1
|
Pankammoon P, Salinas MBS, Thitaram C, Sathanawongs A. The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives. Int J Mol Sci 2025; 26:3310. [PMID: 40244161 PMCID: PMC11989385 DOI: 10.3390/ijms26073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
Collapse
Affiliation(s)
- Peachanika Pankammoon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
| | - Marvin Bryan Segundo Salinas
- Department of Basic Veterinary Sciences, College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines;
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Sathanawongs
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
2
|
Cox MS, Dill-McFarland KA, Simmons JD, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Multi-omic latent variable data integration reveals multicellular structure pathways associated with resistance to tuberculin skin test (TST)/interferon gamma release assay (IGRA) conversion in Uganda. BMC Genomics 2025; 26:265. [PMID: 40102730 PMCID: PMC11916984 DOI: 10.1186/s12864-025-11407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
Understanding the mechanisms of early clearance of Mycobacterium tuberculosis (Mtb) may illuminate new therapeutic strategies for tuberculosis (TB). We previously found genetic, epigenetic, and transcriptomic signatures associated with resistance (resister, RSTR) to tuberculin skin test (TST)/interferon gamma release assay (IGRA) conversion among highly exposed TB contacts. We hypothesized that integration of these datasets with multi-omic latent factor methods would detect pathways differentiating RSTR patients from those with asymptomatic TB infection (TBI, also known as latent TB infection or LTBI) that were not detected in individual dataset analyses. We pre-filtered and scaled features with the largest change between TBI and RSTR groups for 126 patients with data in at least two of five data modalities: single nucleotide polymorphisms (SNP), monocyte RNAseq (baseline and Mtb-stimulated conditions), and monocyte epigenetics (methylation and ATAC-seq). Using multiomic latent factor analysis (MOFA), we generated ten latent factors on the subset of 33 patients with all five datasets available, four of which differed by RSTR status (FDR < 0.1). Factor 4 showed the greatest difference between RSTR and TBI groups (FDR < 0.001). Three additional latent factor integration methods also distinguished the RSTR and TBI groups and identified overlapping features with MOFA. Using pathway analysis and a cluster-based enrichment method, we identified functions associated with latent factors and found that MOFA Factors 2-4 include functions related to cell-cell adhesion, cell shape, and multicellular structure development. In summary, latent variable integration methods uncovered signatures associated with resistance to TST/IGRA conversion that were not detected by individual dataset analyses and included pathways associated with cellular interactions and multicellular structures.
Collapse
Affiliation(s)
- Madison S Cox
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | - Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Zhu J, Li Z, Xue D, Meng Z, Shao S, Pulecio J, Zhang G, Huangfu D, Evans T, Schultz PG, Chen S. A Chemical Epigenetic Probe to Capture the Site-Specific DNA-Binding Protein Complex. RESEARCH SQUARE 2025:rs.3.rs-5915426. [PMID: 40162224 PMCID: PMC11952667 DOI: 10.21203/rs.3.rs-5915426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Site-specific DNA binding by proteins is critical for regulating genetic activity and cell fate decision. However, identifying proteins bound to specific genomic regions (e.g., promoter or enhancer) remains challenging. To address this, we developed a chemical epigenetic tool, named Site-specific non-canonical amino acid resolved Protein EnRichment (SUPER) system, incorporating a photo-crosslinking amino acid into nuclease-deficient dCas9 mutant. Human pluripotent stem cells (hPSCs) carrying SUPER enables the capture of proteins bound to, in theory, any genomic location, facilitating the study of the cell context-dependent DNA-protein interactions. Using SUPER, we identified OCT4/SOX2/CARHSP1 complex binding to the NANOG promoter to maintain pluripotency in hPSCs. During ectoderm differentiation, ZIC2 acts as a competitive inhibitor, binding the same promoter to downregulate NANOG expression and promote differentiation. Additionally, SUPER identified ZNF8 binding to the distal regulatory region of OCT4 and maintain naïve pluripotency. In summary, SUPER provides a robust system for uncovering the cell context-dependent, site-specific genome regulators, offering valuable insights into gene regulation networks driving cell fate transitions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Zhucui Li
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Zihe Meng
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Sida Shao
- Department of Chemistry, Scripps Research, San Diego, CA, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | | | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
4
|
Li Y, Meng Z, Fan C, Rong H, Xi Y, Liao Q. Identification and multi-omics analysis of essential coding and long non-coding genes in colorectal cancer. Biochem Biophys Rep 2025; 41:101938. [PMID: 40034256 PMCID: PMC11874739 DOI: 10.1016/j.bbrep.2025.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Essential genes are indispensable for the survival of cancer cell. CRISPR/Cas9-based pooled genetic screens have distinguished the essential genes and their functions in distinct cellular processes. Nevertheless, the landscape of essential genes at the single cell levels and the effect on the tumor microenvironment (TME) remains limited. Here, we identified 396 essential protein-coding genes (ESPs) by integration of 8 genome-wide CRISPR loss-of-function screen datasets of colorectal cancer (CRC) cell lines and single-cell RNA sequencing (scRNA-seq) data of CRC tissues. Then, 29 essential long non-coding genes (ESLs) were predicted using Hypergeometric Test (HT) and Personalized PageRank (PPR) algorithms based on ESPs and co-expressed network constructed from scRNA-seq. CRISPR/Cas9 knockout experiment verified the effect of several ESPs and ESLs on the survival of CRC cell line. Furthermore, multi-omics features of ESPs and ESLs were illustrated by examining their expression patterns and transcription factor (TF) regulatory network at the single cell level, as well as DNA mutation and DNA methylation events at bulk level. Finally, through integrating multiple intracellular regulatory networks with cell-cell communication network (CCN), we elucidated that CD47 and MIF are regulated by multiple CRC essential genes, and the anti-cancer drugs sunitinib can interfere the expression of them potentially. Our findings provide a comprehensive asset of CRC ESPs and ESLs, sheding light on the mining of potential therapy targets for CRC.
