1
|
Giorgio A, Del Gatto A, Pennacchio S, Saviano M, Zaccaro L. Peptoids: Smart and Emerging Candidates for the Diagnosis of Cancer, Neurological and Autoimmune Disorders. Int J Mol Sci 2023; 24:16333. [PMID: 38003529 PMCID: PMC10671428 DOI: 10.3390/ijms242216333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Early detection of fatal and disabling diseases such as cancer, neurological and autoimmune dysfunctions is still desirable yet challenging to improve quality of life and longevity. Peptoids (N-substituted glycine oligomers) are a relatively new class of peptidomimetics, being highly versatile and capable of mimicking the architectures and the activities of the peptides but with a marked resistance to proteases and a propensity to cross the cellular membranes over the peptides themselves. For these properties, they have gained an ever greater interest in applications in bioengineering and biomedical fields. In particular, the present manuscript is to our knowledge the only review focused on peptoids for diagnostic applications and covers the last decade's literature regarding peptoids as tools for early diagnosis of pathologies with a great impact on human health and social behavior. The review indeed provides insights into the peptoid employment in targeted cancer imaging and blood-based screening of neurological and autoimmune diseases, and it aims to attract the scientific community's attention to continuing and sustaining the investigation of these peptidomimetics in the diagnosis field considering their promising peculiarities.
Collapse
Affiliation(s)
- Anna Giorgio
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy;
| | - Annarita Del Gatto
- Institute of Biostructure and Bioimaging (IBB), CNR, 80131 Naples, Italy;
- Interuniversity Research Centre on Bioactive Peptides (CIRPeB) “Carlo Pedone”, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simone Pennacchio
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), CNR, 35127 Padova, Italy;
| | | | - Laura Zaccaro
- Institute of Biostructure and Bioimaging (IBB), CNR, 80131 Naples, Italy;
- Interuniversity Research Centre on Bioactive Peptides (CIRPeB) “Carlo Pedone”, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
2
|
Li H, Yang M, Song H, Sun M, Zhou H, Fu J, Zhou D, Bai W, Chen B, Lai M, Kang H, Wei S. ACT001 Relieves NMOSD Symptoms by Reducing Astrocyte Damage with an Autoimmune Antibody. Molecules 2023; 28:molecules28031412. [PMID: 36771078 PMCID: PMC9918908 DOI: 10.3390/molecules28031412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating disease, the pathogenesis of which involves autoantibodies targeting the extracellular epitopes of aquaporin-4 on astrocytes. We neutralized the AQP4-IgG from NMOSD patient sera using synthesized AQP4 extracellular epitope peptides and found that the severe cytotoxicity produced by aquaporin-4 immunoglobin (AQP4-IgG) could be blocked by AQP4 extracellular mimotope peptides of Loop A and Loop C in astrocyte protection and animal models. ACT001, a natural compound derivative, has shown anti-tumor activity in various cancers. In our study, the central nervous system anti-inflammatory effect of ACT001 was investigated. The results demonstrated the superior astrocyte protection activity of ACT001 at 10 µM. Furthermore, ACT001 decreases the behavioral score in the mouse NMOSD model, which was not inferior to Methylprednisolone Sodium Succinate, the first-line therapy of NMOSD in clinical practice. In summary, our study showed that astrocytes are protected by specific peptides, or small molecular drugs, which is a new strategy for the treatment of NMOSD. It is possible for ACT001 to be a promising therapy for NMOSD.
Collapse
Affiliation(s)
- Hongen Li
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Mo Yang
- Department of Neuro-Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Honglu Song
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
- Department of Ophthalmology, The 980th Hospital of the Chinese PLA Joint Logistics Support Force, Shijiazhuang 050082, China
| | - Mingming Sun
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Huanfen Zhou
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Junxia Fu
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Di Zhou
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Wenhao Bai
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Biyue Chen
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
| | - Mengying Lai
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
- Department of Public Health and Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Hao Kang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (H.K.); (S.W.)
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital & The Chinese People’s Liberation Army Medical School, Beijing 100853, China
- Correspondence: (H.K.); (S.W.)
| |
Collapse
|
3
|
Brekker MA, Sartawi T, Sawatzky TM, Causey CP, Rehman FK, Knuckley B. A peptoid-based inhibitor of protein arginine methyltransferase 1 (PRMT1) induces apoptosis and autophagy in cancer cells. J Biol Chem 2022; 298:102205. [PMID: 35764172 PMCID: PMC9307946 DOI: 10.1016/j.jbc.2022.102205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are S-adenosylmethionine-dependent enzymes that transfer a methyl group to arginine residues within proteins, most notably histones. The nine characterized PRMT family members are divided into three types depending on the resulting methylated product: asymmetric dimethylarginine (Type I PRMT), symmetric dimethylarginine (Type II PRMT), or monomethylated arginine (Type III PRMT). In some cancers, the resulting product can lead to either increased or decreased transcription of cancer-related genes, suggesting PRMT family members may be valid therapeutic targets. Traditionally, peptide-based compounds have been employed to target this family of enzymes, which has resulted in multiple tool and lead compounds being developed. However, peptide-based therapeutics suffer from poor stability and short half-lives, as proteases can render them useless by hydrolytic degradation. Conversely, peptoids, which are peptide-mimetics composed of N-substituted glycine monomers, are less susceptible to hydrolysis, resulting in improved stability and longer half-lives. Herein, we report the development of a bioavailable, peptoid-based PRMT1 inhibitor that induces cell death in MDA468 and HCT116 cancer cell lines while not exhibiting any significant impact on nontumorigenic HepaRG or normal human mammary epithelial cells. Furthermore, the inhibitor described herein appears to induce both apoptosis and autophagy, suggesting it may be a less toxic cytostatic agent. In conclusion, we propose this peptoid-based inhibitor has significant anticancer and therapeutic potential by reducing cell viability, growth, and size in breast and colon cancer. Further experimentation will help determine the mechanism of action and downstream effects of this compound.
