1
|
Horie Y, Matsuo Y, Ríos JM, Motlagh HA, Jiang JJ. Non-Phthalate Plasticizer Bis(2-ethylhexyl) Sebacate Induces Testis-Ova Formation and Suppresses Reproduction in Japanese Medaka. J Appl Toxicol 2025. [PMID: 40344245 DOI: 10.1002/jat.4794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Bis(2-ethylhexyl) sebacate (DEHS), a commonly used non-phthalate plasticizer considered relatively safe relative to phthalates, has been reported to disrupt the endocrine system, affect reproduction-related genes, and potentially induce thyroid hormone-disrupting and estrogenic effects on Japanese medaka (Oryzias latipes). However, the long-term effects of DEHS exposure on aquatic organisms remain unclear; further, data on residual DEHS concentrations in rivers are extremely limited. Here, the effects of DEHS on the reproductive performance and gonadal sex differentiation of Japanese medaka were determined. Japanese medaka embryos and larvae were exposed to varying DEHS concentrations that have been reported to induce thyroid hormone-disrupting effects. The residual concentrations of DEHS in the Sumiyoshi River were measured weekly from May to July in 2024. The formation of testis-ova was induced in XY medaka exposed to varying DEHS concentrations. DEHS exposure was shown to significantly reduce the number of eggs laid but did not affect fertilization rates. The DEHS levels in the Sumiyoshi River were either undetected or below the method quantification limit. Although significant changes in reproductive capacity and testis-ova were not observed at environmentally relevant residual concentrations, this study highlights the potentially harmful effects of a chemical that was previously considered environmentally friendly.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Kobe, Japan
- Faculty of Maritime Science, Kobe University, Kobe, Japan
| | - Yusei Matsuo
- Faculty of Maritime Science, Kobe University, Kobe, Japan
| | - Juan Manuel Ríos
- Laboratorio de Ecotoxicología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CCT-CONICET), Mendoza, Argentina
| | - Hamidreza Ahmadniaye Motlagh
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Yang W, Bu Q, Shi Q, Zhao R, Huang H, Yang L, Tang J, Ma Y. Emerging Contaminants in the Effluent of Wastewater Should Be Regulated: Which and to What Extent? TOXICS 2024; 12:309. [PMID: 38787088 PMCID: PMC11125804 DOI: 10.3390/toxics12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 μg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qianhui Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuning Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Dasmahapatra AK, Williams CB, Myla A, Tiwary SK, Tchounwou PB. A systematic review of the evaluation of endocrine-disrupting chemicals in the Japanese medaka ( Oryzias latipes) fish. FRONTIERS IN TOXICOLOGY 2023; 5:1272368. [PMID: 38090358 PMCID: PMC10711633 DOI: 10.3389/ftox.2023.1272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Japanese medaka (Oryzias latipes) is an acceptable small laboratory fish model for the evaluation and assessment of endocrine-disrupting chemicals (EDCs) found in the environment. In this research, we used this fish as a potential tool for the identification of EDCs that have a significant impact on human health. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar (https://scholar.google.com/) using the search terms, Japanese medaka, Oryzias latipes, and endocrine disruptions, and sorted 205 articles consisting of 128 chemicals that showed potential effects on estrogen-androgen-thyroid-steroidogenesis (EATS) pathways of Japanese medaka. From these chemicals, 14 compounds, namely, 17β-estradiol (E2), ethinylestradiol (EE2), tamoxifen (TAM), 11-ketotestosterone (11-KT), 17β-trenbolone (TRB), flutamide (FLU), vinclozolin (VIN), triiodothyronine (T3), perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA), terephthalic acid (TPA), trifloxystrobin (TRF), ketoconazole (KTC), and prochloraz (PCZ), were selected as references and used for the identification of apical endpoints within the EATS modalities. Among these endpoints, during classification, priorities are given to sex reversal (masculinization of females and feminization of males), gonad histology (testis-ova or ovotestis), secondary sex characteristics (anal fin papillae of males), plasma and liver vitellogenin (VTG) contents in males, swim bladder inflation during larval development, hepatic vitellogenin (vtg) and choriogenin (chg) genes in the liver of males, and several genes, including estrogen-androgen-thyroid receptors in the hypothalamus-pituitary-gonad/thyroid axis (HPG/T). After reviewing 205 articles, we identified 108 (52.68%), 46 (22.43%), 19 (9.26%), 22 (17.18%), and 26 (12.68%) papers that represented studies on estrogen endocrine disruptors (EEDs), androgen endocrine disruptors (AEDs), thyroid endocrine disruptors (TEDs), and/or steroidogenesis modulators (MOS), respectively. Most importantly, among 128 EDCs, 32 (25%), 22 (17.18%), 15 (11.8%), and 14 (10.93%) chemicals were classified as EEDs, AEDs, TEDs, and MOS, respectively. We also identified 43 (33.59%) chemicals as high-priority candidates for tier 2 tests, and 13 chemicals (10.15%) show enough potential to be considered EDCs without any further tier-based studies. Although our literature search was unable to identify the EATS targets of 45 chemicals (35%) studied in 60 (29.26%) of the 205 articles, our approach has sufficient potential to further move the laboratory-based research data on Japanese medaka for applications in regulatory risk assessments in humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Charmonix B. Williams
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Sanjay K. Tiwary
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Paul. B. Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
4
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. Endocrine disruptor responses in the embryos of marine medaka (Oryzias melastigma) after exposure to aged plastic leachates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106635. [PMID: 37478585 DOI: 10.1016/j.aquatox.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparβ (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
5
|
Aydın S, Ulvi A, Bedük F, Aydın ME. Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152864. [PMID: 34998750 DOI: 10.1016/j.scitotenv.2021.152864] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 05/23/2023]
Abstract
The occurrences, temporal variations and ecotoxicological risks of 38 selected pharmaceuticals from 7 therapeutic classes (i.e. antibiotics, analgesics, anti-inflammatories, beta-blockers, lipid regulators, anticancer agents, and psychiatric drugs) have been observed in the anaerobically treated sludge of the urban wastewater treatment plant (WWTP) in Konya, Turkey. Sampling was carried out to assess the seasonal variations in one year. The total daily wastewater flow rate of the WWTP was approximately 200,000 m3/day, and 140 tons/day of treated sludge were produced. The total concentrations of all pharmaceutical compounds ranged from 280 to 4898 μg/kg of dry matter (dm). The dominant therapeutic class was analgesics and anti-inflammatories (49%), which was followed by antibiotics (31%). Clarithromycin and azithromycin were the most abundant compounds, with concentrations of 1496 μg/kg dm. The total daily pharmaceutical load in the treated sludge was as high as 1.002 kg/day in the winter season, while the annual pharmaceutical mass load that was discharged into the environment was estimated to be approximately 71.6 kg. The use of treated sludge as fertilizer in agricultural lands causes continuous contamination of the terrestrial environment by pharmaceuticals. Five antibiotics (i.e., azithromycin, clarithromycin, erythromycin, sulfamethoxazole, and doxycycline), one analgesic (acetylsalicylic acid) and one beta-blocker (atenolol) in the digested sludge pose acute and short chronic high risks to environment. The highest short chronic risk in the digested sludge-amended soils was determined for azithromycin (RQ: 54.9). To reduce the potential environmental impact of pharmaceuticals, digested sludge should be monitored in terms of the pharmaceutical contents before being applied to soil.