Collapse
Affiliation(s)
- Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Zixing Meng
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chengjiang Fan
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Hao Rong
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qi Liao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Zhang YR, Guo SM, Shi XY, Ding YW, Li HB, Li L, Xu JW, He X, Ma BX, Yin Y, Zhou LQ. Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation. Cell Rep 2025; 44:115215. [PMID: 39823229 DOI: 10.1016/j.celrep.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/22/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages. Gene collections with different expression patterns are obtained, with genes mainly transcribed at the mouse early/late 2-cell stage designated as zygotic genome activation-early/late 2-cell (ZGA-E2C/L2C). ZGA-E2C genes are short and have low promoter CpG density. Protein translation/degradation not only regulates transcription activity through stepwise orchestration of histone modifications, transcriptional initiation, and elongation in early mouse embryos but also controls on/off switching of ZGA-E2C/L2C genes in maternal aged mouse embryos. Genes mainly transcribed at the mouse 2-cell stage can also be transcribed as early as the human 2-cell stage.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shi-Meng Guo
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing 400012, P.R. China
| | - Xiao-Yan Shi
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi-Wen Ding
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huai-Biao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jia-Wei Xu
- NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bing-Xin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China.
| |
Collapse
|
6
|
Liang Y, Yao X, Han J, Wang J, Zhang X, Zhao D, Jiang C, Geng L, Lv S, Liu Z, Mu Y. Establishment of a CRISPR-Based Lentiviral Activation Library for Transcription Factor Screening in Porcine Cells. Animals (Basel) 2024; 15:19. [PMID: 39794961 PMCID: PMC11718943 DOI: 10.3390/ani15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
Transcription factors play important roles in the growth and development of various tissues in pigs, such as muscle, fat, and bone. A transcription-factor-scale activation library based on the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) system could facilitate the discovery and functional characterization of the transcription genes involved in a specific gene network. Here, we have designed and constructed a CRISPR activation (CRISPRa) sgRNA library, containing 5056 sgRNAs targeting the promoter region of 1264 transcription factors in pigs. The sgRNA library, including sgRNA with MS2 loops, is a single-vector system and is packaged with lentivirus for cell screening. Porcine PK15 cells expressing the porcine OCT4 promoter driving EGFP, dCas9 fused with VP64, and MS2-binding protein-p65-HSF1 were constructed, and then, the sgRNA activation library was used to screen the transcription factors regulating OCT4 expression. After the lentiviral transduction and deep sequencing of the CRISPR sgRNAs library, the highest ranking candidate genes were identified, including 31 transcription factors activating OCT4 gene expression and 5 transcription factors inhibiting OCT4 gene expression. The function and gene regulation of the candidate genes were further confirmed by the CRISPR activation system in PK15 cells. The CRISPR activation library targeting pig transcription factors provides a promising platform for the systematic discovery and study of genes that determine cell fate.
Collapse
Affiliation(s)
- Yingjuan Liang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Xiaoxia Yao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jingxin Han
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jinpeng Wang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples’ Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Changping District, Beijing 102206, China;
| | - Xiao Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Donglin Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
| | - Lishuang Geng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Shihao Lv
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (X.Y.); (J.H.); (X.Z.); (C.J.); (L.G.); (S.L.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
7
|
Hu S, Gan M, Wei Z, Shang P, Song L, Feng J, Chen L, Niu L, Wang Y, Zhang S, Shen L, Zhu L, Zhao Y. Identification of host factors for livestock and poultry viruses: genome-wide screening technology based on the CRISPR system. Front Microbiol 2024; 15:1498641. [PMID: 39640855 PMCID: PMC11619636 DOI: 10.3389/fmicb.2024.1498641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Genome-wide CRISPR library screening technology is a gene function research tool developed based on the CRISPR/Cas9 gene-editing system. The clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) system, considered the third generation of gene editing after zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), is widely used for screening various viral host factors. CRISPR libraries are classified into three main categories based on the different functions of Cas9 enzymes: CRISPR knockout (CRISPR KO) library screening, CRISPR transcriptional activation (CRISPRa) library screening, and CRISPR transcriptional interference (CRISPRi) library screening. Recently, genome-wide CRISPR library screening technology has been used to identify host factors that interact with viruses at various stages, including adsorption, endocytosis, and replication. By specifically modulating the expression of these host factors, it becomes possible to cultivate disease-resistant varieties, establish disease models, and design and develop vaccines, among other applications. This review provides an overview of the development and technical processes of genome-wide CRISPR library screening, as well as its applications in identifying viral host factors in livestock and poultry.
Collapse
Affiliation(s)
- Shijie Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Ziang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Pan Shang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Lei Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan, Sichuan Agricultural University, Ya’an, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Ya’an, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
8
|
Anlaş K, Gritti N, Nakaki F, Salamó Palau L, Tlili SL, Oriola D, Arató K, Le Lim J, Sharpe J, Trivedi V. Early autonomous patterning of the anteroposterior axis in gastruloids. Development 2024; 151:dev202171. [PMID: 39552366 DOI: 10.1242/dev.202171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/17/2024] [Indexed: 11/19/2024]
Abstract
Minimal in vitro systems composed of embryonic stem cells (ESCs) have been shown to recapitulate the establishment of the anteroposterior (AP) axis. In contrast to the native embryo, ESC aggregates - such as gastruloids - can break symmetry, which is demarcated by polarization of the mesodermal marker T, autonomously without any localized external cues. However, associated earliest patterning events, such as the spatial restriction of cell fates and concomitant transcriptional changes, remain poorly understood. Here, we dissect the dynamics of AP axis establishment in mouse gastruloids, particularly before external Wnt stimulation. Through single-cell RNA sequencing, we identify key cell state transitions and the molecular signatures of T+ and T- populations underpinning AP polarization. We also show that this process is robust to modifications of aggregate size. Finally, transcriptomic comparison with the mouse embryo indicates that gastruloids develop similar mesendodermal cell types, despite initial differences in their primed pluripotent populations, which adopt a more mesenchymal state in lieu of an epiblast-like transcriptome. Hence, our findings suggest the possibility of alternate ESC states in vivo and in vitro that can converge onto similar cell fates.
Collapse
Affiliation(s)
| | | | | | | | - Sham Leilah Tlili
- Aix-Marseille Univ., CNRS, UMR 7288, IBDM, Turing Center for Living Systems, 13288 Marseille, France
| | | | | | | | - James Sharpe
- EMBL Barcelona, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Vikas Trivedi
- EMBL Barcelona, 08003 Barcelona, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Liu B, Hu S, Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024; 27:110486. [PMID: 39171294 PMCID: PMC11338156 DOI: 10.1016/j.isci.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Single-cell technologies have been known as advanced and powerful tools to study tumor biological systems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug discovery and development. Specifically, single-cell technologies can promote the discovery of drug targets, help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tumor drugs. Emerging single-cell analysis technologies have been developed to further integrating multidimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review, we systematically summarized the applications of single-cell technologies in various sections of drug discovery for tumor treatment, including target identification, high-throughput drug screening, and pharmacokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth understanding of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize therapeutic strategies and improve clinical outcomes of tumor patients.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China
| |
Collapse
|
10
|
Deek RA, Ma S, Lewis J, Li H. Statistical and computational methods for integrating microbiome, host genomics, and metabolomics data. eLife 2024; 13:e88956. [PMID: 38832759 PMCID: PMC11149933 DOI: 10.7554/elife.88956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.
Collapse
Affiliation(s)
- Rebecca A Deek
- Department of Biostatistics, University of PittsburghPittsburghUnited States
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt School of MedicineNashvilleUnited States
| | - James Lewis
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
11
|
Barry T, Mason K, Roeder K, Katsevich E. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection. Genome Biol 2024; 25:124. [PMID: 38760839 PMCID: PMC11100084 DOI: 10.1186/s13059-024-03254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method - SCEPTRE low-MOI - that resolves these analysis challenges and demonstrates improved calibration and power.
Collapse
Affiliation(s)
- Timothy Barry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Kaishu Mason
- Department of Statistics and Data Science, Wharton School, University of Pennsylvania, Philadelphia, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, USA
| | - Eugene Katsevich
- Department of Statistics and Data Science, Wharton School, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
12
|
Barry T, Mason K, Roeder K, Katsevich E. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540875. [PMID: 38659821 PMCID: PMC11042176 DOI: 10.1101/2023.05.15.540875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method - SCEPTRE low-MOI - that resolves these analysis challenges and demonstrates improved calibration and power.
Collapse
|
13
|
Valdivia-Francia F, Sendoel A. No country for old methods: New tools for studying microproteins. iScience 2024; 27:108972. [PMID: 38333695 PMCID: PMC10850755 DOI: 10.1016/j.isci.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Microproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts. In this review, we explore the recent advancements in sORF research, focusing on the new methodologies and computational approaches that have facilitated their identification and functional characterization. Leveraging these new tools hold great promise for dissecting the diverse cellular roles of microproteins and will ultimately pave the way for understanding their role in the pathogenesis of diseases and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Fabiola Valdivia-Francia
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
| |
Collapse
|
14
|
Alda-Catalinas C, Ibarra-Soria X, Flouri C, Gordillo JE, Cousminer D, Hutchinson A, Sun B, Pembroke W, Ullrich S, Krejci A, Cortes A, Acevedo A, Malla S, Fishwick C, Drewes G, Rapiteanu R. Mapping the functional impact of non-coding regulatory elements in primary T cells through single-cell CRISPR screens. Genome Biol 2024; 25:42. [PMID: 38308274 PMCID: PMC10835965 DOI: 10.1186/s13059-024-03176-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Drug targets with genetic evidence are expected to increase clinical success by at least twofold. Yet, translating disease-associated genetic variants into functional knowledge remains a fundamental challenge of drug discovery. A key issue is that the vast majority of complex disease associations cannot be cleanly mapped to a gene. Immune disease-associated variants are enriched within regulatory elements found in T-cell-specific open chromatin regions. RESULTS To identify genes and molecular programs modulated by these regulatory elements, we develop a CRISPRi-based single-cell functional screening approach in primary human T cells. Our pipeline enables the interrogation of transcriptomic changes induced by the perturbation of regulatory elements at scale. We first optimize an efficient CRISPRi protocol in primary CD4+ T cells via CROPseq vectors. Subsequently, we perform a screen targeting 45 non-coding regulatory elements and 35 transcription start sites and profile approximately 250,000 T -cell single-cell transcriptomes. We develop a bespoke analytical pipeline for element-to-gene (E2G) mapping and demonstrate that our method can identify both previously annotated and novel E2G links. Lastly, we integrate genetic association data for immune-related traits and demonstrate how our platform can aid in the identification of effector genes for GWAS loci. CONCLUSIONS We describe "primary T cell crisprQTL" - a scalable, single-cell functional genomics approach for mapping regulatory elements to genes in primary human T cells. We show how this framework can facilitate the interrogation of immune disease GWAS hits and propose that the combination of experimental and QTL-based techniques is likely to address the variant-to-function problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Sun
- Genomic Sciences, GSK, Stevenage, UK
| | | | | | | | | | | | | | | | - Gerard Drewes
- Genomic Sciences, GSK, Stevenage, UK
- Genomic Sciences, GSK, Collegeville, PA, USA
| | | |
Collapse
|
15
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Yang C, Lei Y, Ren T, Yao M. The Current Situation and Development Prospect of Whole-Genome Screening. Int J Mol Sci 2024; 25:658. [PMID: 38203828 PMCID: PMC10779205 DOI: 10.3390/ijms25010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
High-throughput genetic screening is useful for discovering critical genes or gene sequences that trigger specific cell functions and/or phenotypes. Loss-of-function genetic screening is mainly achieved through RNA interference (RNAi), CRISPR knock-out (CRISPRko), and CRISPR interference (CRISPRi) technologies. Gain-of-function genetic screening mainly depends on the overexpression of a cDNA library and CRISPR activation (CRISPRa). Base editing can perform both gain- and loss-of-function genetic screening. This review discusses genetic screening techniques based on Cas9 nuclease, including Cas9-mediated genome knock-out and dCas9-based gene activation and interference. We compare these methods with previous genetic screening techniques based on RNAi and cDNA library overexpression and propose future prospects and applications for CRISPR screening.
Collapse
Affiliation(s)
| | | | | | - Mingze Yao
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (C.Y.); (Y.L.); (T.R.)
| |
Collapse
|
17
|
Kirschenbaum D, Xie K, Ingelfinger F, Katzenelenbogen Y, Abadie K, Look T, Sheban F, Phan TS, Li B, Zwicky P, Yofe I, David E, Mazuz K, Hou J, Chen Y, Shaim H, Shanley M, Becker S, Qian J, Colonna M, Ginhoux F, Rezvani K, Theis FJ, Yosef N, Weiss T, Weiner A, Amit I. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 2024; 187:149-165.e23. [PMID: 38134933 DOI: 10.1016/j.cell.2023.11.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.
Collapse
Affiliation(s)
- Daniel Kirschenbaum
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Florian Ingelfinger
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Kathleen Abadie
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Thomas Look
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Truong San Phan
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Pascale Zwicky
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ido Yofe
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eyal David
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Kfir Mazuz
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soeren Becker
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jiawen Qian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Assaf Weiner
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
18
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Pérez-García I, Pérez-García V. CRISPR Activation in Mouse Trophoblast Stem Cells. Methods Mol Biol 2024; 2781:93-103. [PMID: 38502446 DOI: 10.1007/978-1-0716-3746-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The placenta is a vital organ that regulates nutrient supply to the developing embryo during gestation. In mice, the placenta is composed of trophoblast lineage and mesodermal derivatives, which merge through the chorioallantoic fusion process in a critical event for the progression of placenta development. The trophoblast lineage is derived from self-renewing, multipotent cells known as mouse trophoblast stem cells (mTSCs). These cells are a valuable tool that allows scientists to comprehend the signals regulating major placental cell types' self-renewal and differentiation capacity. Recent advances in CRISPR-Cas9 genome editing applied in mTSCs have provided novel insights into the molecular networks involved in placentation. Here, we present a comprehensive CRISPR activation (CRISPRa) protocol based on the CRISPR/gRNA-directed synergistic activation mediator (SAM) method to overexpress specific target genes in mTSCs.
Collapse
|
20
|
Dufva O, Gandolfi S, Huuhtanen J, Dashevsky O, Duàn H, Saeed K, Klievink J, Nygren P, Bouhlal J, Lahtela J, Näätänen A, Ghimire BR, Hannunen T, Ellonen P, Lähteenmäki H, Rumm P, Theodoropoulos J, Laajala E, Härkönen J, Pölönen P, Heinäniemi M, Hollmén M, Yamano S, Shirasaki R, Barbie DA, Roth JA, Romee R, Sheffer M, Lähdesmäki H, Lee DA, De Matos Simoes R, Kankainen M, Mitsiades CS, Mustjoki S. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 2023; 56:2816-2835.e13. [PMID: 38091953 DOI: 10.1016/j.immuni.2023.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Sara Gandolfi
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hanna Duàn
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Petra Nygren
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Näätänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Lähteenmäki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Pauliina Rumm
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Essi Laajala
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jouni Härkönen
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Merja Heinäniemi
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Dean A Lee
- Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusima (HUS), 00290 Helsinki, Finland
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland.
| |
Collapse
|
21
|
Hecker D, Lauber M, Behjati Ardakani F, Ashrafiyan S, Manz Q, Kersting J, Hoffmann M, Schulz MH, List M. Computational tools for inferring transcription factor activity. Proteomics 2023; 23:e2200462. [PMID: 37706624 DOI: 10.1002/pmic.202200462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Transcription factors (TFs) are essential players in orchestrating the regulatory landscape in cells. Still, their exact modes of action and dependencies on other regulatory aspects remain elusive. Since TFs act cell type-specific and each TF has its own characteristics, untangling their regulatory interactions from an experimental point of view is laborious and convoluted. Thus, there is an ongoing development of computational tools that estimate transcription factor activity (TFA) from a variety of data modalities, either based on a mapping of TFs to their putative target genes or in a genome-wide, gene-unspecific fashion. These tools can help to gain insights into TF regulation and to prioritize candidates for experimental validation. We want to give an overview of available computational tools that estimate TFA, illustrate examples of their application, debate common result validation strategies, and discuss assumptions and concomitant limitations.
Collapse
Affiliation(s)
- Dennis Hecker
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Michael Lauber
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Fatemeh Behjati Ardakani
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Shamim Ashrafiyan
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Quirin Manz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- GeneSurge GmbH, München, Germany
| | - Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcel H Schulz
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
22
|
Wang J, Shi A, Lyu J. A comprehensive atlas of epigenetic regulators reveals tissue-specific epigenetic regulation patterns. Epigenetics 2023; 18:2139067. [PMID: 36305095 PMCID: PMC9980636 DOI: 10.1080/15592294.2022.2139067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epigenetic machinery contributes to gene regulation in eukaryotic species. However, the machinery including more than 600 epigenetic regulator (ER) genes responsible for reading, writing, and erasing histone modifications and DNA modifications remains largely uncharacterized across species. We compile a comprehensive list of ERs based on an evolutionary analysis across 23 species, which is the most comprehensive ER list in various species until recently. We further perform comparative transcriptomic analyses across different tissues in humans, mice, as well as other amniote species. We observe a consistent tissue-of-origin expression specificity pattern of duplicated ER genes across species and suggest links between expression specificity and ER gene evolution as well as ER function. Additional analyses further suggest that ER duplication can generate tissue-specific ER genes with the same epigenetic substrates, which may be closely related to their regulatory specificity in tissue development. Our work can serve as a foundation to better comprehend the tissue-specific expression patterns of ER genes from an evolutionary perspective and also the functional implications of ERs in tissue-specific epigenetic regulation.
Collapse
Affiliation(s)
- Jilu Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Aiai Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Jie Lyu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China.,Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Meyers S, Demeyer S, Cools J. CRISPR screening in hematology research: from bulk to single-cell level. J Hematol Oncol 2023; 16:107. [PMID: 37875911 PMCID: PMC10594891 DOI: 10.1186/s13045-023-01495-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023] Open
Abstract
The CRISPR genome editing technology has revolutionized the way gene function is studied. Genome editing can be achieved in single genes or for thousands of genes simultaneously in sensitive genetic screens. While conventional genetic screens are limited to bulk measurements of cell behavior, recent developments in single-cell technologies make it possible to combine CRISPR screening with single-cell profiling. In this way, cell behavior and gene expression can be monitored simultaneously, with the additional possibility of including data on chromatin accessibility and protein levels. Moreover, the availability of various Cas proteins leading to inactivation, activation, or other effects on gene function further broadens the scope of such screens. The integration of single-cell multi-omics approaches with CRISPR screening open the path to high-content information on the impact of genetic perturbations at single-cell resolution. Current limitations in cell throughput and data density need to be taken into consideration, but new technologies are rapidly evolving and are likely to easily overcome these limitations. In this review, we discuss the use of bulk CRISPR screening in hematology research, as well as the emergence of single-cell CRISPR screening and its added value to the field.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Yu Q, Van Minsel P, Galle E, Thienpont B. GiRAFR improves gRNA detection and annotation in single-cell CRISPR screens. Commun Biol 2023; 6:975. [PMID: 37741886 PMCID: PMC10518011 DOI: 10.1038/s42003-023-05351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Novel methods that combine single cell RNA-seq with CRISPR screens enable high-throughput characterization of transcriptional changes caused by genetic perturbations. Dedicated software is however lacking to annotate CRISPR guide RNA (gRNA) libraries and associate them with single cell transcriptomes. Here, we describe a CRISPR droplet sequencing (CROP-seq) dataset. During analysis, we observed that the most commonly used method fails to detect mutant gRNAs. We therefore developed a python tool to identify and characterize intact and mutant gRNAs, called GiRAFR. We show that mutant gRNAs are dysfunctional, and failure to detect and annotate them leads to an inflated estimate of the number of untransformed cells, attenuated downregulation of target genes, as well as an underestimated multiplet frequency. These findings are mirrored in publicly available datasets, where we find that up to 35% of cells are transduced with a mutant gRNA. Applying GiRAFR hence stands to improve the annotation and quality of single cell CRISPR screens.