Collapse
Affiliation(s)
- Mollie A. Brekker
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Tala Sartawi
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Tina M. Sawatzky
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Corey P. Causey
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | | | - Bryan Knuckley
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA.
| |
Collapse
|
4
|
Vakilian M. A review on the effect of prolyl isomerization on immune response aberration and hypersensitivity reactions: A unifying hypothesis. Clin Immunol 2021; 234:108896. [PMID: 34848356 DOI: 10.1016/j.clim.2021.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022]
Abstract
Little is known about the causes and mechanisms of ectopic immune responses, including different types of hypersensitivity, superantigens, and cytokine storms. Two of the most questionable phenomena observed in immunology are why the intensity and extent of immune responses to different antigens are different, and why some self-antigens are attacked as foreign. The secondary structure of the peptides involved in the immune system, such as the epitope-paratope interfaces plays a pivotal role in the resulting immune responses. Prolyl cis/trans isomerization plays a fundamental role in the form of the secondary structure and the folding of proteins. This review covers some of the emerging evidence indicating the impact of prolyl isomerization on protein conformation, aberration of immune responses, and the development of hypersensitivity reactions.
Collapse
Affiliation(s)
- Mehrdad Vakilian
- Department of Cell Biology, Genetics and Physiology, University of Malaga (UMA), The Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.
| |
Collapse
|
5
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Yang C, Wu KB, Deng Y, Yuan J, Niu J. Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:243-257. [PMID: 34336395 PMCID: PMC8320758 DOI: 10.1021/acsmacrolett.0c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequence-controlled polymers are an emerging class of synthetic polymers with a regulated sequence of monomers. In the past decade, tremendous progress has been made in the synthesis of polymers with the sophisticated sequence control approaching the level manifested in biopolymers. In contrast, the exploration of novel functions that can be achieved by controlling synthetic polymer sequences represents an emerging focus in polymer science. This Viewpoint will survey recent advances in the functional applications of sequence-controlled polymers and provide a perspective on the challenges and outlook for pursuing future applications of this fascinating class of macromolecules.
Collapse
Affiliation(s)
- Cangjie Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kevin B. Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yu Deng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingsong Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1). Biochem J 2021; 477:2971-2980. [PMID: 32716034 DOI: 10.1042/bcj20200534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Methylation of arginine residues occurs on a number of protein substrates, most notably the N-terminal tails of histones, and is catalyzed by a family of enzymes called the protein arginine methyltransferases (PRMTs). This modification can lead to transcriptional activation or repression of cancer-related genes. To date, a number of inhibitors, based on natural peptide substrates, have been developed for the PRMT family of enzymes. However, because peptides are easily degraded in vivo, the utility of these inhibitors as potential therapeutics is limited. The use of peptoids, which are peptide mimetics where the amino acid side chain is attached to the nitrogen in the amide backbone instead of the α-carbon, may circumvent the problems associated with peptide degradation. Given the structural similarities, peptoid scaffolds may provide enhanced stability, while preserving the mechanism of action. Herein, we have identified that peptoids based on natural peptide substrates are not catalyzed to the product by PRMT1, but instead are inhibitors of this enzyme. Reducing the length of the peptoid reduces inhibition and suggest the residues distal from the site of modification are important for binding. Furthermore, a positive charge on the N-terminus helps promote binding and improves inhibition. Selectivity among family members is likely possible based on inhibition being moderately selective for PRMT1 over PRMT5 and provides a scaffold that can be used to develop pharmaceuticals against this class of enzymes.
Collapse
|
8
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
9
|
Castelletto V, Seitsonen J, Tewari KM, Hasan A, Edkins RM, Ruokolainen J, Pandey LM, Hamley IW, Lau KHA. Self-Assembly of Minimal Peptoid Sequences. ACS Macro Lett 2020; 9:494-499. [PMID: 32337093 PMCID: PMC7179723 DOI: 10.1021/acsmacrolett.9b01010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble "minimal" sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules.
Collapse
Affiliation(s)
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Kunal M. Tewari
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Abshar Hasan
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Robert M. Edkins
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Lalit M. Pandey
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| | - King Hang Aaron Lau
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
10
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
11
|
Erharuyi O, Simanski S, McEnaney PJ, Kodadek T. Screening one bead one compound libraries against serum using a flow cytometer: Determination of the minimum antibody concentration required for ligand discovery. Bioorg Med Chem Lett 2018; 28:2773-2778. [PMID: 29395976 PMCID: PMC6064678 DOI: 10.1016/j.bmcl.2018.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
One bead one compound (OBOC) libraries can be screened against serum samples to identify ligands to antibodies in this mixture. In this protocol, hit beads are identified by staining with a fluorescent labeled secondary antibody. When screens are conducted against two different sets of serum, antibodies, and ligands to them, can be discovered that distinguish the two populations. The application of DNA-encoding technology to OBOC libraries has allowed the use of 10 µm beads for library preparation and screening, which pass through a standard flow cytometer, allowing the fluorescent hit beads to be separated from beads displaying non-ligands easily. An important issue in using this approach for the discovery of antibody biomarkers is its analytical sensitivity. In other words, how abundant must an IgG be to allow it to be pulled out of serum in an unbiased screen using a flow cytometer? We report here a model study in which monoclonal antibodies with known ligands of varying affinities are doped into serum. We find that for antibody ligands typical of what one isolates from an unbiased combinatorial library, the target antibody must be present at 10-50 nM. True antigens, which bind with significantly higher affinity, can detect much less abundant serum antibodies.
Collapse
Affiliation(s)
- Osayemwenre Erharuyi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Scott Simanski
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Patrick J McEnaney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
12
|
|
13
|
Araki M, Yamamura T. Neuromyelitis optica spectrum disorders: Emerging therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Manabu Araki
- Multiple Sclerosis Center; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
| | - Takashi Yamamura
- Multiple Sclerosis Center; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
| |
Collapse
|
14
|
Vastl J, Wang T, Trinh TB, Spiegel DA. Encoded Silicon-Chip-Based Platform for Combinatorial Synthesis and Screening. ACS COMBINATORIAL SCIENCE 2017; 19:255-261. [PMID: 28263558 DOI: 10.1021/acscombsci.6b00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solid-supported chemical libraries have proven useful for the rapid and cost-effective discovery of bioactive compounds. However, traditional on-bead screening involves time-intensive chemical characterization of hit compounds and high false positive rates. Herein, we report a new platform for encoded chemical synthesis and solid-supported screening using p-Chips, microsized silicon microtransponders capable of storing and emitting unique numerical identifiers (IDs). By encoding the structures of library members using p-Chip IDs, we can track compound identities throughout both split-and-pool synthesis and protein binding assays without destructive cleavage. Thanks to the numerical IDs, our p-Chip platform can provide binding constants for library members simply by stripping and reprobing with different protein concentrations, unlike traditional on-bead assays. To showcase these features, we synthesized a library of 108 hemagglutinin (HA) peptide variants using split-and-pool approach, and measured EC50s for each variant directly on p-Chips. On-chip EC50s obtained from these studies showed excellent correlation (80%) with those obtained using traditional ELISA methods. Our screen also yielded a false positive rate of 14%, markedly superior to that reported for conventional bead-based binding studies (66-96%).1-9 On the basis of these results, we believe the p-Chip platform has the potential to improve the effectiveness of solid-supported high-throughput screening by a significant margin.
Collapse
Affiliation(s)
- Julian Vastl
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| | - Tina Wang
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| | - Thi B. Trinh
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| | - David A. Spiegel
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
15
|
Mendes KR, Malone ML, Ndungu JM, Suponitsky-Kroyter I, Cavett VJ, McEnaney PJ, MacConnell AB, Doran TM, Ronacher K, Stanley K, Utset O, Walzl G, Paegel BM, Kodadek T. High-throughput Identification of DNA-Encoded IgG Ligands that Distinguish Active and Latent Mycobacterium tuberculosis Infections. ACS Chem Biol 2017; 12:234-243. [PMID: 27957856 DOI: 10.1021/acschembio.6b00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The circulating antibody repertoire encodes a patient's health status and pathogen exposure history, but identifying antibodies with diagnostic potential usually requires knowledge of the antigen(s). We previously circumvented this problem by screening libraries of bead-displayed small molecules against case and control serum samples to discover "epitope surrogates" (ligands of IgGs enriched in the case sample). Here, we describe an improved version of this technology that employs DNA-encoded libraries and high-throughput FACS-based screening to discover epitope surrogates that differentiate noninfectious/latent (LTB) patients from infectious/active TB (ATB) patients, which is imperative for proper treatment selection and antibiotic stewardship. Normal control/LTB (10 patients each, NCL) and ATB (10 patients) serum pools were screened against a library (5 × 106 beads, 448 000 unique compounds) using fluorescent antihuman IgG to label hit compound beads for FACS. Deep sequencing decoded all hit structures and each hit's occurrence frequencies. ATB hits were pruned of NCL hits and prioritized for resynthesis based on occurrence and homology. Several structurally homologous families were identified and 16/21 resynthesized representative hits validated as selective ligands of ATB serum IgGs (p < 0.005). The native secreted TB protein Ag85B (though not the E. coli recombinant form) competed with one of the validated ligands for binding to antibodies, suggesting that it mimics a native Ag85B epitope. The use of DNA-encoded libraries and FACS-based screening in epitope surrogate discovery reveals thousands of potential hit structures. Distilling this list down to several consensus chemical structures yielded a diagnostic panel for ATB composed of thermally stable and economically produced small molecule ligands in place of protein antigens.
Collapse
Affiliation(s)
- Kimberly R. Mendes
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | | | - John Maina Ndungu
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | | | | | | | | | | | - Katharina Ronacher
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Kim Stanley
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ofelia Utset
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | - Gerhard Walzl
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | | |
Collapse
|
16
|
Doran TM, Sarkar M, Kodadek T. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses. J Am Chem Soc 2016; 138:6076-94. [PMID: 27115249 PMCID: PMC5332222 DOI: 10.1021/jacs.6b02954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Mohosin Sarkar
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
17
|
Doran TM, Morimoto J, Simanski S, Koesema EJ, Clark LF, Pels K, Stoops SL, Pugliese A, Skyler JS, Kodadek T. Discovery of Phosphorylated Peripherin as a Major Humoral Autoantigen in Type 1 Diabetes Mellitus. Cell Chem Biol 2016; 23:618-628. [PMID: 27185639 DOI: 10.1016/j.chembiol.2016.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
A major goal in understanding autoimmune diseases is to define the antigens that elicit a self-destructive immune response, but this is a difficult endeavor. In an effort to discover autoantigens associated with type 1 diabetes (T1D), we used epitope surrogate technology that screens combinatorial libraries of synthetic molecules for compounds that could recognize disease-linked autoantibodies and enrich them from serum. Autoantibodies from one patient revealed a highly phosphorylated form of peripherin, a neuroendocrine filament protein, as a candidate T1D antigen. Peripherin antibodies were detected in 72% of donor patient sera. Further analysis revealed that the T1D-associated antibodies only recognized a dimeric conformation of peripherin. These data explain why peripherin was dismissed as an important T1D antigen previously. The discovery of this novel autoantigen would not have been possible using standard methods, such as hybridizing serum antibodies to recombinant protein arrays, highlighting the power of epitope surrogate technology for probing the mechanism of autoimmune diseases.