Collapse
Affiliation(s)
- Senar Aydın
- Necmettin Erbakan University, Department of Environmental Engineering, Konya, Turkey.
| | - Arzu Ulvi
- Necmettin Erbakan University, Department of Environmental Engineering, Konya, Turkey
| | - Fatma Bedük
- Necmettin Erbakan University, Department of Environmental Engineering, Konya, Turkey
| | - Mehmet Emin Aydın
- Necmettin Erbakan University, Department of Civil Engineering, Konya, Turkey
| |
Collapse
|
6
|
Ren X, Huang Y, Li X, Li Z, Yang H, He R, Zhong H, Li G, Chen H. Identification and functional characterization of gonadotropin -releasing hormone in pompano (Trachinotus ovatus). Gen Comp Endocrinol 2022; 316:113958. [PMID: 34861278 DOI: 10.1016/j.ygcen.2021.113958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is an important neuropeptide in the reproductive system. Although GnRH analogues have been used to artificially spawn pompano (Trachinotus sp.), the native forms of GnRH have not been described in this species. In this study three GnRH subtypes [sea bream GnRH (sbGnRH), chicken GnRH-Ⅱ (cGnRH-Ⅱ) and salmon GnRH (sGnRH)] were identified in pompano (Trachinotus ovatus). cgnrh-Ⅱ and sgnrh were mainly expressed in the brain of male and female fish, showing a tissue-specific expression pattern, while sbgnrh was expressed at different transcriptional levels in all tested tissues. In vivo injection experiment showed that sbGnRH significantly increased fsh and lh genes expression in a dose-dependent manner, but a high concentration of sbGnRH could desensitize the expression of lh. High concentrations of cGnRH-Ⅱ and sGnRH could induce the expression of fsh and lh. In addition, the results of in vitro incubation experiments showed that the high concentration of sbGnRH peptide could induce the expression of fsh and lh, while cGnRH-Ⅱ and sGnRH peptides could only induce the expression of fsh. 17β-estradiol (E2) and 17α-methyltestosterone (MT) significantly inhibited sbgnrh mRNA expression in a dose-dependent manner, but did not affect the expression of cgnrh-Ⅱ and sgnrh mRNA. sbGnRH is the main GnRH subtype in pompano. E2 and MT can play a negative role in the regulation of sbgnrh. This study provides a theoretical basis for the reproductive endocrinology of pompano.
Collapse
Affiliation(s)
- Xilin Ren
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaomeng Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyuan Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruiqi He
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Honggan Zhong
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China.
| |
Collapse
|
7
|
Stoykova P, Ohkawa H, Inui H. Simple monitoring of endocrine-disrupting chemicals using transgenic Arabidopsis plants expressing medaka estrogen receptor. CHEMOSPHERE 2022; 286:131633. [PMID: 34325267 DOI: 10.1016/j.chemosphere.2021.131633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are widespread contaminants that severely affect the endocrine systems of living organisms. In addition to the conventional instrument-based approaches for quantifying organic pollutants, a monitoring method using transgenic plants has also been proposed. Plants carrying a recombinant receptor gene combined with a reporter gene represent a system for the easy detection of ligands that specifically bind to the receptor molecule. Here, the EDC detection sensitivity of transgenic Arabidopsis plants expressing the medaka (Oryzias latipes) estrogen receptor (mER) and green fluorescent protein (GFP) genes, was assessed. Four transgenic Arabidopsis lines, obtained by transformation with expression plasmids constructed using combinations of two types of the ligand-binding domains of mER, the DNA-binding domain of LexA and the transactivation domain of VP16 in the chimeric receptors, showed significant induction of GFP when germinated on a medium contaminated with 1 ng/mL 4-t-octylphenol (OP). The most sensitive XmEV19-2 plants detected 0.1 ng/mL OP and 1 pg/mL 17β-estradiol. GFP expression was suppressed by the insecticides imidacloprid and fipronil, whereas perfluorooctanesulfonic acid induced it at 0.1 ng/mL. Experiments with river water-based medium showed that XmEV19-2 can be used for monitoring polluted waters, detecting OP at concentrations as low as 5 ng/mL. Notably, XmEV19-2 showed a significant decrease in root length when grown on 0.1 ng/mL OP. mER transgenic plants can be a promising tool for simple monitoring of EDCs, without the need for extraction and concentration steps in sample preparation.