Collapse
Affiliation(s)
- Qian Yu
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Paulien Van Minsel
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Eva Galle
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
25
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
26
|
Taubenschmid-Stowers J, Reik W. Human 8-cell embryo-like cells from pluripotent stem cells. Curr Opin Genet Dev 2023; 81:102066. [PMID: 37356343 DOI: 10.1016/j.gde.2023.102066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
The totipotent embryo initiates transcription during zygotic or embryonic genome activation (EGA, ZGA). ZGA occurs at the 8-cell stage in humans and its failure leads to developmental arrest. Understanding the molecular pathways underlying ZGA and totipotency is essential to comprehend human development. Recently, human 8-cell-like cells (8CLCs) have been discovered in vitro that resemble the 8-cell embryo. 8CLCs exist among naive pluripotent stem cells and can be induced genetically or chemically. Their ZGA-like transcriptome, transposable element activation, 8-cell embryo-specific protein expression, and developmental properties make them an exceptional model system to study early embryonic cell-state transitions and human totipotency programs in vitro.
Collapse
Affiliation(s)
| | - Wolf Reik
- Altos Labs Cambridge Institute of Science, Cambridge, UK; Babraham Institute, Cambridge, UK; Wellcome Sanger Institute, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. https://twitter.com/@ReikLab
| |
Collapse
|
27
|
Gupta N, Yakhou L, Albert JR, Azogui A, Ferry L, Kirsh O, Miura F, Battault S, Yamaguchi K, Laisné M, Domrane C, Bonhomme F, Sarkar A, Delagrange M, Ducos B, Cristofari G, Ito T, Greenberg MVC, Defossez PA. A genome-wide screen reveals new regulators of the 2-cell-like cell state. Nat Struct Mol Biol 2023; 30:1105-1118. [PMID: 37488355 DOI: 10.1038/s41594-023-01038-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.
Collapse
Affiliation(s)
- Nikhil Gupta
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France.
- Joint AZ CRUK Functional Genomics Centre, The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Lounis Yakhou
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | | | - Anaelle Azogui
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Laure Ferry
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Olivier Kirsh
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | - Sarah Battault
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Kosuke Yamaguchi
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Marthe Laisné
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Cécilia Domrane
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology, UMR3523, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Arpita Sarkar
- IRCAN, Université Côte d'Azur, Inserm, CNRS, Nice, France
| | - Marine Delagrange
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | | | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | | | | |
Collapse
|
28
|
Yang G, Xin Q, Feng I, Wu D, Dean J. Germ cell-specific eIF4E1b regulates maternal mRNA translation to ensure zygotic genome activation. Genes Dev 2023; 37:418-431. [PMID: 37257918 PMCID: PMC10270193 DOI: 10.1101/gad.350400.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Translation of maternal mRNAs is detected before transcription of zygotic genes and is essential for mammalian embryo development. How certain maternal mRNAs are selected for translation instead of degradation and how this burst of translation affects zygotic genome activation remain unknown. Using gene-edited mice, we document that the oocyte-specific eukaryotic translation initiation factor 4E family member 1b (eIF4E1b) is the regulator of maternal mRNA expression that ensures subsequent reprogramming of the zygotic genome. In oocytes, eIF4E1b binds to transcripts encoding translation machinery proteins, chromatin remodelers, and reprogramming factors to promote their translation in zygotes and protect them from degradation. The protein products are thought to establish an open chromatin landscape in one-cell zygotes to enable transcription of genes required for cleavage stage development. Our results define a program for rapid resetting of the zygotic epigenome that is regulated by maternal mRNA expression and provide new insights into the mammalian maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Guanghui Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qiliang Xin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Iris Feng
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Di Wu
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
30
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
31
|
Zhang B, Ren Z, Zheng H, Lin M, Chen G, Luo OJ, Zhu G. CRISPR activation screening in a mouse model for drivers of hepatocellular carcinoma growth and metastasis. iScience 2023; 26:106099. [PMID: 36843840 PMCID: PMC9947337 DOI: 10.1016/j.isci.2023.106099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major cause of cancer-related mortality worldwide. Here we described a genome-wide screen by CRISPR activation (CRISPRa) library in vivo for drivers of HCC growth and metastasis. Pathological results showed the cell population formed highly metastatic tumors in lung after being mutagenized with CRISPRa. In vitro validation indicated overexpression of XAGE1B, PLK4, LMO1 and MYADML2 promoted cells proliferation and invasion, and the inhibition suppressed HCC progress. In addition, we reported high MYADML2 protein level exhibited worse overall survival in HCC, which increased significantly in patients over 60 years. Moreover, high MYADML2 reduced the sensitivity to chemotherapeutic drugs. Interestingly, immune cell infiltration analysis showed that the dendritic cells, macrophages, and so forth might play important role in HCC progress. In brief, we provides a roadmap for screening functional genes related to HCC invasion and metastasis in vivo, which may provide new potential targets for the treatment of HCC.
Collapse
Affiliation(s)
- Bei Zhang
- Departments of Geriatrics and Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Zhiyao Ren
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China,Guangzhou Geriatric Hospital, Guangzhou, China,Collaborative Innovation Center for Civil Affairs of Guangzhou, Guangzhou, China
| | - Hongmei Zheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Meilan Lin
- Departments of Geriatrics and Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guobing Chen
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, China,Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China,Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China,Corresponding author
| | - Guodong Zhu
- Departments of Geriatrics and Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,Guangzhou Geriatric Hospital, Guangzhou, China,Corresponding author
| |
Collapse
|
32
|
Treen N, Chavarria E, Weaver CJ, Brangwynne CP, Levine M. An FGF timer for zygotic genome activation. Genes Dev 2023; 37:80-85. [PMID: 36801820 PMCID: PMC10069452 DOI: 10.1101/gad.350164.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Zygotic genome activation has been extensively studied in a variety of systems including flies, frogs, and mammals. However, there is comparatively little known about the precise timing of gene induction during the earliest phases of embryogenesis. Here we used high-resolution in situ detection methods, along with genetic and experimental manipulations, to study the timing of zygotic activation in the simple model chordate Ciona with minute-scale temporal precision. We found that two Prdm1 homologs in Ciona are the earliest genes that respond to FGF signaling. We present evidence for a FGF timing mechanism that is driven by ERK-mediated derepression of the ERF repressor. Depletion of ERF results in ectopic activation of FGF target genes throughout the embryo. A highlight of this timer is the sharp transition in FGF responsiveness between the eight- and 16-cell stages of development. We propose that this timer is an innovation of chordates that is also used by vertebrates.
Collapse
Affiliation(s)
- Nicholas Treen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA;
| | - Emily Chavarria
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Claire J Weaver
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Clifford P Brangwynne
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
33
|
Cheng J, Lin G, Wang T, Wang Y, Guo W, Liao J, Yang P, Chen J, Shao X, Lu X, Zhu L, Wang Y, Fan X. Massively Parallel CRISPR-Based Genetic Perturbation Screening at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204484. [PMID: 36504444 PMCID: PMC9896079 DOI: 10.1002/advs.202204484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping. This is technically accomplished by annotating cells with sgRNA-specific barcodes or directly detectable sgRNAs. According to the integration of distinct single-cell technologies, these methods principally fall into four categories: scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome probing, and imaging-based scCRISPR. scCRISPR has deciphered genotype-phenotype relationships, genetic regulations, tumor biological issues, and neuropathological mechanisms. This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations. In addition, an application-oriented approach guide is offered to meet researchers' individualized demands.
Collapse
Affiliation(s)
- Junyun Cheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Gaole Lin
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Tianhao Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yunzhu Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Wenbo Guo
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Liao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Penghui Yang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Chen
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Shao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
| | - Ling Zhu
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
| | - Yi Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310024China
| |
Collapse
|
34
|
Xu H, Liang H. The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Front Cell Dev Biol 2022; 10:1024093. [PMID: 36393839 PMCID: PMC9643643 DOI: 10.3389/fcell.2022.1024093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/13/2022] [Indexed: 09/08/2024] Open
Abstract
Totipotency represents the highest developmental potency. By definition, totipotent stem cells are capable of giving rise to all embryonic and extraembryonic cell types. In mammalian embryos, totipotency occurs around the zygotic genome activation period, which is around the 2-cell stage in mouse embryo or the 4-to 8-cell stage in human embryo. Currently, with the development of in vitro totipotent-like models and the advances in small-scale genomic methods, an in-depth mechanistic understanding of the totipotency state and regulation was enabled. In this review, we explored and summarized the current views about totipotency from various angles, including genetic and epigenetic aspects. This will hopefully formulate a panoramic view of totipotency from the available research works until now. It can also help delineate the scaffold and formulate new hypotheses on totipotency for future research works.
Collapse
Affiliation(s)
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women’s Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Sreenivasan VKA, Balachandran S, Spielmann M. The role of single-cell genomics in human genetics. J Med Genet 2022; 59:827-839. [PMID: 35790352 PMCID: PMC9411920 DOI: 10.1136/jmedgenet-2022-108588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Single-cell sequencing is a powerful approach that can detect genetic alterations and their phenotypic consequences in the context of human development, with cellular resolution. Humans start out as single-cell zygotes and undergo fission and differentiation to develop into multicellular organisms. Before fertilisation and during development, the cellular genome acquires hundreds of mutations that propagate down the cell lineage. Whether germline or somatic in nature, some of these mutations may have significant genotypic impact and lead to diseased cellular phenotypes, either systemically or confined to a tissue. Single-cell sequencing enables the detection and monitoring of the genotype and the consequent molecular phenotypes at a cellular resolution. It offers powerful tools to compare the cellular lineage between 'normal' and 'diseased' conditions and to establish genotype-phenotype relationships. By preserving cellular heterogeneity, single-cell sequencing, unlike bulk-sequencing, allows the detection of even small, diseased subpopulations of cells within an otherwise normal tissue. Indeed, the characterisation of biopsies with cellular resolution can provide a mechanistic view of the disease. While single-cell approaches are currently used mainly in basic research, it can be expected that applications of these technologies in the clinic may aid the detection, diagnosis and eventually the treatment of rare genetic diseases as well as cancer. This review article provides an overview of the single-cell sequencing technologies in the context of human genetics, with an aim to empower clinicians to understand and interpret the single-cell sequencing data and analyses. We discuss the state-of-the-art experimental and analytical workflows and highlight current challenges/limitations. Notably, we focus on two prospective applications of the technology in human genetics, namely the annotation of the non-coding genome using single-cell functional genomics and the use of single-cell sequencing data for in silico variant prioritisation.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck and Kiel, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck and Kiel, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck and Kiel, Germany
- Human Molecular Genetics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
36
|
Omachi K, Miner JH. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation. PLoS One 2022; 17:e0270008. [PMID: 35763517 PMCID: PMC9239446 DOI: 10.1371/journal.pone.0270008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR/Cas9-mediated transcriptional activation (CRISPRa) is a powerful tool for investigating complex biological phenomena. Although CRISPRa approaches based on the VP64 transcriptional activator have been widely studied in both cultured cells and in animal models and exhibit great versatility for various cell types and developmental stages in vivo, different dCas9-VP64 versions have not been rigorously compared. Here, we compared different dCas9-VP64 constructs in identical contexts, including the cell lines used and the transfection conditions, for their ability to activate endogenous and exogenous genes. Moreover, we investigated the optimal approach for VP64 addition to VP64- and p300-based constructs. We found that MS2-MCP-scaffolded VP64 enhanced basal dCas9-VP64 and dCas9-p300 activity better than did direct VP64 fusion to the N-terminus of dCas9. dCas9-VP64+MCP-VP64 and dCas9-p300+MCP-VP64 were superior to VP64-dCas9-VP64 for all target genes tested. Furthermore, multiplexing gRNA expression with dCas9-VP64+MCP-VP64 or dCas9-p300+MCP-VP64 significantly enhanced endogenous gene activation to a level comparable to CRISPRa-SAM with a single gRNA. Our findings demonstrate improvement of the dCas9-VP64 CRISPRa system and contribute to development of a versatile, efficient CRISPRa platform.
Collapse
Affiliation(s)
- Kohei Omachi
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey H. Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
37
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
38
|
Baranovsky A, Ivanov T, Granovskaya M, Papatsenko D, Pervouchine DD. Transcriptome analysis reveals high tumor heterogeneity with respect to re-activation of stemness and proliferation programs. PLoS One 2022; 17:e0268626. [PMID: 35587924 PMCID: PMC9119523 DOI: 10.1371/journal.pone.0268626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
Significant alterations in signaling pathways and transcriptional regulatory programs together represent major hallmarks of many cancers. These, among all, include the reactivation of stemness, which is registered by the expression of pathways that are active in the embryonic stem cells (ESCs). Here, we assembled gene sets that reflect the stemness and proliferation signatures and used them to analyze a large panel of RNA-seq data from The Cancer Genome Atlas (TCGA) Consortium in order to specifically assess the expression of stemness-related and proliferation-related genes across a collection of different tumor types. We introduced a metric that captures the collective similarity of the expression profile of a tumor to that of ESCs, which showed that stemness and proliferation signatures vary greatly between different tumor types. We also observed a high degree of intertumoral heterogeneity in the expression of stemness- and proliferation-related genes, which was associated with increased hazard ratios in a fraction of tumors and mirrored by high intratumoral heterogeneity and a remarkable stemness capacity in metastatic lesions across cancer cells in single cell RNA-seq datasets. Taken together, these results indicate that the expression of stemness signatures is highly heterogeneous and cannot be used as a universal determinant of cancer. This calls into question the universal validity of diagnostic tests that are based on stem cell markers.
Collapse
Affiliation(s)
- Artem Baranovsky
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Timofei Ivanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Dmitri Papatsenko
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitri D. Pervouchine
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- * E-mail:
| |
Collapse
|
39
|
Complex biological questions being addressed using single cell sequencing technologies. SLAS Technol 2022; 27:143-149. [DOI: 10.1016/j.slast.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Taubenschmid-Stowers J, Rostovskaya M, Santos F, Ljung S, Argelaguet R, Krueger F, Nichols J, Reik W. 8C-like cells capture the human zygotic genome activation program in vitro. Cell Stem Cell 2022; 29:449-459.e6. [PMID: 35216671 PMCID: PMC8901440 DOI: 10.1016/j.stem.2022.01.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023]
Abstract
The activation of the embryonic genome marks the first major wave of transcription in the developing organism. Zygotic genome activation (ZGA) in mouse 2-cell embryos and 8-cell embryos in humans is crucial for development. Here, we report the discovery of human 8-cell-like cells (8CLCs) among naive embryonic stem cells, which transcriptionally resemble the 8-cell human embryo. They express ZGA markers, including ZSCAN4 and LEUTX, and transposable elements, such as HERVL and MLT2A1. 8CLCs show reduced SOX2 levels and can be identified using TPRX1 and H3.Y marker proteins in vitro. Overexpression of the transcription factor DUX4 and spliceosome inhibition increase human ZGA-like transcription. Excitingly, the 8CLC markers TPRX1 and H3.Y are also expressed in ZGA-stage 8-cell human embryos and may thus be relevant in vivo. 8CLCs provide a unique opportunity to characterize human ZGA-like transcription and might provide critical insights into early events in embryogenesis in humans.
Collapse
Affiliation(s)
| | | | - Fátima Santos
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Sebastian Ljung
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Felix Krueger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
41
|
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med 2022; 12:e694. [PMID: 35352511 PMCID: PMC8964935 DOI: 10.1002/ctm2.694] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has become the state-of-the-art approach for unravelling the heterogeneity and complexity of RNA transcripts within individual cells, as well as revealing the composition of different cell types and functions within highly organized tissues/organs/organisms. Since its first discovery in 2009, studies based on scRNA-seq provide massive information across different fields making exciting new discoveries in better understanding the composition and interaction of cells within humans, model animals and plants. In this review, we provide a concise overview about the scRNA-seq technology, experimental and computational procedures for transforming the biological and molecular processes into computational and statistical data. We also provide an explanation of the key technological steps in implementing the technology. We highlight a few examples on how scRNA-seq can provide unique information for better understanding health and diseases. One important application of the scRNA-seq technology is to build a better and high-resolution catalogue of cells in all living organism, commonly known as atlas, which is key resource to better understand and provide a solution in treating diseases. While great promises have been demonstrated with the technology in all areas, we further highlight a few remaining challenges to be overcome and its great potentials in transforming current protocols in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Dragomirka Jovic
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
| | - Xue Liang
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Hua Zeng
- Nanjing University of Chinese MedicineNanjingChina
| | - Lin Lin
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Fengping Xu
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
42
|
Schmidt R, Steinhart Z, Layeghi M, Freimer JW, Bueno R, Nguyen VQ, Blaeschke F, Ye CJ, Marson A. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 2022; 375:eabj4008. [PMID: 35113687 DOI: 10.1126/science.abj4008] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulation of cytokine production in stimulated T cells can be disrupted in autoimmunity, immunodeficiencies, and cancer. Systematic discovery of stimulation-dependent cytokine regulators requires both loss-of-function and gain-of-function studies, which have been challenging in primary human cells. We now report genome-wide CRISPR activation (CRISPRa) and interference (CRISPRi) screens in primary human T cells to identify gene networks controlling interleukin-2 (IL-2) and interferon-γ (IFN-γ) production. Arrayed CRISPRa confirmed key hits and enabled multiplexed secretome characterization, revealing reshaped cytokine responses. Coupling CRISPRa screening with single-cell RNA sequencing enabled deep molecular characterization of screen hits, revealing how perturbations tuned T cell activation and promoted cell states characterized by distinct cytokine expression profiles. These screens reveal genes that reprogram critical immune cell functions, which could inform the design of immunotherapies.
Collapse
Affiliation(s)
- Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Madeline Layeghi
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Raymund Bueno
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vinh Q Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Franziska Blaeschke
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA 94129, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA 94129, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Jackson CA, Vogel C. New horizons in the stormy sea of multimodal single-cell data integration. Mol Cell 2022; 82:248-259. [PMID: 35063095 PMCID: PMC8830781 DOI: 10.1016/j.molcel.2021.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023]
Abstract
While measurements of RNA expression have dominated the world of single-cell analyses, new single-cell techniques increasingly allow collection of different data modalities, measuring different molecules, structural connections, and intermolecular interactions. Integrating the resulting multimodal single-cell datasets is a new bioinformatics challenge. Equally important, it is a new experimental design challenge for the bench scientist, who is not only choosing from a myriad of techniques for each data modality but also faces new challenges in experimental design. The ultimate goal is to design, execute, and analyze multimodal single-cell experiments that are more than just descriptive but enable the learning of new causal and mechanistic biology. This objective requires strict consideration of the goals behind the analysis, which might range from mapping the heterogeneity of a cellular population to assembling system-wide causal networks that can further our understanding of cellular functions and eventually lead to models of tissues and organs. We review steps and challenges toward this goal. Single-cell transcriptomics is now a mature technology, and methods to measure proteins, lipids, small-molecule metabolites, and other molecular phenotypes at the single-cell level are rapidly developing. Integrating these single-cell readouts so that each cell has measurements of multiple types of data, e.g., transcriptomes, proteomes, and metabolomes, is expected to allow identification of highly specific cellular subpopulations and to provide the basis for inferring causal biological mechanisms.
Collapse
Affiliation(s)
- Christopher A Jackson
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
| | - Christine Vogel
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA
| |
Collapse
|
44
|
Kubinyecz O, Santos F, Drage D, Reik W, Eckersley-Maslin MA. Maternal Dppa2 and Dppa4 are dispensable for zygotic genome activation but important for offspring survival. Development 2021; 148:273814. [PMID: 34931676 PMCID: PMC8722389 DOI: 10.1242/dev.200191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
Abstract
Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes. Summary: Conditional knockout mouse models reveal maternal stores of Dppa2 and Dppa4 are dispensable for zygotic genome activation, contrasting findings in embryonic stem cells. However, both maternal and zygotic Dppa2/4 are required for development.
Collapse
Affiliation(s)
- Oana Kubinyecz
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Fatima Santos
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Deborah Drage
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Melanie A Eckersley-Maslin
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.,Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia.,Department of Anatomy and Physiology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
45
|
Klein RH, Knoepfler PS. DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer. Stem Cell Reports 2021; 16:2844-2851. [PMID: 34767751 PMCID: PMC8693620 DOI: 10.1016/j.stemcr.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Many gene networks are shared between pluripotent stem cells and cancer; a concept exemplified by several DPPA factors such as DPPA2 and DPPA4, which are highly and selectively expressed in stem cells but also found to be reactivated in cancer. Despite their striking expression pattern, for many years the function of DPPA2 and DPPA4 remained a mystery; knockout of Dppa2 and Dppa4 did not affect pluripotency, but caused lung and skeletal defects late in development, long after Dppa2 and Dppa4 expression had been turned off. A number of recent papers have further clarified and defined the roles of these important factors, identifying roles in priming the chromatin and maintaining developmental competency through regulating both H3K4me3 and H3K27me3 at bivalent chromatin domains, and acting to remodel chromatin and facilitate reprogramming of somatic cells to induced pluripotency. These findings highlight an important regulatory role for DPPA2 and DPPA4 at the transitional boundary between pluripotency and differentiation and may have relevance to the functions of DPPA2 and 4 in the context of cancer cells as well.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
46
|
Kinisu M, Choi YJ, Cattoglio C, Liu K, Roux de Bezieux H, Valbuena R, Pum N, Dudoit S, Huang H, Xuan Z, Kim SY, He L. Klf5 establishes bi-potential cell fate by dual regulation of ICM and TE specification genes. Cell Rep 2021; 37:109982. [PMID: 34758315 PMCID: PMC8711565 DOI: 10.1016/j.celrep.2021.109982] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023] Open
Abstract
Early blastomeres of mouse preimplantation embryos exhibit bi-potential cell fate, capable of generating both embryonic and extra-embryonic lineages in blastocysts. Here we identify three major two-cell-stage (2C)-specific endogenous retroviruses (ERVs) as the molecular hallmark of this bi-potential plasticity. Using the long terminal repeats (LTRs) of all three 2C-specific ERVs, we identify Krüppel-like factor 5 (Klf5) as their major upstream regulator. Klf5 is essential for bi-potential cell fate; a single Klf5-overexpressing embryonic stem cell (ESC) generates terminally differentiated embryonic and extra-embryonic lineages in chimeric embryos, and Klf5 directly induces inner cell mass (ICM) and trophectoderm (TE) specification genes. Intriguingly, Klf5 and Klf4 act redundantly during ICM specification, whereas Klf5 deficiency alone impairs TE specification. Klf5 is regulated by multiple 2C-specific transcription factors, particularly Dux, and the Dux/Klf5 axis is evolutionarily conserved. The 2C-specific transcription program converges on Klf5 to establish bi-potential cell fate, enabling a cell state with dual activation of ICM and TE genes. Using multiple 2C-specific ERV cell fate markers, Kinisu et al. identify Klf5 as a key transcription factor that confers a 2C-like developmental potential and activates ICM and TE specification genes. Klf5 and Klf4 act redundantly for ICM and TE specification in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Martin Kinisu
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Yong Jin Choi
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Claudia Cattoglio
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ke Liu
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hector Roux de Bezieux
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raeline Valbuena
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Nicole Pum
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Sang Yong Kim
- Department of Pathology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA.
| |
Collapse
|
47
|
Jensen TI, Mikkelsen NS, Gao Z, Foßelteder J, Pabst G, Axelgaard E, Laustsen A, König S, Reinisch A, Bak RO. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Res 2021; 31:2120-2130. [PMID: 34407984 PMCID: PMC8559706 DOI: 10.1101/gr.275607.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023]
Abstract
Targeted transcriptional activation or interference can be induced with the CRISPR-Cas9 system (CRISPRa/CRISPRi) using nuclease-deactivated Cas9 fused to transcriptional effector molecules. These technologies have been used in cancer cell lines, particularly for genome-wide functional genetic screens using lentiviral vectors. However, CRISPRa and CRISPRi have not yet been widely applied to ex vivo cultured primary cells with therapeutic relevance owing to a lack of effective and nontoxic delivery modalities. Here we develop CRISPRa and CRISPRi platforms based on RNA or ribonucleoprotein (RNP) delivery by electroporation and show transient, programmable gene regulation in primary cells, including human CD34+ hematopoietic stem and progenitor cells (HSPCs) and human CD3+ T cells. We show multiplex and orthogonal gene modulation using multiple sgRNAs and CRISPR systems from different bacterial species, and we show that CRISPRa can be applied to manipulate differentiation trajectories of HSPCs. These platforms constitute simple and effective means to transiently control transcription and are easily adopted and reprogrammed to new target genes by synthetic sgRNAs. We believe these technologies will find wide use in engineering the transcriptome for studies of stem cell biology and gene function, and we foresee that they will be implemented to develop and enhance cellular therapeutics.
Collapse
Affiliation(s)
- Trine I Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Johannes Foßelteder
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Gabriel Pabst
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Esben Axelgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Saskia König
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine and Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C., Denmark
| |
Collapse
|
48
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
49
|
Engineering digitizer circuits for chemical and genetic screens in human cells. Nat Commun 2021; 12:6150. [PMID: 34686672 PMCID: PMC8536748 DOI: 10.1038/s41467-021-26359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
Cell-based transcriptional reporters are invaluable in high-throughput compound and CRISPR screens for identifying compounds or genes that can impact a pathway of interest. However, many transcriptional reporters have weak activities and transient responses. This can result in overlooking therapeutic targets and compounds that are difficult to detect, necessitating the resource-consuming process of running multiple screens at various timepoints. Here, we present RADAR, a digitizer circuit for amplifying reporter activity and retaining memory of pathway activation. Reporting on the AP-1 pathway, our circuit identifies compounds with known activity against PKC-related pathways and shows an enhanced dynamic range with improved sensitivity compared to a classical reporter in compound screens. In the first genome-wide pooled CRISPR screen for the AP-1 pathway, RADAR identifies canonical genes from the MAPK and PKC pathways, as well as non-canonical regulators. Thus, our scalable system highlights the benefit and versatility of using genetic circuits in large-scale cell-based screening.
Collapse
|
50
|
Gerri C, Menchero S, Mahadevaiah SK, Turner JMA, Niakan KK. Human Embryogenesis: A Comparative Perspective. Annu Rev Cell Dev Biol 2021; 36:411-440. [PMID: 33021826 DOI: 10.1146/annurev-cellbio-022020-024900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|