate gene expression variability, such as gene length, the number of transcription factors regulating the genes and the chromatin environment. These results shed new light on the impact of transcriptional variability in gene expression regulation in plants.
Collapse
Affiliation(s)
- Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Zeynep Aydin
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Sebastian Ahnert
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - James Cw Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|