1
|
Sung Y, Miller BW, Schmidt EW. Glutathione in the Biosynthesis of Glutazoline Teredinibactins. Org Lett 2025; 27:1774-1778. [PMID: 39961138 PMCID: PMC11878277 DOI: 10.1021/acs.orglett.4c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Teredinibactins are β-resorcyclic thiazoline dipeptides synthesized by Teredinibacter turnerae T7901, a bacterial symbiont of shipworms in the sea. Through feeding studies, we show that the thiazoline moiety is made from glutathione and its metabolites in a noncanonical pathway, for which we suggest the name "glutazoline". Mimicking the biosynthetic reaction, we synthesized both natural and unnatural teredinibactins. The results expand the scope of biological and chemical approaches to aromatic azoline conjugates.
Collapse
Affiliation(s)
- Youjung Sung
- Department of Medicinal Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Bailey W. Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
2
|
Ahmad S, Mohammed M, Mekala LP, Chintalapati S, Chintalapati R. Proteomic and metabolic profiling reveals molecular phenotype associated with chemotrophic growth of Rubrivivax benzoatilyticus JA2 on L-tryptophan. Mol Omics 2025; 21:51-68. [PMID: 39607403 DOI: 10.1039/d4mo00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rubrivivax benzoatilyticus strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sasikala Chintalapati
- Smart Microbiological Services (SMS), Rashtrapathi Road, Secunderabad 500 003, India
| | - Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
3
|
Lee JH, Hwang SJ, Ham SL, Kim J, Bang HJ, Park JS, Jang HH, Kim TY, Park JW, Seo YR, Kim BS, Kim GS, Lee HJ, Kim CS. Gut Bacterial Metabolites from Tryptophan and Phenylalanine Induce Melatonin Synthesis and Extend Sleep Duration in Mice. ACS OMEGA 2024; 9:43875-43883. [PMID: 39493976 PMCID: PMC11525535 DOI: 10.1021/acsomega.4c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
The human gut microbiota significantly influences various physiological systems, including immune, nervous, and metabolic systems. Recent studies suggest that gut microbiota may affect sleep quality with certain bacteria and metabolites being linked to sleep patterns. However, the underlying chemical signaling pathway remains unclear. In this study, we investigated the effect of four gut bacteria-derived metabolites, tryptamine (1), indolokine A5 (2), 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, 3), and phenethylamine (PEA, 4), on sleep characteristics in mice and melatonin biosynthesis pathways in zebrafish. Their sleep-promoting effects were evaluated in a pentobarbital-induced sleep mouse model, revealing significant increases in sleep duration and blood melatonin levels, particularly with ITE (3) and PEA (4). Further tests in zebrafish embryos showed that ITE (3) and PEA (4) increased the expression of genes for melatonin biosynthesis (Aanat1, Aanat2, Tph1a, and Hiomt) in a concentration-dependent manner, indicating their potential as therapeutic agents for sleep disorders.
Collapse
Affiliation(s)
- Ji-Hyeok Lee
- Department
of Biohealth Regulatory Science, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Su Jung Hwang
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Song Lim Ham
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Hye Jung Bang
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon-Suk Park
- Preclinical
Research Center (PRC), Daegu-Gyeongbuk Medical
Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Hyun-Hee Jang
- Research
Institute of Biological R&D Center, Eco-Prime Co., Changwon 51371, Republic
of Korea
| | - Tae Yang Kim
- Kick the
Hurdle Co., Changwon 51139, Republic of Korea
| | | | - Young Rok Seo
- Kick the
Hurdle Co., Changwon 51139, Republic of Korea
| | | | - Gon Sup Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo-Jong Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department
of Biohealth Regulatory Science, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Lee JR, Hwang SJ, Choi Y, Kim J, Lee GS, Lee BS, Kim KH, Kang KB, Lee HJ, Kim CS. Structural Diversification of Pyrazinone Metabolites via Spontaneous Oxa-Michael Addition in Staphylococcus xylosus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1881-1887. [PMID: 38950087 DOI: 10.1021/acs.jnatprod.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A family of pyrazinone metabolites (1-11) were characterized from Staphylococcus xylosus ATCC 29971. Six of them were hydroxylated or methoxylated, which were proposed to be produced by the rare noncatalytic oxa-Michael addition reaction with a water or methanol molecule. It was confirmed that isopropyl alcohol can also be the Michael donor of the reaction. 1-7 and the synthetic precursor 2a showed significant inhibition of breast cancer cell migration.
Collapse
Affiliation(s)
- Ju Ryeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yukyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Lee DY, Kim J, Lee GS, Park S, Song J, Lee BS, Lee SR, Kim KH, Kim CS. Characterization of Chemical Interactions between Clinical Drugs and the Oral Bacterium, Corynebacterium matruchotii, via Bioactivity-HiTES. ACS Chem Biol 2024; 19:973-980. [PMID: 38514380 DOI: 10.1021/acschembio.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 μM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 μM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 μM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.
Collapse
Affiliation(s)
- Da Yeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sehwan Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongwon Song
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Khaova EA, Tkachenko AG. Effects of polyamines and indole on the expression of ribosome hibernation factors in Escherichia coli at the translational level. Vavilovskii Zhurnal Genet Selektsii 2024; 28:24-32. [PMID: 38465244 PMCID: PMC10917681 DOI: 10.18699/vjgb-24-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 03/12/2024] Open
Abstract
Polyamines and indole are small regulatory molecules that are involved in the adaptation to stress in bacteria, including the regulation of gene expression. Genes, the translation of which is under the regulatory effects of polyamines, form the polyamine modulon. Previously, we showed that polyamines upregulated the transcription of genes encoding the ribosome hibernation factors RMF, RaiA, SRA, EttA and RsfS in Escherichia coli. At the same time, indole affected the expression at the transcriptional level of only the raiA and rmf genes. Ribosome hibernation factors reversibly inhibit translation under stress conditions, including exposure to antibiotics, to avoid resource waste and to conserve ribosomes for a quick restoration of their functions when favorable conditions occur. In this work, we have studied the influence of indole on the expression of the raiA and rmf genes at the translational level and regulatory effects of the polyamines putrescine, cadaverine and spermidine on the translation of the rmf, raiA, sra, ettA and rsfS genes. We have analyzed the mRNA primary structures of the studied genes and the predicted mRNA secondary structures obtained by using the RNAfold program for the availability of polyamine modulon features. We have found that all of the studied genes contain specific features typical of the polyamine modulon. Furthermore, to investigate the influence of polyamines and indole on the translation of the studied genes, we have constructed the translational reporter lacZ-fusions by using the pRS552/λRS45 system. According to the results obtained, polyamines upregulated the expression of the rmf, raiA and sra genes, the highest expression of which was observed at the stationary phase, but did not affect the translation of the ettA and rsfS genes, the highest expression of which took place during the exponential phase. The stimulatory effects were polyamine-specific and observed at the stationary phase, when bacteria are under multiple stresses. In addition, the data obtained demonstrated that indole significantly inhibited translation of the raiA and rmf genes, despite the stimulatory effect on their transcrip- tion. This can suggest the activity of a posttranscriptional regulatory mechanism of indole on gene expression.
Collapse
Affiliation(s)
- E A Khaova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
7
|
Bhole RP, Patil S, Kapare HS, Chikhale RV, Gurav SS. PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras. Curr Top Med Chem 2024; 24:2050-2073. [PMID: 38963108 DOI: 10.2174/0115680266309968240621072550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Timeresolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyappeth, Pimpri, Pune, 411018, India
| | - Sapana Patil
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Harshad S Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panjim, Goa, India
| |
Collapse
|
8
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
9
|
Kim HR, Kim J, Yu JS, Lee BS, Kim KH, Kim CS. Isolation, structure elucidation, total synthesis, and biosynthesis of dermazolium A, an antibacterial imidazolium metabolite of a vaginal bacterium Dermabacter vaginalis. Arch Pharm Res 2023; 46:35-43. [PMID: 36642761 DOI: 10.1007/s12272-022-01424-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 01/17/2023]
Abstract
Dermabacter vaginalis is a human-derived bacterium isolated from vaginal fluid of a Korean female in 2016. Although several human-related species in Dermabacter genus have been reported there are few studies on their bioactive metabolites. Dermazolium A (1), a rare imidazolium metabolite, was isolated from D. vaginalis along with five known metabolites (2-6) and their chemical structures were determined by NMR, HRMS, and MS/MS data analysis. Feeding experiments using predicted precursors and biomimetic total synthesis of 1 corroborated its structure and led to suggestion of biosynthetic pathway of 1. Antibacterial tests on the isolated compounds showed that 1 is a mild antibacterial agent with MIC values of 41 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) USA300, Lacticaseibacillus paracasei subsp. paracasei KCTC 3510 and Brevibacterium epidermidis KCTC 3090.
Collapse
Affiliation(s)
- Hye Ryeong Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea.,Department of Integrative Biological Sciences and Industry, Sejong University, 05006, Seoul, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, 16419, Suwon, Republic of Korea. .,School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Gatsios A, Kim CS, York AG, Flavell RA, Crawford JM. Cellular Stress-Induced Metabolites in Escherichia coli. JOURNAL OF NATURAL PRODUCTS 2022; 85:2626-2640. [PMID: 36346625 PMCID: PMC9949963 DOI: 10.1021/acs.jnatprod.2c00706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.
Collapse
Affiliation(s)
- Alexandra Gatsios
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut 06516, United States
- School of Pharmacy and Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Autumn G. York
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Li X, Zhang B, Hu Y, Zhao Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front Pharmacol 2021; 12:769501. [PMID: 34966278 PMCID: PMC8710772 DOI: 10.3389/fphar.2021.769501] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction between host and microorganism widely affects the immune and metabolic status. Indole and its derivatives are metabolites produced by the metabolism of tryptophan catalyzed by intestinal microorganisms. By activating nuclear receptors, regulating intestinal hormones, and affecting the biological effects of bacteria as signaling molecules, indole and its derivatives maintain intestinal homeostasis and impact liver metabolism and the immune response, which shows good therapeutic prospects. We reviewed recent studies on indole and its derivatives, including related metabolism, the influence of diets and intestinal commensal bacteria, and the targets and mechanisms in pathological conditions, especially progress in therapeutic strategies. New research insights into indoles will facilitate a better understanding of their druggability and application in intestinal and liver diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Escherichia coli small molecule metabolism at the host-microorganism interface. Nat Chem Biol 2021; 17:1016-1026. [PMID: 34552219 DOI: 10.1038/s41589-021-00807-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Escherichia coli are a common component of the human microbiota, and isolates exhibit probiotic, commensal and pathogenic roles in the host. E. coli members often use diverse small molecule chemistry to regulate intrabacterial, intermicrobial and host-bacterial interactions. While E. coli are considered to be a well-studied model organism in biology, much of their chemical arsenal has only more recently been defined, and much remains to be explored. Here we describe chemical signaling systems in E. coli in the context of the broader field of metabolism at the host-bacteria interface and the role of this signaling in disease modulation.
Collapse
|
14
|
Sulfamethoxazole drug stress upregulates antioxidant immunomodulatory metabolites in Escherichia coli. Nat Microbiol 2020; 5:1319-1329. [PMID: 32719505 PMCID: PMC7581551 DOI: 10.1038/s41564-020-0763-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Escherichia coli is an important model organism in microbiology and a prominent member of the human microbiota1. Environmental isolates readily colonize the gastrointestinal tract of humans and other animals, and they can serve diverse probiotic, commensal and pathogenic roles in the host2-4. Although certain strains have been associated with the severity of inflammatory bowel disease (IBD)2,5, the diverse immunomodulatory phenotypes remain largely unknown at the molecular level. Here, we decode a previously unknown E. coli metabolic pathway that produces a family of hybrid pterin-phenylpyruvate conjugates, which we named the colipterins. The metabolites are upregulated by subinhibitory levels of the antifolate sulfamethoxazole, which is used to treat infections including in patients with IBD6,7. The genes folX/M and aspC/tyrB involved in monapterin biosynthesis8-10 and aromatic amino acid transamination,11 respectively, were required to initiate the colipterin pathway. We show that the colipterins are antioxidants, harbour diverse immunological activities in primary human tissues, activate anti-inflammatory interleukin-10 and improve colitis symptoms in a colitis mouse model. Our study defines an antifolate stress response in E. coli and links its associated metabolites to a major immunological marker of IBD.
Collapse
|