Collapse
Affiliation(s)
- Petya Stoykova
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; AgroBioInstitute, 8 "Dragan Tsankov" Blvd, 1164, Sofia, Bulgaria
| | - Hideo Ohkawa
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
8
|
Kazmi SSUH, Zhong X, Xu H. An approach to evaluating the acute toxicity of nitrofurazone on community functioning using protozoan periphytons. MARINE POLLUTION BULLETIN 2021; 173:113066. [PMID: 34688084 DOI: 10.1016/j.marpolbul.2021.113066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The acute toxicity of nitrofurazone on community functioning was studied using an acute toxicity test. Consequently, 14-day protozoan periphyton assemblages were used as test organism communities, under a range of nitrofurazone concentrations including 0 (control), 0.5, 3, 6, and 12 mg ml-1 within 0, 2, 4, 6, 8, 10, and 12 h time duration. Fuzzy coding system of functional traits classified the test protozoan periphyton community into six major traits and 15 categories. Briefly, community-weighted means (CWM) were used to identify the community functioning of test protozoan assemblage. Inferences demonstrate a drastic/significant variation in the functional patterns of the test organisms at a high concentration (12 mg ml-1) after an exposure time of 12 h, but the functional diversity indices leveled off at the exposure time of 10 h and then dropped sharply. These results suggested that nitrofurazone may significantly influence the community functioning in marine ecosystems.
Collapse
Affiliation(s)
| | - Xiaoxiao Zhong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Henglong Xu
- Department of Microbial Ecology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
10
|
Chen HP, Cui XF, Wang YR, Li ZY, Tian CX, Jiang DN, Zhu CH, Zhang Y, Li SS, Li GL. Identification, functional characterization, and estrogen regulation on gonadotropin-releasing hormone in the spotted scat, Scatophagus argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1743-1757. [PMID: 32514853 DOI: 10.1007/s10695-020-00825-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key neuropeptide of the reproductive system. However, little is known about the role of GnRH in the spotted scat (Scatophagus argus). Here, three GnRH subtypes (cGnRH-II, sGnRH, and sbGnRH) were identified in the spotted scat. cGnRH-II and sGnRH were only expressed in the brains and gonads of both male and female fish, exhibiting a tissue-specific expression pattern, while sbGnRH was expressed at different transcription levels in all examined tissues. During ovarian maturation, hypothalamus-associated sbGnRH was upregulated, while the expression of sGnRH was variable and cGnRH-II first increased and then decreased. In vivo experiments showed that sbGnRH significantly promoted the expression of fsh and lh genes in a dose-dependent manner and exhibited a desensitization effect on lh expression at high concentrations. For sGnRH and cGnRH-II, only high concentrations could induce fsh and lh expression. Furthermore, treatment with highly concentrated sbGnRH peptide also induced fsh and lh expression, whereas the sGnRH and cGnRH-II peptides only induced fsh expression in vitro. 17β-Estradiol (E2) significantly inhibited the expression of sbGnRH mRNA in a dose-dependent manner and did not impact sGnRH and cGnRH-II mRNA levels in vivo or in vitro. The inhibitory effect of E2 on sbGnRH expression was attenuated by the estrogen receptor (ER) broad-spectrum antagonist (fulvestrant) and the ERα-specific antagonist (methyl-piperidinopyrazole), respectively, implying that the feedback regulation on sbGnRH is mediated via ERα. This study provides a theoretical basis for the reproductive endocrinology of the spotted scat by studying GnRH.
Collapse
Affiliation(s)
- Hua-Pu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xue-Fan Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yao-Rong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhi-Yuan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chang-Xu Tian
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Dong-Neng Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chun-Hua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China.
| | - Guang-Li Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
11
|
Weiler K, Ramakrishnan S. Bisphenol F causes disruption of gonadotropin-releasing hormone neural development in zebrafish via an estrogenic mechanism. Neurotoxicology 2019; 71:31-38. [DOI: 10.1016/j.neuro.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 01/08/2023]
|
12
|
Ruan Y, Dou Y, Chen J, Warren A, Li J, Lin X. Evaluation of phenol-induced ecotoxicity in two model ciliate species: Population growth dynamics and antioxidant enzyme activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:176-185. [PMID: 30269012 DOI: 10.1016/j.ecoenv.2018.09.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/08/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The application of identical exposure dosages in different species generally leads to a limited understanding of dose-response patterns because of species-specific factors. To evaluate phenol-induced ecotoxicity, antioxidant enzyme activity and population growth dynamics were compared in two model ciliates, the marine species Euplotes vannus and the freshwater species Paramecium multimicronucleatum. Dosage ranges of phenol exposure were based on tolerance limits of test ciliates as determined by their carrying capacity (K) and growth rate (r). When the exposure duration of phenol increased from 48 h to 96 h, the median effective dose (ED50) for P. multimicronucleatum decreased faster than that for E. vannus, and the ratio of the former to the latter declined from 2.75 to 0.30. When E. vannus was exposed to increasing concentrations of phenol (0-140 mg l-1), r rose initially and then dropped significantly at concentrations higher than 40 mg l-1, whereas K decreased linearly over the entire range. For P. multimicronucleatum, both r and K declined gradually over the range 0-200 mg l-1 phenol. Dose-response patterns of activities of three individual antioxidant enzymes, and the integrative index of the three enzymes, presented a biphasic (inverse U-shaped) curve at each of four durations of exposure, i.e. 12 h, 24 h, 36 h and 48 h. Cluster analyses and multidimensional scaling analyses of antioxidant enzyme activities revealed differences in the temporal succession of physiological states between the two model ciliates. In brief, combining ED50 with growth dynamic parameters is helpful for designing exposure dosages of toxicants in ecotoxicity tests.
Collapse
Affiliation(s)
- Yuanyuan Ruan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Yingfeng Dou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jingyi Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China.
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
13
|
Stengel D, Wahby S, Braunbeck T. In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4066-4084. [PMID: 29022183 DOI: 10.1007/s11356-017-0399-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/02/2017] [Indexed: 05/20/2023]
Abstract
In order to develop a test battery based on a variety of neurological systems in fish, three sensory systems (vision, olfaction, and lateral line) as well as nerve transmission (acetylcholine esterase) were analyzed in zebrafish (Danio rerio) embryos with respect to their suitability as a model for the screening of neurotoxic trace substances in aquatic ecosystems. As a selection of known or putative neurotoxic compounds, amidotrizoic acid, caffeine, cypermethrin, dichlorvos, 2,4-dinitrotoluene, 2,4-dichlorophenol, 4-nonylphenol, perfluorooctanoic acid, and perfluorooctane sulfonic acid were tested in the fish embryo test (OECD test guideline 236) to determine EC10 values, which were then used as maximum test concentration in subsequent neurotoxicity tests. Whereas inhibition of acetylcholinesterase was investigated biochemically both in vivo and in vitro (ex vivo), the sensory organs were studied in vivo by means of fluorescence microscopy and histopathology in 72- or 96-h-old zebrafish embryos, which are not regarded as protected developmental stages in Europe and thus - at least de jure - represent alternative test methods. Various steps of optimization allowed this neurotoxicity battery to identify neurotoxic potentials for five out of the nine compounds: Cypermethrin and dichlorvos could be shown to specifically modulate acetylcholinesterase activity; dichlorvos, 2,4-dichlorophenol, 4-nonylphenol, and perfluorooctane sulfonic acid led to a degeneration of neuromasts, whereas both vision and olfaction proved quite resistant to concentrations ≤ EC10 of all of the model neurotoxicants tested. Comparison of neurotoxic effects on acetylcholinesterase activity following in vivo and in vitro (ex vivo) exposure to cypermethrin provided hints to a specific enzyme-modulating activity of pyrethroid compounds. Enhancement of the neuromast assay by applying a simultaneous double-staining procedure and implementing a 4-scale scoring system (Stengel et al. 2017) led to reduced variability of results and better statistical resolution and allowed to differentiate location-dependent effects in single neuromasts. Since acetylcholinesterase inhibition and neuromast degeneration can be analyzed in 72- and 96-h-old zebrafish embryos exposed to neurotoxicants according to the standard protocol of the fish embryo toxicity test (OECD TG 236), the fish embryo toxicity test can be enhanced to serve as a sensitive neurotoxicity screening test in non-protected stages of vertebrates.
Collapse
Affiliation(s)
- Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany
| | - Sarah Wahby
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Shi P, Zhou S, Xiao H, Qiu J, Li A, Zhou Q, Pan Y, Hollert H. Toxicological and chemical insights into representative source and drinking water in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:35-44. [PMID: 29053996 DOI: 10.1016/j.envpol.2017.10.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 05/07/2023]
Abstract
Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments.
Collapse
Affiliation(s)
- Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Sicong Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Jingfan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing 210029, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Henner Hollert
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen 52074, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
15
|
Yamaguchi A, Ishibashi H, Kono S, Iida M, Uchida M, Arizono K, Tominaga N. Nanosecond pulsed electric field incorporation technique to predict molecular mechanisms of teratogenicity and developmental toxicity of estradiol-17β on medaka embryos. J Appl Toxicol 2017; 38:714-723. [PMID: 29280155 DOI: 10.1002/jat.3579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023]
Abstract
Herein, we propose using a nanosecond pulsed electric field (nsPEF) technique to assess teratogenicity and embryonic developmental toxicity of estradiol-17β (E2 ) and predict the molecular mechanisms of teratogenicity and embryonic developmental defects caused by E2 on medaka (Oryzias latipes). The 5 hour post-fertilization embryos were exposed to co-treatment with 10 μm E2 and nsPEF for 2 hours and then continuously cultured under non-E2 and nsPEF conditions until hatching. Results documented that the time to hatching of embryos was significantly delayed in comparison to the control group and that typical abnormal embryo development, such as the delay of blood vessel formation, was observed. For DNA microarray analysis, 6 day post-fertilization embryos that had been continuously cultured under the non-E2 and nsPEF condition after 2 hour co-treatments were used. DNA microarray analysis identified 542 upregulated genes and one downregulated gene in the 6 day post-fertilization embryos. Furthermore, bioinformatic analyses using differentially expressed genes revealed that E2 exposure affected various gene ontology terms, such as response to hormone stimulus. The network analysis also documented that the estrogen receptor α in the mitogen-activated protein kinase signaling pathway may be involved in regulating several transcription factors, such as FOX, AKT1 and epidermal growth factor receptor. These results suggest that our nsPEF technique is a powerful tool for assessing teratogenicity and embryonic developmental toxicity of E2 and predict their molecular mechanisms in medaka embryos.
Collapse
Affiliation(s)
- Akemi Yamaguchi
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Susumu Kono
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Midori Iida
- Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-0067, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan.,Mizuki Biotech, Co., Ltd., 1-1 Hyakunenkouen, Kurume, Fukuoka, 839-0864, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| |
Collapse
|
16
|
Validation of reference genes for expression analysis in a teleost fish (Catla catla Hamilton) exposed to an endocrine-disrupting chemical, bisphenol-A. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2017. [DOI: 10.1007/s12210-017-0653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
van der Oost R, Sileno G, Suárez-Muñoz M, Nguyen MT, Besselink H, Brouwer A. SIMONI (smart integrated monitoring) as a novel bioanalytical strategy for water quality assessment: Part i-model design and effect-based trigger values. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2385-2399. [PMID: 28470755 DOI: 10.1002/etc.3836] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/04/2016] [Accepted: 02/23/2017] [Indexed: 05/10/2023]
Abstract
It is virtually impossible to reliably assess water quality with target chemical analyses only. Therefore, a complementary effect-based risk assessment by bioanalyses on mixtures of bioavailable micropollutants is proposed: the Smart Integrated Monitoring (SIMONI) strategy. The goal of this strategy is to obtain more reliable information on the water quality to select optimum measures for improvement. The SIMONI strategy is 2-tiered. Tier 1 is a bioanalytical hazard identification of sites. A tier 2 ecological risk assessment is carried out only at a limited number of sites where increased hazards are detected in tier 1. Tier 2 will be customized, based on tier 1 evaluation and additional knowledge of the aquatic system. The present study focuses on the tier 1 bioanalytical hazard identification to distinguish "hot spots" of chemical pollution. First, a selection was made of relevant and cost-effective bioanalytical endpoints to cover a wide spectrum of micropollutant modes of action. Specific endpoints may indicate which classes of chemicals might cause adverse effects. Second, effect-based trigger values (EBT) were derived for these bioassays to indicate potential ecological risks. Comparison of EBT with bioassay responses should discriminate sites exhibiting different chemical hazards. Third, a model was designed to estimate the overall risks for aquatic ecosystems. The associated follow-up for risk management is a "toxicity traffic light" system: green, low hazard (no action required); orange, potential risk (further research needed); and red, high risk (mitigation measures). Thanks to cost-effectiveness, flexibility, and relevance, the SIMONI strategy has the potential to become the first bioanalytical tool to be applied in regular water quality monitoring programs. Environ Toxicol Chem 2017;36:2385-2399. © 2017 SETAC.
Collapse
Affiliation(s)
- Ron van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - Giulia Sileno
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Suárez-Muñoz
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mai Thao Nguyen
- Waterproef Laboratory, Research & Validation, Edam, The Netherlands
| | | | - Abraham Brouwer
- BioDetection Systems, Amsterdam, The Netherlands
- Institute for Ecological Sciences, Free University, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Inagaki T, Smith NL, Sherva KM, Ramakrishnan S. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes). Neurotoxicology 2016; 57:163-173. [PMID: 27713093 DOI: 10.1016/j.neuro.2016.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022]
Abstract
Growing evidence indicates that chronic exposure to Bisphenol A (BPA) may disrupt normal brain function and behavior mediated by gonadotropin-releasing hormone (GnRH) pathways. Previous studies have shown that low dose BPA (200ng/ml) exposure during embryogenesis altered development of extra-hypothalamic GnRH3 systems and non-reproductive locomotor behavior in medaka. Effects of parental low-dose BPA exposure on the development of GnRH3 systems and locomotor behavior of offspring are not well known. This study examines whether the neurophysiological and behavioral effects of BPA in parents (F0 generation) are carried over to their offspring (F1 generation) using stable transgenic medaka embryos/larvae with GnRH3 neurons tagged with green fluorescent protein (GFP). Parental fish were exposed to BPA (200ng/ml) for either life-long or different developmental time windows. Fertilized F1 eggs were collected and raised in egg/fish water with no environmental exposure to BPA. All experiments were performed on F1 embryos/larvae, which were grouped based on the following parental (F0) BPA exposure conditions - (i) Group 1 (G1): through life; (ii) G2: during embryogenesis and early larval development [1-14days post fertilization (dpf)]; (iii) G3: during neurogenesis (1-5dpf); and (iv) G4: during sex differentiation (5-14dpf). Embryos from unexposed vehicle treated parents served as controls (G0). G1 embryos showed significantly reduced survival rates and delayed hatching time compared to other groups, while G4 embryos hatched significantly earlier than all other groups. At 3 dpf, the GnRH3-GFP intensity was increased by 47% in G3 embryos and decreased in G4 embryos by 59% compared to controls. At 4dpf, G1 fish showed 42% increased intensity, while GFP intensity was reduced by 44% in G3 subjects. In addition, the mean brain size of G1, G3 and G4 embryos were smaller than that of control at 4dpf. At 20dpf, all larvae from BPA-treated parents showed significantly decreased total movement (distance covered) compared with controls, with G2 and G3 fish showing reduced velocity of movement. While at 20 dpf no group differences were seen in the soma diameter of GnRH3-GFP neurons, a 34% decrease in SV2 expression, a marker for synaptic transmission, in G1 larvae was observed. These data suggest that parental BPA exposure during critical windows of embryonic development or chronic treatment affects next-generation offspring both in embryonic and larval brain development as well as larval behavior.
Collapse
Affiliation(s)
- T Inagaki
- Department of Biology, University of Puget Sound, Tacoma, WA, USA; Neuroscience Program, University of Puget Sound, Tacoma, WA, USA
| | - N L Smith
- Department of Chemistry/Biochemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - K M Sherva
- Department of Chemistry/Biochemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - S Ramakrishnan
- Department of Biology, University of Puget Sound, Tacoma, WA, USA; Neuroscience Program, University of Puget Sound, Tacoma, WA, USA.
| |
Collapse
|
19
|
Lei B, Peng W, Li W, Yu Y, Xu J, Wang Y. Diethylstilbestrol at environmental levels affects the development of early life stage and target gene expression in Japanese Medaka (Oryzias latipes). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:563-573. [PMID: 26908245 DOI: 10.1007/s10646-016-1615-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
In this study, the biologic effects of DES on the early life and adult life stages of Japanese medaka (Oryzias latipes) were evaluated. At the early life stage, the fertilized eggs were exposed to 1-1000 ng/L diethylstilbestrol (DES) for 15 days and the hatched larvae were continually exposed to the same concentrations for an additional 25 days. Significant adverse effects on hatchability, time to hatching and mortality rate occurred at DES concentrations of 100 and 1000 ng/L, while the abnormality (scoliosis and abdominal swelling) rate was significantly increased at 10 ng/L and above. After exposure, the fish were maintained in charcoal-dechlorinated tap water for a further 30 days. Only the male gonadosomatic index (GSI) at 1000 ng/L was significantly increased. At concentrations greater than 1 ng/L, estrogen receptor α (ERα) mRNA in both sexes and vitellogenin-I (Vtg-I) mRNA in males were significantly down-regulated; while Vtg-I mRNA in females was significantly up-regulated. When sexually mature medaka were exposed to 10 and 1000 ng/L DES for 21 days, only the GSI in females was significantly decreased at 1000 ng/L. At 10 and 1000 ng/L, ERα mRNA in both sexes was significantly down-regulated, while Vtg-I mRNA in males was significantly up-regulated. These findings showed that DES at the environmental concentration of 10 ng/L can affect the early life stage development of medaka and alter liver ERα and Vtg-I gene expression. Therefore, if we only focused on these sensitive toxicity endpoints such as ERα and Vtg-I mRNA expression, DES has a strong estrogenic effect on Japanese medaka.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai, 200444, China.
| | - Wei Peng
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai, 200444, China
| | - Wei Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai, 200444, China
| | - Jie Xu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai, 200444, China
| | - Yipei Wang
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai, 200444, China
| |
Collapse
|
20
|
Spirhanzlova P, Leleu M, Sébillot A, Lemkine GF, Iguchi T, Demeneix BA, Tindall AJ. Oestrogen reporter transgenic medaka for non-invasive evaluation of aromatase activity. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:64-71. [PMID: 26352216 DOI: 10.1016/j.cbpc.2015.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 02/05/2023]
Abstract
Vertebrate reproduction involves complex steroid hormone interplay and inter-conversion. A critical element in maintaining sex steroid levels is the enzyme aromatase (cytochrome P450 19A1) which converts androgens to oestrogens. In turn oestrogen signalling is targeted by numerous chemicals, from pharmaceuticals to agricultural chemicals, both frequent sources of contamination in waste waters and consequently rivers. Although many models are now available to address disruption of oestrogen signalling, there are currently no published protocols allowing discrimination between alterations in testosterone metabolism and in oestrogenic signalling. It was with this limitation in mind that we optimised this protocol. We show using a 48h protocol that pre-feeding fry of the choriogenin h-gfp (chgh-gfp) medaka line are sensitive to 0.05nM EE2 (15ng/L), within the range of the lowest published observable physiological effect concentrations for medaka. In addition, co-treatment with testosterone can reveal potential effects of test substances on aromatase enzymatic activity. As the measurements are visualised in real-time without affecting embryo viability, repeated measures are possible. We demonstrate the ability of this model to detect oestrogen receptor agonists, aromatisable androgens, P450 aromatase activity modulators and selective oestrogen response modulators. Importantly, the range of this assay is physiologically relevant.
Collapse
Affiliation(s)
- Petra Spirhanzlova
- WatchFrog S.A., 1 rue Pierre Fontaine, 91000 Evry, France; CNRS UMR 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Mathilde Leleu
- WatchFrog S.A., 1 rue Pierre Fontaine, 91000 Evry, France
| | | | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Barbara A Demeneix
- CNRS UMR 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | | |
Collapse
|
21
|
Inagaki T, Smith N, Lee EK, Ramakrishnan S. Low dose exposure to Bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka. Neurotoxicology 2015; 52:188-97. [PMID: 26687398 DOI: 10.1016/j.neuro.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
Abstract
Accumulating evidence indicates that chronic low dose exposure to Bisphenol A (BPA), an endocrine disruptor, may disrupt normal brain development and behavior mediated by the gonadotropin-releasing hormone (GnRH) pathways. While it is known that GnRH neurons in the hypothalamus regulate reproductive physiology and behavior, functional roles of extra-hypothalamic GnRH neurons remain unclear. Furthermore, little is known whether BPA interacts with extra-hypothalamic GnRH3 neural systems in vulnerable developing brains. Here we examined the impact of low dose BPA exposure on the developing GnRH3 neural system, eye and brain growth, and locomotor activity in transgenic medaka embryos and larvae with GnRH3 neurons tagged with GFP. Fertilized eggs were collected daily and embryos/larvae were chronically exposed to 200ng/ml of BPA, starting at 1 day post fertilization (dpf). BPA significantly increased fluorescence intensity of the GnRH3-GFP neural population in the terminal nerve (TN) of the forebrain at 3dpf, but decreased the intensity at 5dpf, compared with controls. BPA advanced eye pigmentation without affecting eye and brain size development, and accelerated times to hatch. Following chronic BPA exposure, 20dpf larvae showed suppression of locomotion, both in distance covered and speed of movement (47% and 43% reduction, respectively). BPA-induced hypoactivity was accompanied by decreased cell body sizes of individual TN-GnRH3 neurons (14% smaller than those of controls), but not of non-GnRH3 neurons. These novel data demonstrate complex neurobehavioral effects of BPA on the development of extra-hypothalamic GnRH3 neurons in teleost fish.
Collapse
Affiliation(s)
- T Inagaki
- Department of Biology, Neuroscience program, University of Puget Sound, Tacoma, WA 98416, USA
| | - N Smith
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - E K Lee
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - S Ramakrishnan
- Department of Biology, Neuroscience program, University of Puget Sound, Tacoma, WA 98416, USA.
| |
Collapse
|
22
|
Tabassum N, Tai H, Jung DW, Williams DR. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:287847. [PMID: 26681965 PMCID: PMC4670909 DOI: 10.1155/2015/287847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.
Collapse
Affiliation(s)
- Nadia Tabassum
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hongmei Tai
- Department of Endocrinology, Yanji Hospital, Jilin 133000, China
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| |
Collapse
|
23
|
Lee W, Wang YC. Assessing developmental toxicity of caffeine and sweeteners in medaka (Oryzias latipes). SPRINGERPLUS 2015; 4:486. [PMID: 26380162 PMCID: PMC4562911 DOI: 10.1186/s40064-015-1284-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
The use of artificial sweeteners (ASWs) has increased and become more widespread, and consequently ASWs have appeared in aquatic environments around the world. However, their safety to the health of humans and wildlife remains inconclusive. In this study, using medaka embryos (Oryzias latipes), we investigated developmental toxicity of aspartame (ASP) and saccharin (SAC). Since ASWs are often consumed with caffeine (CAF) and CAF with sucrose (SUC), we tested biological activities of these four substances and the mixtures of CAF with each sweetener. The embryos were exposed to ASP at 0.2 and 1.0 mM, SAC at 0.005 and 0.050 mM, CAF at 0.05 and 0.5 mM, or SUC at 29 and 146 mM, starting from less than 5 h post fertilization until hatch. Control embryos were treated with embryo solution only. Several endpoints were used to evaluate embryonic development. Some of the hatchlings were also tested for anxiety-like behavior with the white preference test. The results showed that all four substances and the mixtures of CAF with the sweeteners affected development. The most sensitive endpoints were the heart rate, eye density, and hatchling body length. The hatchlings of several treatment groups also exhibited anxiety-like behavior. We then used the Integrated Biological Response (IBR) as an index to evaluate the overall developmental toxicity of the substances. We found that the ranking of developmental toxicity was SAC > CAF > ASP > SUC, and there was a cumulative effect when CAF was combined with the sweeteners.
Collapse
Affiliation(s)
- Wenjau Lee
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan, Taiwan
| | - Yun-Chi Wang
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan, Taiwan
| |
Collapse
|
24
|
Abstract
The ubiquitous nature of plastics has raised concerns pertaining to continuous exposure to plastic polymers and human health risks. Of particular concern is the use of endocrine-disrupting chemicals in plastic production, including di(2-ethylhexyl)phthalate (DEHP) and bisphenol A (BPA). Widespread and continuous exposure to DEHP and BPA occurs through dietary intake, inhalation, dermal and intravenous exposure via consumer products and medical devices. This article reviews the literature examining the relationship between DEHP and BPA exposure and cardiac toxicity. In vitro and in vivo experimental reports are outlined, as well as epidemiological studies which examine the association between these chemicals and cardiovascular outcomes. Gaps in our current knowledge are also discussed, along with future investigative endeavors that may help resolve whether DEHP and/or BPA exposure has a negative impact on cardiovascular physiology.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Pharmacology and Physiology Department, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington, DC, 20052, USA,
| |
Collapse
|
25
|
Zhu L, Wang H, Liu H, Li W. Effect of trifloxystrobin on hatching, survival, and gene expression of endocrine biomarkers in early life stages of medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY 2015; 30:648-655. [PMID: 24376129 DOI: 10.1002/tox.21942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Trifloxystrobin is a systemic broad-spectrum foliar strobilurin fungicides that enters the aquatic environment during agricultural application. It is highly toxic and poses a potential risk to aquatic organisms, whereas the effect on the development of early life stages of fish are unclear. In this study, hatchability, time to hatching, and larval mortality were measured. Additionally, the expression of biomarker genes, including those involved in sex hormone pathways (er, vtg, cyp17, and cyp19a), thyroid hormone pathways (trα and dio2), and aryl hydrocarbon receptor pathways (ahr and cyp1a), was determined after embryos of medaka (Oryzias latipes) were exposed to different levels of trifloxystrobin (0, 0.1, 1, 10, and 100 μg/L) for 28 days. The results showed that there were significant differences between controls and the 100 μg/L treatment group in both hatchability and time to hatching of fertilized eggs (p<0.05). Larval mortality was significantly increased in the 0.1, 1, and 10 μg/L treatment groups (p<0.05). These results indicate that embryonic and larval development may be affected by trifloxystrobin exposure. Moreover, the mRNA levels of the er gene were significantly up-regulated at levels of trifloxystrobin above 1 μg/L treatment groups. Up-regulation of vtg, cyp17, and cyp19a mRNA levels was observed in the larvae at the lower concentration treatment groups. The mRNA levels of cyp1a genes were significantly up-regulated at all of the treatment groups. These results suggest that trifloxystrobin is a potential endocrine disruptor through effects on the sex hormone pathway and xenobiotic metabolism. The changes in cyp1a expression can be used as a highly sensitive biomarker to assess trifloxystrobin contamination in the early life stages of fish.
Collapse
Affiliation(s)
- Lifei Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Huijun Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| |
Collapse
|
26
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
27
|
Lee W, Lee CC. Developmental toxicity of cigarette butts - An underdeveloped issue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:362-8. [PMID: 25531833 DOI: 10.1016/j.ecoenv.2014.12.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 05/05/2023]
Abstract
Cigarette butts (CBs) littering is not just an unsightly nuisance but also a public health problem, because chemicals contained in cigarettes can leach into aquatic environments and pose a risk to the health of humans and wildlife. However, this risk is largely unrecognized or ignored by the public, and toxicological evidence of CBs is scarce. Therefore, we used medaka embryos (Oryzias latipes) to explore developmental toxicity of CBs. The embryos were exposed to various concentrations of leachates from smoked and unsmoked cigarette tobacco (ST and UST) and filters (SF and USF), and observed from 1 to 3 days post-fertilization. The images were recorded and several developmental endpoints analyzed. The values from these endpoints were then used to calculate the Integrated Biomarker Response and evaluate overall effects of the leachates. Some of the embryos were allowed to hatch, and the hatchlings were tested for anxiety-like behavior. Our results showed that low concentrations of the leachates from ST, UST, and SF raised the heart rate, accelerated development, and changed behavior, while high concentrations lowered the heart rate, suppressed development, and increased mortality. The lowest observed effect concentration for the leachates was ≤0.2piece (pc)/L. The USF leachate had no effect at the concentration of 20pc/L. Developmental toxicity of the leachates was ranked as: ST>UST>SF>USF. This study has demonstrated for the first time that CB leachates affect fish development, and provided toxicological evidence to better assess ecological impacts of CBs.
Collapse
Affiliation(s)
- Wenjau Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan.
| | - Chih Chun Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| |
Collapse
|
28
|
Schubert S, Peter A, Schönenberger R, Suter MJF, Segner H, Burkhardt-Holm P. Transient exposure to environmental estrogen affects embryonic development of brown trout (Salmo trutta fario). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:141-149. [PMID: 25456228 DOI: 10.1016/j.aquatox.2014.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/01/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
Transient exposure of brown trout embryos from fertilization until hatch (70 days) to 17β-estradiol (E2) was investigated. Embryos were exposed to 3.8 and 38.0 ng/L E2 for 2h, respectively, under four scenarios: (A) exposure once at the day of fertilization (0 days post-fertilization, dpf), (B) once at eyeing stage (38 dpf), (C) weekly exposure until hatch or (D) bi-weekly exposure until hatch. Endpoints to assess estrogen impact on embryo development were fertilization success, chronological sequence of developmental events, hatching process, larval malformations, heart rate, body length and mortality. Concentration-dependent acceleration of development until median hatch was observed in all exposure scenarios with the strongest effect observed for embryos exposed once at 0 dpf. In addition, the hatching period was significantly prolonged by 4-5 days in groups receiving single estrogen exposures (scenarios A and B). Heart rate on hatching day was significantly depressed with increasing E2 concentrations, with the strongest effect observed for embryos exposed at eyeing stage. Estrogenic exposure at 0 dpf significantly reduced body length at hatch, not depending on whether this was a single exposure or the first of a series (scenarios A and D). The key finding is that even a single, transient E2 exposure during embryogenesis had significant effects on brown trout development. Median hatch, hatching period, heart rate and body length at hatch were found to be highly sensitive biomarkers responsive to estrogenic exposure during embryogenesis. Treatment effects were observable only at the post-hatch stage.
Collapse
Affiliation(s)
- Sara Schubert
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland; Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland; Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Germany.
| | - Armin Peter
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
| | - René Schönenberger
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
| | - Marc J-F Suter
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| | - Patricia Burkhardt-Holm
- Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland; Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
29
|
Orton F, Tyler CR. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rev Camb Philos Soc 2014; 90:1100-17. [DOI: 10.1111/brv.12147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Frances Orton
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| | - Charles R. Tyler
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| |
Collapse
|
30
|
Lee W, Yang KL. Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:187-194. [PMID: 25084399 DOI: 10.1016/j.ecoenv.2014.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model system to study developmental toxicity of EMFs.
Collapse
Affiliation(s)
- Wenjau Lee
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City, Taiwan.
| | - Kun-Lin Yang
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City, Taiwan
| |
Collapse
|
31
|
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the aromatase inhibitor fadrozole hydrochloride on the unionid mussel Lampsilis fasciola. Gen Comp Endocrinol 2014; 206:213-26. [PMID: 25072892 DOI: 10.1016/j.ygcen.2014.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 01/15/2023]
Abstract
Androgen-induced masculinization of female aquatic biota poses concerns for natural population stability. This research evaluated the effects of a twelve day exposure of fadrozole hydrochloride on the metabolism and reproductive status of the unionid mussel Lampsilis fasciola. Although this compound is not considered to be widespread in the aquatic environment, it was selected as a model aromatase (enzyme that converts testosterone to estradiol) inhibitor. Adult mussels were exposed to a control and 3 concentrations of fadrozole (2μg/L, 20μg/L, and 50μg/L), and samples of gill tissue were taken on days 4 and 12 for metabolomics analysis. Gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Daily observed mussel behavior included female mantle display, foot protrusion, siphoning, and larval (glochidia) releases. Glochidia mortality was significantly higher in the 20μg/L treatment. Fewer conglutinate (packets of glochidia) releases were observed in the 50μg/L treatment, and mortality was highly correlated to release numbers. Foot protrusion was significantly higher in females in nearly all treatments, including the control, during the first 4days of observations. However, this sex difference was observed only in the 50μg/L treatment during the last 8days. Generally, metabolites were significantly altered in female gill tissue in the 2μg/L treatment whereas males were mostly affected only at the highest (50μg/L) treatment. Both sexes also revealed significant reductions in fadrozole-induced metabolic effects in gill tissue sampled after 12days compared to tissue sampled after 4days, indicating time-dependent mechanisms of disruptions in metabolic pathways and homeostatic processes to compensate for such disruptions.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States.
| | - W Gregory Cope
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States
| | - M Christopher Barnhart
- Department of Biology, 901 South Avenue, Missouri State University, Springfield, MO 65897, United States
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
32
|
Lei B, Kang J, Yu Y, Zha J, Li W, Wang Z, