1
|
Nadda R, Das DB. Optimising distribution of hollow microneedle in arrays for transdermal drug delivery considering effects of tissue compression on drug permeability. Int J Pharm 2025; 673:125386. [PMID: 40010526 DOI: 10.1016/j.ijpharm.2025.125386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Hollow microneedles (HMNs) are advanced transdermal drug delivery (TDD) devices that can create micro-perforations in the skin, enabling high molecular weight drugs to bypass the resistance of the skin's top layer, the stratum corneum. These MNs have been shown to enhance drug permeability K in skin with minimal or no discomfort. It is recognised that the variability and interplay of different MN parameters, including the MN distribution within an array, can significantly influence the HMN-based TDD rate. However, optimising these parameters can achieve consistent MN performance. In recognising this, our paper aims to develop a theoretical framework for optimising the HMN distribution in the arrays. The methodology involves formulating an optimisation function g based on different geometrical and physical properties of the MN and skin and associating this with the skin permeability (K) of drugs delivered via the HMNs. The methodology has been established to quantitatively assess the impact of MN design parameters on drug diffusion through the skin, including the effects of compressive strain caused by HMN insertion. The studyshows that an elevated value of g is associated with increased drug K in the skin. The results from the established framework have enabled us to determine the optimal design for various HMN configurations. The data generated from this optimisation technique is subsequently utilised to estimate the skin K of several high molecular weight drugs delivered through an HMN system.
Collapse
Affiliation(s)
- Rahul Nadda
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU Leicestershire, UK.
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU Leicestershire, UK.
| |
Collapse
|
2
|
Jin Z, Kim YS, Lim JY. Leveraging Microneedles for Raised Scar Management. Polymers (Basel) 2025; 17:108. [PMID: 39795511 PMCID: PMC11722619 DOI: 10.3390/polym17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Disruption of the molecular pathways during physiological wound healing can lead to raised scar formation, characterized by rigid, thick scar tissue with associated symptoms of pain and pruritus. A key mechanical factor in raised scar development is excessive tension at the wound site. Recently, microneedles (MNs) have emerged as promising tools for scar management as they engage with scar tissue and provide them with mechanical off-loading from both internal and external sources. This review explores the mechanisms by which physical intervention of drug-free MNs alleviates mechanical tension on fibroblasts within scar tissue, thereby promoting tissue remodeling and reducing scar severity. Additionally, the role of MNs as an efficient cargo delivery system for the controlled and sustained release of a wide range of therapeutic agents into scar tissue is highlighted. By penetrating scar tissue, MNs facilitate controlled and sustained localized drug administration to modulate inflammation and fibroblastic cell growth. Finally, the remaining challenges and the future perspective of the field have been highlighted.
Collapse
Affiliation(s)
| | | | - Joong Yeon Lim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Aroche AF, Nissan HE, Daniele MA. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv Healthc Mater 2025; 14:e2401782. [PMID: 39558769 PMCID: PMC11694095 DOI: 10.1002/adhm.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hydrogel-forming microneedles are constructed from or coated with polymeric, hydrophilic materials that swell upon insertion into the skin. Designed to dissolve or disintegrate postinsertion, these microneedles can deliver drugs, vaccines, or other therapeutics. Recent advancements have broadened their application scope to include the collection, transport, and extraction of dermal interstitial fluid (ISF) for medical diagnostics. This review presents a brief introduction to the characteristics of dermal ISF, methods for extraction and sampling, and critical assessment of the state-of-the-art in hydrogel-forming microneedles for ISF diagnostics. Key factors are evaluated including material composition, swelling behavior, biocompatibility, and mechanical strength necessary for effective microneedle performance and ISF collection. The review also discusses successful examples of dermal ISF assays and microneedle sensor integrations, highlighting notable achievements, identifying research opportunities, and addressing challenges with potential solutions. Despite the predominance of synthetic hydrogels in reported hydrogel-forming microneedle technologies due to their favorable swelling and gelation properties, there is a significant variety of biopolymers and composites reported in the literature. The field lacks consensus on the optimal material, composition, or fabrication methods, though emerging evidence suggests that processing and fabrication techniques are critical to the performance and utility of hydrogel-forming microneedles for ISF diagnostics.
Collapse
Affiliation(s)
- Angélica F. Aroche
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
| | - Hannah E. Nissan
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| | - Michael A. Daniele
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| |
Collapse
|
4
|
Yang P, Song Q, Zhang L, Liu Z, Ma H. Numerical modeling and simulation for microneedles drug delivery: A novel comprehensive swelling-obstruction-mechanics model. Eur J Pharm Biopharm 2025; 206:114583. [PMID: 39603481 DOI: 10.1016/j.ejpb.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Hydrogel microneedles have attracted significant attention in drug delivery due to their non-invasiveness and efficient administration. However, a thorough understanding of the drug transport mechanism is essential to achieve controlled drug delivery and geometry optimization of microneedles. In this study, a new swelling-obstruction-mechanics model is presented to describe the swelling and drug release behavior of hydrogel microneedles. The model integrates the swelling kinetics, the obstruction scaling of drug molecules, and the mechanical properties of hydrogel and skin and reveals the effects of swelling of the microneedle matrix and drug molecules on drug release. Subsequently, numerical simulations were conducted using the model, which enabled the optimization of hydrogel microneedle design parameters by adjusting the input variables. The results show that the geometric parameters of microneedles, especially the cross-sectional shape, have a significant effect on the drug release performance. Nevertheless, the parameters affect each other and need to be considered in the selection of a variety of factors. Additionally, penetration depth significantly affects drug release efficiency, highlighting the need for auxiliary application devices. In summary, the model advances both theoretical understanding and practical design of hydrogel microneedles, identifying key factors in drug release and optimizing their efficiency and reliability for clinical applications.
Collapse
Affiliation(s)
- Peijing Yang
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China
| | - Qinghua Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Jinan 250061, PR China.
| | - Lujie Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China
| | - Zhanqiang Liu
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China; School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, PR China
| | - Haifeng Ma
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Jinan 250061, PR China
| |
Collapse
|
5
|
Yadav PR, Hingonia P, Das DB, Pattanayek SK. Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution. Mol Pharm 2024; 21:5104-5114. [PMID: 39259772 DOI: 10.1021/acs.molpharmaceut.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer-solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.
Collapse
Affiliation(s)
- Prateek R Yadav
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Pratinav Hingonia
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Diganta B Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Sudip K Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| |
Collapse
|
6
|
Wang Y, Guan P, Tan R, Shi Z, Li Q, Lu B, Hu E, Ding W, Wang W, Cheng B, Lan G, Lu F. Fiber-Reinforced Silk Microneedle Patches for Improved Tissue Adhesion in Treating Diabetic Wound Infections. ADVANCED FIBER MATERIALS 2024; 6:1596-1615. [DOI: 10.1007/s42765-024-00439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 01/12/2025]
|
7
|
Barhoumi H, Kouassi MC, Kallel A. Numerical study of doxorubicin transdermal delivery for breast cancer treatment using microneedles. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3812. [PMID: 38544307 DOI: 10.1002/cnm.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 05/15/2024]
Abstract
The lack of in vivo studies on the delivery of doxorubicin within human skin, especially the absence of data on the doxorubicin diffusion coefficient, has made understanding its transdermal delivery kinetics challenging. In this study, as a first step, governing equations and finite element methods were employed to reproduce Franz diffusion cell experiment in human cadaver skin. The application of this experiment representative model with a fitting method resulted in approximate values for the diffusivity of doxorubicin across various skin layers. The estimated values were used later to conduct a comprehensive examination of doxorubicin administration for breast tumor treatments. In a 2D axisymmetric model using Fick's Law and then a microneedles array 3D model, crucial parameters effects on delivery efficiency were examined, such as the microneedle tip diameter, tip-to-tip distance, and tumor depth. As highlighted by the findings of this study, these parameters have an impact on the effectiveness of doxorubicin delivery for treating breast tumors. The focus of this research is on the potential of numerical methods in biomedical engineering, which addresses the urgent need for data on doxorubicin diffusion in human skin and offers valuable insights into optimizing drug delivery strategies for enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Houda Barhoumi