Collapse
Affiliation(s)
- Todd M Doran
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jumpei Morimoto
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Scott Simanski
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Eric J Koesema
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Lorraine F Clark
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kevin Pels
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sydney L Stoops
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA; Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Jay S Skyler
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
18
|
Gearhart TL, Montelaro RC, Schurdak ME, Pilcher CD, Rinaldo CR, Kodadek T, Park Y, Islam K, Yurko R, Marques ETA, Burke DS. Selection of a potential diagnostic biomarker for HIV infection from a random library of non-biological synthetic peptoid oligomers. J Immunol Methods 2016; 435:85-9. [PMID: 27182050 PMCID: PMC4947968 DOI: 10.1016/j.jim.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 12/05/2022]
Abstract
Non-biological synthetic oligomers can serve as ligands for antibodies. We hypothesized that a random combinatorial library of synthetic poly-N-substituted glycine oligomers, or peptoids, could represent a random “shape library” in antigen space, and that some of these peptoids would be recognized by the antigen-binding pocket of disease-specific antibodies. We synthesized and screened a one bead one compound combinatorial library of peptoids, in which each bead displayed an 8-mer peptoid with ten possible different amines at each position (108 theoretical variants). By screening one million peptoid/beads we found 112 (approximately 1 in 10,000) that preferentially bound immunoglobulins from human sera known to be positive for anti-HIV antibodies. Reactive peptoids were then re-synthesized and rigorously evaluated in plate-based ELISAs. Four peptoids showed very good, and one showed excellent, properties for establishing a sero-diagnosis of HIV. These results demonstrate the feasibility of constructing sero-diagnostic assays for infectious diseases from libraries of random molecular shapes. In this study we sought a proof-of-principle that we could identify a potential diagnostic antibody ligand biomarker for an infectious disease in a random combinatorial library of 100 million peptoids. We believe that this is the first evidence that it is possible to develop sero-diagnostic assays – for any infectious disease – based on screening random libraries of non-biological molecular shapes.
Collapse
Affiliation(s)
- Tricia L Gearhart
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15261, United States
| | - Ronald C Montelaro
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15261, United States
| | - Mark E Schurdak
- Drug Discovery Institute, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, United States
| | - Chris D Pilcher
- Center for AIDS Research, University of California, 1001 Potrero Ave, SFGH 80, San Francisco, CA 94110, United States
| | - Charles R Rinaldo
- Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, United States
| | - Thomas Kodadek
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yongseok Park
- Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, United States
| | - Kazi Islam
- Peptide Synthesis Facility, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, United States
| | - Raymond Yurko
- Peptide Synthesis Facility, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, United States
| | - Ernesto T A Marques
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15261, United States; Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, United States
| | - Donald S Burke
- Center for Vaccine Research, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15261, United States; Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Kodadek T, McEnaney PJ. Towards vast libraries of scaffold-diverse, conformationally constrained oligomers. Chem Commun (Camb) 2016; 52:6038-59. [PMID: 26996593 PMCID: PMC4846527 DOI: 10.1039/c6cc00617e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is great interest in the development of probe molecules and drug leads that would bind tightly and selectively to protein surfaces that are difficult to target with traditional molecules, such as those involved in protein-protein interactions. The currently available evidence suggests that this will require molecules that are larger and have quite different chemical properties than typical Lipinski-compliant molecules that target enzyme active sites. We describe here efforts to develop vast libraries of conformationally constrained oligomers as a potentially rich source of these molecules.
Collapse
Affiliation(s)
- Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
20
|
Zaman S, Yazdani U, Deng Y, Li W, Gadad BS, Hynan L, Karp D, Roatch N, Schutte C, Nathan Marti C, Hewitson L, German DC. A Search for Blood Biomarkers for Autism: Peptoids. Sci Rep 2016; 6:19164. [PMID: 26764136 PMCID: PMC4725892 DOI: 10.1038/srep19164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, and restricted, repetitive patterns of behavior. In order to identify individuals with ASD and initiate interventions at the earliest possible age, biomarkers for the disorder are desirable. Research findings have identified widespread changes in the immune system in children with autism, at both systemic and cellular levels. In an attempt to find candidate antibody biomarkers for ASD, highly complex libraries of peptoids (oligo-N-substituted glycines) were screened for compounds that preferentially bind IgG from boys with ASD over typically developing (TD) boys. Unexpectedly, many peptoids were identified that preferentially bound IgG from TD boys. One of these peptoids was studied further and found to bind significantly higher levels (>2-fold) of the IgG1 subtype in serum from TD boys (n = 60) compared to ASD boys (n = 74), as well as compared to older adult males (n = 53). Together these data suggest that ASD boys have reduced levels (>50%) of an IgG1 antibody, which resembles the level found normally with advanced age. In this discovery study, the ASD1 peptoid was 66% accurate in predicting ASD.
Collapse
Affiliation(s)
- Sayed Zaman
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Umar Yazdani
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Yan Deng
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Wenhao Li
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Bharathi S Gadad
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Linda Hynan
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas TX
| | - David Karp
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX
| | - Nichole Roatch
- Johnson Center for Child Health and Development, Austin TX
| | - Claire Schutte
- Johnson Center for Child Health and Development, Austin TX
| | | | - Laura Hewitson
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX.,Johnson Center for Child Health and Development, Austin TX
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| |
Collapse
|
21
|
Mukherjee S, Zhou G, Michel C, Voelz VA. Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential. J Phys Chem B 2015; 119:15407-17. [PMID: 26584227 DOI: 10.1021/acs.jpcb.5b09625] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson-Roig helix-coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.
Collapse
Affiliation(s)
- Sudipto Mukherjee
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Guangfeng Zhou
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Chris Michel
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
22
|
Doran TM, Gao Y, Simanski S, McEnaney P, Kodadek T. High affinity binding of conformationally constrained synthetic oligomers to an antigen-specific antibody: Discovery of a diagnostically useful synthetic ligand for murine Type 1 diabetes autoantibodies. Bioorg Med Chem Lett 2015; 25:4910-4917. [PMID: 26067174 PMCID: PMC4607566 DOI: 10.1016/j.bmcl.2015.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
'Antigen surrogates' are synthetic, non-natural molecules that recognize the antigen-binding sites of antibodies. These molecules are of interest as replacements for native antigens as antibody 'capture agents' in ELISA-like assays of potential diagnostic utility, for example when the antibody is indicative of a disease state. Antigen surrogates for disease-related antibodies can be mined from one-bead one-compound (OBOC) libraries by first denuding the library of ligands for antibodies present in the serum of control patients or animals, followed by screening the remainder of the library against serum from individuals with a particular disease of interest. Most of the work in this area has been done with peptoids (oligomers of N-alkylated glycine), which provide antibody ligands with only modest affinity and selectivity. Here, we explore the hypothesis that this is due to the 'floppiness' of the peptoid backbone by creating libraries of peptoid-like molecules that have conformation-restricting structural elements inserted into their backbones. Indeed, we show here that these libraries can provide high affinity and selectivity antigen surrogates and that this much-improved binding is completely dependent on conformational restriction of the oligomer chain.
Collapse
Affiliation(s)
- Todd M Doran
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yu Gao
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Scott Simanski
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Patrick McEnaney
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Thomas Kodadek
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
23
|
Doran TM, Morimoto J, Simanski S, McEnaney PJ, Kodadek T. Reliable diagnosis of murine type 1 diabetes using a panel of autoantigens and "antigen surrogates" mounted onto a liquid array. MOLECULAR BIOSYSTEMS 2015; 11:3156-63. [PMID: 26390856 PMCID: PMC4605892 DOI: 10.1039/c5mb00521c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Autoantibodies raised against β cell antigens are the most reliable preclinical biomarkers for predicting the imminent onset of type 1 diabetes mellitus (T1DM). The most current detection platforms are technically challenging or are run on clinically esoteric equipment. Here, we present a straightforward approach to detect autoantibody biomarkers that employs highly PEGylated microspheres onto which are mounted various capture agents that include affinity-tagged antigens or small molecule "antigen surrogates." After incubation with small quantities of serum, the bound autoantibodies can be measured using a standard flow cytometer. By multiplexing this assay, we show that a panel of antigen and antigen surrogates reliably predicts hyperglycemia in a mouse model of diabetes without false positives.
Collapse
Affiliation(s)
- Todd M Doran
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | | | | | | | |
Collapse
|
24
|
Mendes K, Ndungu JM, Clark LF, Kodadek T. Optimization of the Magnetic Recovery of Hits from One-Bead-One-Compound Library Screens. ACS COMBINATORIAL SCIENCE 2015. [PMID: 26221913 DOI: 10.1021/acscombsci.5b00090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
On-bead screening of one-bead-one-compound (OBOC) libraries is a useful procedure for the identification of protein ligands. An important aspect of this experiment is the method by which beads that bind the target protein are separated from those that do not. Ideally, such a method would be rapid and convenient and result in the isolation of 100% of the "hits" with no false positives (beads that display compounds that are not good ligands for the target). We introduced a technique in which beads that have bound a labeled target protein can be magnetized, thus allowing their convenient isolation ( Astle et al. Chem. Biol. 2010 , 17 , 38 - 45 ). However, recent work in our laboratory and others has shown that magnetic hit recovery can result in the isolation of large numbers of false positives and has also suggested that many true hit beads are missed. In this study, we employ a well-defined model system to examine the efficiency of various magnetic hit isolation protocols. We show that the choice of reagents and the particular operations employed are critical for optimal results.
Collapse
Affiliation(s)
- Kimberly Mendes
- Opko Health, Inc., RF Building, Jupiter, Florida 33458, United States
| | - J. M. Ndungu
- Opko Health, Inc., RF Building, Jupiter, Florida 33458, United States
| | - Lorraine F. Clark
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
25
|
Leung NY, Wai CY, Ho MH, Liu R, Lam KS, Wang JJ, Shu SA, Chu KH, Leung PS. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol 2015; 14:308-318. [PMID: 26364917 DOI: 10.1038/cmi.2015.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
The one-bead-one-compound (OBOC) combinatorial peptide library is a powerful tool to identify ligand and receptor interactions. Here, we applied the OBOC library technology to identify mimotopes specific to the immunoglobulin E (IgE) epitopes of the major shellfish allergen tropomyosin. OBOC peptide libraries with 8-12 amino acid residues were screened with serum samples from patients with shellfish allergy for IgE mimotopes of tropomyosin. Twenty-five mimotopes were identified from the screening and their binding reactivity to tropomyosin-specific IgE was confirmed by peptide ELISA. These mimotopes could be divided into seven clusters based on sequence homology, and epitope mapping by EpiSearch of the clustered mimotopes was performed to characterize and confirm the validity of mimotopes. Five out of six of the predicted epitopes were found to overlap with previously identified epitopes of tropomyosin. To further confirm the mimicry potential of mimotopes, BALB/c mice were immunized with mimotopes conjugated to keyhole limpet hemocyanin and assayed for their capacity to induce tropomyosin-specific antibodies. BALB/c mice that received mimotope immunization were found to have an elevated level of tropomyosin-specific immunoglobulin G, but not mice that received an irrelevant mimotope. This study pioneers the successful application of the OBOC libraries using whole sera to screen and identify multiple shrimp allergen mimotopes and validates their mimicry potential using in vitro, in vivo, and in silico methods.Cellular & Molecular Immunology advance online publication, 14 september 2015; doi:10.1038/cmi.2015.83.
Collapse
Affiliation(s)
- Nicki Yh Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Christine Yy Wai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Marco Hk Ho
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Jin Jun Wang
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Shang An Shu
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
26
|
Mándity IM, Fülöp F. An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov 2015; 10:1163-77. [PMID: 26289578 DOI: 10.1517/17460441.2015.1076790] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Foldamers are artificial self-organizing systems with various critical properties: i) a stable and designable secondary structure; ii) a larger molecular surface as compared with ordinary organic drug molecules; iii) appropriate control of the orientation of the side-chain functional groups; iv) resistance against proteolytic degradation, which leads to potentially increased oral bioavailability and a longer serum half-life relative to ordinary α-peptides; and v) the lower conformational freedom may result in increased receptor binding in comparison with the natural analogs. AREAS COVERED This article covers the general properties and types of foldamers. This includes highlighted examples of medicinal chemical applications, including antibacterial and cargo molecules, anti-Alzheimer compounds and protein-protein interaction modifiers. EXPERT OPINION Various new foldamers have been created with a range of structures and biological applications. Membrane-acting antibacterial foldamers have been introduced. A general property of these structures is their amphiphilic nature. The amphiphilicity can be stationary or induced by the membrane binding. Cell-penetrating foldamers have been described which serve as cargo molecules, and foldamers have been used as autophagy inducers. Anti-Alzheimer compounds too have been created and the greatest breakthrough was attained via the modification of protein-protein interactions. This can serve as the chemical and pharmaceutical basis for the relevance of foldamers in the future.
Collapse
Affiliation(s)
| | - Ferenc Fülöp
- a University of Szeged Institute of Pharmaceutical Chemistry , H-6720 Szeged, Eötvös u. 6, Hungary +36 62 545 768 ; +36 62 545 564 ; +36 62 545 705 ; ;
| |
Collapse
|
27
|
Doran TM, Simanski S, Kodadek T. Discovery of native autoantigens via antigen surrogate technology: application to type 1 diabetes. ACS Chem Biol 2015; 10:401-12. [PMID: 25474415 PMCID: PMC4339956 DOI: 10.1021/cb5007618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
Abstract
A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield "antigen surrogates" capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Scott Simanski
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| |
Collapse
|
28
|
Cruickshank DR, Luyt LG. The development of organometallic OBOC peptide libraries and sequencing of N-terminal rhenium(I) tricarbonyl-containing peptides utilizing MALDI tandem mass spectrometry. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of peptide-based imaging agents through screening of large peptide libraries is hindered by the additional requirement of a radionuclide−chelator complex that can negatively affect the binding properties of the peptide. Herein, we report N-terminal rhenium(I)tricarbonyl OBOC (one-bead, one-compound) peptide libraries for use in the direct screening of potential imaging agents. The rhenium(I) tricarbonyl is incorporated directly in the library as an imaging entity surrogate to account for the presence of a technetium-99m radionuclide chelate. The identification of unknown organometallic peptides on single beads is successfully accomplished through MALDI tandem mass spectrometry, preceded by a systematic investigation of the effects of a variety of N-terminal rhenium(I) tricarbonyl chelates on peptide fragmentation patterns.
Collapse
Affiliation(s)
- Dana R. Cruickshank
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Leonard G. Luyt
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
- London Regional Cancer Program, 790 Commissioners Rd. E., London, ON N6A 4L6, Canada
| |
Collapse
|
29
|
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system directed against astrocytes. Initially diagnosed in individuals with monophasic or relapsing optic neuritis and transverse myelitis, NMO is now recognized as a demyelinating disorder with pleiotropic presentations due to the identification of a specific autoantibody response against the astrocyte water channel aquaporin-4 in the majority of individuals. As visual impairment and neurologic dysfunction in NMO are commonly severe, aggressive treatment of relapses and prophylactic immunomodulatory therapy are the focus of treatment. Although there are no approved treatments for NMO, medications and therapeutic interventions for acute and chronic treatment have been the subject of retrospective study and case reports. The goal of this review is to familiarize the reader with biologic and clinical data supporting current treatments in NMO and highlight future strategies based on advancements in our understanding of NMO pathogenesis.
Collapse
|
30
|
Kodadek T. Chemical tools to monitor and manipulate the adaptive immune system. CHEMISTRY & BIOLOGY 2014; 21:1066-74. [PMID: 25237855 PMCID: PMC4171709 DOI: 10.1016/j.chembiol.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022]
Abstract
The ability to monitor and manipulate antigen-specific immune responses would have a major impact on several areas of biology and medicine. In this perspective, I consider pharmacological methods to do this, with a focus on the development of abiological "antigen surrogates" capable of binding to the antigen-binding sites of antibodies and B cell receptors with high affinity and selectivity. I describe the application of combinatorial library screening to identify antigen surrogates for monoclonal antibodies of therapeutic interest using chronic lymphocytic leukemia as an example. Furthermore, I discuss the use of multiplexed assays for the quantification of antigen surrogate-antibody complexes as diagnostic tools and antigen surrogate discovery via serum screening. Although antigen surrogates are a fairly new concept, I argue that they will open new avenues for both basic and clinical research and that major advances can be expected over the next few years.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/chemistry
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Quantum Dots/chemistry
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/therapeutic use
- Small Molecule Libraries/chemistry
Collapse
Affiliation(s)
- Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
31
|
Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol 2014; 10:493-506. [PMID: 25112508 DOI: 10.1038/nrneurol.2014.141] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date.
Collapse
Affiliation(s)
- Marios C Papadopoulos
- Academic Neurosurgery Unit, St George's, University of London, Room 0.136 Jenner Wing, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, Research Complex 2, Mail stop B-182, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, Health Science East Tower Room 1246, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Morimoto J, Sarkar M, Kenrick S, Kodadek T. Dextran as a generally applicable multivalent scaffold for improving immunoglobulin-binding affinities of peptide and peptidomimetic ligands. Bioconjug Chem 2014; 25:1479-91. [PMID: 25073654 PMCID: PMC4140544 DOI: 10.1021/bc500226j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Molecules able to bind the antigen-binding
sites of antibodies
are of interest in medicine and immunology. Since most antibodies
are bivalent, higher affinity recognition can be achieved through
avidity effects in which a construct containing two or more copies
of the ligand engages both arms of the immunoglobulin simultaneously.
This can be achieved routinely by immobilizing antibody ligands at
high density on solid surfaces, such as ELISA plates, but there is
surprisingly little literature on scaffolds that routinely support
bivalent binding of antibody ligands in solution, particularly for
the important case of human IgG antibodies. Here we show that the
simple strategy of linking two antigens with a polyethylene glycol
(PEG) spacer long enough to span the two arms of an antibody results
in higher affinity binding in some, but not all, cases. However, we
found that the creation of multimeric constructs in which several
antibody ligands are displayed on a dextran polymer reliably provides
much higher affinity binding than is observed with the monomer in
all cases tested. Since these dextran conjugates are simple to construct,
they provide a general and convenient strategy to transform modest
affinity antibody ligands into high affinity probes. An additional
advantage is that the antibody ligands occupy only a small number
of the reactive sites on the dextran, so that molecular cargo can
be attached easily, creating molecules capable of delivering this
cargo to cells displaying antigen-specific receptors.
Collapse
Affiliation(s)
- Jumpei Morimoto
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | | | | |
Collapse
|
33
|
Renfrew PD, Craven TW, Butterfoss G, Kirshenbaum K, Bonneau R. A rotamer library to enable modeling and design of peptoid foldamers. J Am Chem Soc 2014; 136:8772-82. [PMID: 24823488 PMCID: PMC4227732 DOI: 10.1021/ja503776z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 01/08/2023]
Abstract
Peptoids are a family of synthetic oligomers composed of N-substituted glycine units. Along with other "foldamer" systems, peptoid oligomer sequences can be predictably designed to form a variety of stable secondary structures. It is not yet evident if foldamer design can be extended to reliably create tertiary structure features that mimic more complex biomolecular folds and functions. Computational modeling and prediction of peptoid conformations will likely play a critical role in enabling complex biomimetic designs. We introduce a computational approach to provide accurate conformational and energetic parameters for peptoid side chains needed for successful modeling and design. We find that peptoids can be described by a "rotamer" treatment, similar to that established for proteins, in which the peptoid side chains display rotational isomerism to populate discrete regions of the conformational landscape. Because of the insufficient number of solved peptoid structures, we have calculated the relative energies of side-chain conformational states to provide a backbone-dependent (BBD) rotamer library for a set of 54 different peptoid side chains. We evaluated two rotamer library development methods that employ quantum mechanics (QM) and/or molecular mechanics (MM) energy calculations to identify side-chain rotamers. We show by comparison to experimental peptoid structures that both methods provide an accurate prediction of peptoid side chain placements in folded peptoid oligomers and at protein interfaces. We have incorporated our peptoid rotamer libraries into ROSETTA, a molecular design package previously validated in the context of protein design and structure prediction.
Collapse
Affiliation(s)
- P. Douglas Renfrew
- Center for Genomics and
Systems Biology, Department
of Biology, Department of Chemistry, and Courant Institute of Mathematical
Sciences, Computer Science Department, New
York University, New York, New York 10003, United States
| | - Timothy W. Craven
- Center for Genomics and
Systems Biology, Department
of Biology, Department of Chemistry, and Courant Institute of Mathematical
Sciences, Computer Science Department, New
York University, New York, New York 10003, United States
| | - Glenn
L. Butterfoss
- Center
for Genomics and Systems Biology, New York
University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kent Kirshenbaum
- Center for Genomics and
Systems Biology, Department
of Biology, Department of Chemistry, and Courant Institute of Mathematical
Sciences, Computer Science Department, New
York University, New York, New York 10003, United States
| | - Richard Bonneau
- Center for Genomics and
Systems Biology, Department
of Biology, Department of Chemistry, and Courant Institute of Mathematical
Sciences, Computer Science Department, New
York University, New York, New York 10003, United States
| |
Collapse
|
34
|
Doran TM, Gao Y, Mendes K, Dean S, Simanski S, Kodadek T. Utility of redundant combinatorial libraries in distinguishing high and low quality screening hits. ACS COMBINATORIAL SCIENCE 2014; 16:259-70. [PMID: 24749624 PMCID: PMC4053090 DOI: 10.1021/co500030f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Large
one-bead one-compound (OBOC) combinatorial libraries can
be constructed relatively easily by solid-phase split and pool synthesis.
The use of resins with hydrophilic surfaces, such as TentaGel, allows
the beads to be used directly in screens for compounds that bind selectively
to labeled proteins, nucleic acids, or other biomolecules. However,
we have found that this method, while useful, has a high false positive
rate. In other words, beads that are scored as hits often display
compounds that prove to be poor ligands for the target of interest
when they are resynthesized and carried through validation trials.
This results in a significant waste of time and resources in cases
where putative hits cannot be validated without resynthesis. Here,
we report that this problem can be largely eliminated through the
use of redundant OBOC libraries, where more than one bead displaying
the same compound is present in the screen. We show that compounds
isolated more than once are likely to be high quality ligands for
the target of interest, whereas compounds isolated only once have
a much higher likelihood of being poor ligands. While the use of redundant
libraries does limit the number of unique compounds that can be screened
at one time in this format, the overall savings in time, effort, and
materials makes this a more efficient route to the isolation of useful
ligands for biomolecules.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Yu Gao
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Kimberly Mendes
- OPKO Health, Inc., 555 Heritage
Drive, Jupiter, Florida 33458, United States
| | - Sonja Dean
- OPKO Health, Inc., 555 Heritage
Drive, Jupiter, Florida 33458, United States
| | - Scott Simanski
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
35
|
Doran TM, Kodadek T. A liquid array platform for the multiplexed analysis of synthetic molecule-protein interactions. ACS Chem Biol 2014; 9:339-46. [PMID: 24245981 PMCID: PMC3944025 DOI: 10.1021/cb400806r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic molecule microarrays, consisting of many different compounds spotted onto a planar surface such as modified glass or cellulose, have proven to be useful tools for the multiplexed analysis of small molecule- and peptide-protein interactions. However, these arrays are technically difficult to manufacture and use with high reproducibility and require specialized equipment. Here we report a more convenient alternative composed of color-encoded beads that display a small molecule protein ligand on the surface. Quantitative, multiplexed assay of protein binding to up to 24 different ligands can be achieved using a common flow cytometer for the readout. This technology should be useful for evaluating hits from library screening efforts, the determination of structure activity relationships, and certain types of serological analyses.
Collapse
Affiliation(s)
- Todd M Doran
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, Scripps Florida , 130 Scripps Way, Jupiter , Florida 33458, United States
| | | |
Collapse
|
36
|
Quan J, Lakhanpal A, Reddy MM, Zaman S, Li QZ, German DC, Olsen NJ, Kodadek T, Karp DR. Discovery of biomarkers for systemic lupus erythematosus using a library of synthetic autoantigen surrogates. J Immunol Methods 2013; 402:23-34. [PMID: 24269750 DOI: 10.1016/j.jim.2013.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/28/2022]
Abstract
Antibodies to a wide range of self-antigens, including those directed against nucleic acids or nucleic acid-binding proteins are the essential biomarkers for diseases such as systemic lupus erythematosus (SLE). Highly complex libraries of nonamers consisting of N-substituted glycines (peptoids) were screened for compounds that bound IgG from patients with SLE and earlier, incomplete autoimmune syndromes. Peptoids were identified that could identify subjects with SLE and related syndromes with a high sensitivity (70%) and specificity (97.5%). Immobilized peptoids were used to isolate IgG from both healthy subjects and SLE patients that reacted with known RNA-binding proteins. In the case of SLE patients, the peptoid-purified IgG reacted with several autoantigens, suggesting that the peptoids are capable of interacting with multiple, structurally similar molecules. These results show that the measurement of IgG binding to peptoids can identify subjects with high levels of pathogenic autoantibodies.
Collapse
Affiliation(s)
- Jiexia Quan
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akshai Lakhanpal
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Muralidhar Reddy
- The Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Opko Health, Inc., 555 Heritage Dr., Jupiter, FL 33458, USA
| | - Sayed Zaman
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight C German
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy J Olsen
- The Department of Medicine, Penn State M.S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Thomas Kodadek
- The Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - David R Karp
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Sun J, Zuckermann RN. Peptoid polymers: a highly designable bioinspired material. ACS NANO 2013; 7:4715-32. [PMID: 23721608 DOI: 10.1021/nn4015714] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bioinspired polymeric materials are attracting increasing attention due to significant advantages over their natural counterparts: the ability to precisely tune their structures over a broad range of chemical and physical properties, increased stability, and improved processability. Polypeptoids, a promising class of bioinspired polymer based on a N-substituted glycine backbone, have a number of unique properties that bridge the material gap between proteins and bulk polymers. Peptoids combine the sequence specificity of biopolymers with the simpler intra/intermolecular interactions and robustness of traditional synthetic polymers. They are highly designable because hundreds of chemically diverse side chains can be introduced from simple building blocks. Peptoid polymers can be prepared by two distinct synthetic techniques offering access to two material subclasses: (1) automated solid-phase synthesis which enables precision sequence control and near absolute monodispersity up to chain lengths of ~50 monomers, and (2) a classical polymerization approach which allows access to higher molecular weights and larger-scale yields, but with less control over length and sequence. This combination of facile synthetic approaches makes polypeptoids a highly tunable, rapid polymer prototyping platform to investigate new materials that are intermediate between proteins and bulk polymers, in both their structure and their properties. In this paper, we review the methods to synthesize peptoid polymers and their applications in biomedicine and nanoscience, as both sequence-specific materials and as bulk polymers.
Collapse
Affiliation(s)
- Jing Sun
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | | |
Collapse
|