- Biomechanics and Biomedical Engineering, IP Paris: Polytechnic Institute of Paris, Palaiseau, France
- Léonard de Vinci Pôle Universitaire, Research Center, Paris La Defense, France
| | - Marie Carole Kouassi
- Léonard de Vinci Pôle Universitaire, Research Center, Paris La Defense, France
- R&D Departement Aptiskills, Levallois-Perret, France
| | - Achraf Kallel
- Léonard de Vinci Pôle Universitaire, Research Center, Paris La Defense, France
| |
Collapse
|
8
|
Yuan Y, Han Y, Yap CW, Kochhar JS, Li H, Xiang X, Kang L. Prediction of drug permeation through microneedled skin by machine learning. Bioeng Transl Med 2023; 8:e10512. [PMID: 38023708 PMCID: PMC10658566 DOI: 10.1002/btm2.10512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Stratum corneum is the outermost layer of the skin preventing external substances from entering human body. Microneedles (MNs) are sharp protrusions of a few hundred microns in length, which can penetrate the stratum corneum to facilitate drug permeation through skin. To determine the amount of drug delivered through skin, in vitro drug permeation testing is commonly used, but the testing is costly and time-consuming. To address this issue, machine learning methods were employed to predict drug permeation through the skin, circumventing the need of conducting skin permeation experiments. By comparing the experimental data and simulated results, it was found extreme gradient boosting (XGBoost) was the best among the four simulation methods. It was also found that drug loading, permeation time, and MN surface area were critical parameters in the models. In conclusion, machine learning is useful to predict drug permeation profiles for MN-facilitated transdermal drug delivery.
Collapse
Affiliation(s)
- Yunong Yuan
- School of Pharmacy, Faculty of Medicine and HealthUniversity of SydneyNew South Wales2006Australia
| | - Yiting Han
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghai201203China
- Harvard T.H. Chan School of Public Health677 Huntington AvenueBostonMassachusetts02115USA
| | - Chun Wei Yap
- National Healthcare Group1 Fusionopolis LinkSingapore138542Singapore
| | | | - Hairui Li
- MGI Tech21 Biopolis Road, NucleosSingapore138567Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghai201203China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and HealthUniversity of SydneyNew South Wales2006Australia
| |
Collapse
|
9
|
Vora LK, Sabri AH, Naser Y, Himawan A, Hutton ARJ, Anjani QK, Volpe-Zanutto F, Mishra D, Li M, Rodgers AM, Paredes AJ, Larrañeta E, Thakur RRS, Donnelly RF. Long-acting microneedle formulations. Adv Drug Deliv Rev 2023; 201:115055. [PMID: 37597586 DOI: 10.1016/j.addr.2023.115055] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara Naser
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aoife M Rodgers
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Hou X, Li J, Hong Y, Ruan H, Long M, Feng N, Zhang Y. Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines 2023; 11:2119. [PMID: 37626616 PMCID: PMC10452559 DOI: 10.3390/biomedicines11082119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Transdermal drug delivery (TDD) is one of the key approaches for treating diseases, avoiding first-pass effects, reducing systemic adverse drug reactions and improving patient compliance. Microneedling, iontophoresis, electroporation, laser ablation and ultrasound facilitation are often used to improve the efficiency of TDD. Among them, microneedling is a relatively simple and efficient means of drug delivery. Microneedles usually consist of micron-sized needles (50-900 μm in length) in arrays that can successfully penetrate the stratum corneum and deliver drugs in a minimally invasive manner below the stratum corneum without touching the blood vessels and nerves in the dermis, improving patient compliance. Hydrogel-forming microneedles (HFMs) are safe and non-toxic, with no residual matrix material, high drug loading capacity, and controlled drug release, and they are suitable for long-term, multiple drug delivery. This work reviewed the characteristics of the skin structure and TDD, introduced TDD strategies based on HFMs, and summarized the characteristics of HFM TDD systems and the evaluation methods of HFMs as well as the application of HFM drug delivery systems in disease treatment. The HFM drug delivery system has a wide scope for development, but the translation to clinical application still has more challenges.
Collapse
Affiliation(s)
- Xiaolin Hou
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Jiaqi Li
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongyu Hong
- Xiamen Hospital of Chinese Medicine, No. 1739 Xiangyue Road, Huli District, Xiamen 361015, China;
| | - Hang Ruan
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Meng Long
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Nianping Feng
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongtai Zhang
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| |
Collapse
|
11
|
Yadav PR, Das DB, Pattanayek SK. Coupled Diffusion-Binding-Deformation Modelling for Phase-Transition Microneedles-Based Drug Delivery. J Pharm Sci 2023; 112:1108-1118. [PMID: 36528111 DOI: 10.1016/j.xphs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Phase-transition microneedles (PTMNs)-based transdermal drug delivery (TDD) is gaining popularity due to its non-invasiveness and ability to deliver a wide range of drugs. PTMNs absorb interstitial skin fluid (ISF) and transport drugs from microneedle (MNs) domain to the skin without polymer dissolution. To establish PTMNs for practical use, one needs to understand and optimise the key parameters governing drug transport mechanisms to achieve controlled drug delivery. In addressing this point, we have developed a coupled diffusion-binding-deformation model to understand the effect of physicochemical parameters (e.g., swelling capacity, drug binding) of MN and skin mechanical properties on overall drug transport behaviour. The contact mechanics at the MN and skin interface is introduced to account for the resistive force exerted by the deformed skin to MN swelling. The model is validated with the reported data of in vitro insulin delivery using polyvinyl alcohol (PVA) MN. The drug binding parameters are estimated from the fitting of the cumulative release of insulin within 6 hours of MN insertion. To predict the in vivo data of insulin delivery using the PVA MN, one-compartment model of drug pharmacokinetics is incorporated. It is shown in the paper that the model is able to predict the final insulin concentration in blood and in good agreement with the reported experimental data. The proposed model is concluded to be a tool for the predictive design and development of PTMNs-based TDD systems.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Sudip K Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India.
| |
Collapse
|
12
|
Razzaghi M, Seyfoori A, Pagan E, Askari E, Hassani Najafabadi A, Akbari M. 3D Printed Hydrogel Microneedle Arrays for Interstitial Fluid Biomarker Extraction and Colorimetric Detection. Polymers (Basel) 2023; 15:polym15061389. [PMID: 36987171 PMCID: PMC10054006 DOI: 10.3390/polym15061389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
To treat and manage chronic diseases, it is necessary to continuously monitor relevant biomarkers and modify treatment as the disease state changes. Compared to other bodily fluids, interstitial skin fluid (ISF) is a good choice for identifying biomarkers because it has a molecular composition most similar to blood plasma. Herein, a microneedle array (MNA) is presented to extract ISF painlessly and bloodlessly. The MNA is made of crosslinked poly(ethylene glycol) diacrylate (PEGDA), and an optimal balance of mechanical properties and absorption capability is suggested. Besides, the effect of needles’ cross-section shape on skin penetration is studied. The MNA is integrated with a multiplexed sensor that provides a color change in a biomarker concentration-dependent manner based on the relevant reactions for colorimetric detection of pH and glucose biomarkers. The developed device enables diagnosis by visual inspection or quantitative red, green, and blue (RGB) analysis. The outcomes of this study show that MNA can successfully identify biomarkers in interstitial skin fluid in a matter of minutes. The home-based long-term monitoring and management of metabolic diseases will benefit from such practical and self-administrable biomarker detection.
Collapse
Affiliation(s)
- Mahmood Razzaghi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Esfandyar Askari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Correspondence:
| |
Collapse
|
13
|
Faizi HS, Vora LK, Nasiri MI, Wu Y, Mishra D, Anjani QK, Paredes AJ, Thakur RRS, Minhas MU, Donnelly RF. Deferasirox Nanosuspension Loaded Dissolving Microneedles for Intradermal Delivery. Pharmaceutics 2022; 14:pharmaceutics14122817. [PMID: 36559310 PMCID: PMC9784557 DOI: 10.3390/pharmaceutics14122817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Microneedles are minimally invasive systems that can deliver drugs intradermally without pain and bleeding and can advantageously replace the hypodermal needles and oral routes of delivery. Deferasirox (DFS) is an iron chelator employed in several ailments where iron overload plays an important role in disease manifestation. In this study, DFS was formulated into a nanosuspension (NSs) through wet media milling employing PVA as a stabilizer and successfully loaded in polymeric dissolving microneedles (DMNs). The release studies for DFS-NS clearly showed a threefold increased dissolution rate compared to pure DFS. The mechanical characterization of DFS-NS-DMNs revealed that the system was sufficiently strong for efficacious skin penetration. Optical coherence tomography images confirmed an insertion of up to 378 µm into full-thickness porcine skin layers. The skin deposition studies showed 60% drug deposition from NS-DMN, which was much higher than from the DFS-NS transdermal patch (DFS-NS-TP) (without needles) or pure DFS-DMNs. Moreover, DFS-NS without DMNs did not deposit well inside the skin, indicating that DMNs played an important role in effectively delivering drugs inside the skin. Therefore, it is evident from the findings that loading DFS-NS into novel DMN devices can effectively deliver DFS transdermally.
Collapse
Affiliation(s)
- Hafsa Shahid Faizi
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Iqbal Nasiri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Pharmaceutics, Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad 45550, Pakistan
| | - Yu Wu
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (M.U.M.); (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (M.U.M.); (R.F.D.)
| |
Collapse
|
14
|
Ju J, Li L, Regmi S, Zhang X, Tang S. Microneedle-Based Glucose Sensor Platform: From Vitro to Wearable Point-of-Care Testing Systems. BIOSENSORS 2022; 12:bios12080606. [PMID: 36005002 PMCID: PMC9405967 DOI: 10.3390/bios12080606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Significant advanced have recently been made in exploiting microneedle-based (MN-based) diabetes devices for minimally invasive wearable biosensors and for continuous glucose monitoring. Within this emerging class of skin-worn MN-based sensors, the ISF can be utilized as a rich biomarker source to diagnose diabetes. While initial work of MN devices focused on ISF extraction, the recent research trend has been oriented toward developing in vivo glucose sensors coupled with optical or electrochemical (EC) instrumentation. This outlook highlights the essential characteristics of the sensing mechanisms, rational design, sensing properties, and applications. Finally, we describe the opinions about the challenge and prospects of optical and EC MN-based device platforms for the fabrication of wearable biosensors and their application potential in the future.
Collapse
Affiliation(s)
- Jian Ju
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Oujiang Lab, Wenzhou 325001, China
- Correspondence: (J.J.); (S.T.)
| | - Lin Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Sagar Regmi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinyu Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shixing Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Correspondence: (J.J.); (S.T.)
| |
Collapse
|
15
|
Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-Layer Sustained-Release Microneedles Encapsulating Exenatide for Type 2 Diabetes Treatment. Pharmaceutics 2022; 14:pharmaceutics14061255. [PMID: 35745827 PMCID: PMC9230706 DOI: 10.3390/pharmaceutics14061255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Daily administration of multiple injections can cause inconvenience and reduce compliance in diabetic patients; thus, microneedle (MN) administration is favored due to its various advantages. Accordingly, the two-layer sustained-release MNs (TS-MNs) were fabricated by encapsulating exenatide (EXT) in calcium alginate (CA) gel in this work. The TS-MNs were composed of a sodium alginate (SA) tip and a water-soluble matrix-containing calcium chloride (CaCl2). Subsequently, the calcium ion (Ca2+) contained in the matrix layer penetrated the tip layer for cross-linking, leaving the drug in the cross-linked network. The patches have adequate mechanical strength to pierce the skin; then, the matrix layer is dissolved, leaving the tip layer to achieve sustained release. Additionally, the TS-MNs encapsulating EXT retained high activity during long-term storage at room temperature. The pharmacokinetic results indicated that the plasma concentrations of EXT were sustained for 48 h in the EXT MN group, which agreed with the in vitro release test. Furthermore, they had high relative bioavailability (83.04%). Moreover, the hypoglycemic effect was observed to last for approximately 24 h after a single administration and remained effective after multiple administrations without drug resistance. These results suggest that the TS-MNs are a promising depot for the sustained delivery of encapsulated EXT.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Zequan Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- Correspondence: ; Tel.: +86-10-82543581
| |
Collapse
|
17
|
Ranjan Yadav P, Iqbal Nasiri M, Vora LK, Larrañeta E, Donnelly RF, Pattanayek SK, Bhusan Das D. Super-swelling Hydrogel-forming Microneedle based Transdermal Drug Delivery: Mathematical Modelling, Simulation and Experimental Validation. Int J Pharm 2022; 622:121835. [PMID: 35597393 DOI: 10.1016/j.ijpharm.2022.121835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022]
Abstract
Super-swelling hydrogel-forming microneedles (HFMNs) based transdermal drug delivery (TDD) is gaining significant interest due to their non-invasiveness and ability to deliver a wide range of drugs. The HFMNs swell by imbibing interstitial skin fluid (ISF), and they facilitate drug transport from the reservoir attached at the base into the skin without polymer dissolution. To develop HFMNs for practical applications, a complete understanding of the drug transport mechanism is required, allowing for controlled TDD and geometrical optimisation. A three-phase system consisting of a reservoir, microneedle, and skin is considered. A mathematical model is developed to incorporate the drug binding within the matrix of the compartment, which was not considered earlier. Super-swelling nature of the HFMNs is incorporated through the swelling ratio obtained experimentally for a polymer. The results are validated with in vitro diffusion studies of ibuprofen sodium (IBU) across excised porcine skin, showing that around 20% of the loaded IBU in lyophilised wafer was delivered in 24 hours. It was observed that increasing IBU solubility in reservoir can achieve high drug transport across the skin. The developed model is shown to be in good agreement with the experimental data. It is concluded that the proposed model can be considered a tool with predictive design and development of super-swelling HFMNs based TDD systems.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Muhammad Iqbal Nasiri
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad Campus, 44000 Pakistan; School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Sudip K Pattanayek
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India.
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom.
| |
Collapse
|
18
|
Wang R, Jiang G, Aharodnikau UE, Yunusov K, Sun Y, Liu T, Solomevich SO. Recent advances in polymer microneedles for drug transdermal delivery: Design strategies and applications. Macromol Rapid Commun 2022; 43:e2200037. [PMID: 35286762 DOI: 10.1002/marc.202200037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Indexed: 11/08/2022]
Abstract
In recent years, the transdermal drug delivery based on microneedles (MNs) technology has received extensive attention, which offers a safer and painless alternative to hypodermic needle injection. They can pierce the stratum corneum and deliver drugs to the epidermis and dermis-structures of skin, showing prominent properties such as minimally invasive, bypassing first-pass metabolism, and self-administered. A range of materials have been used to fabricate MNs, such as silicon, metal, glass, and polymers. Among them, polymer MNs have gained increasing attention from pharmaceutical and cosmetic companies as one of the promising drug delivery methods. Microneedle products have recently become available on the market, and some of them are under evaluation for efficacy and safety. This paper focuses on current state of polymer MNs in the drug transdermal delivery. The materials and methods for the fabrication of polymer MNs and their drug administration are described. The recent progresses of polymer MNs for treatment of cancer, vaccine delivery, blood glucose regulation, androgenetic alopecia, obesity, tissue healing, myocardial infarction and gout are reviewed. The challenges of MNs technology are summarized and the future development trend of MNs is also prospected. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | | | - Khaydar Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sergey O Solomevich
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| |
Collapse
|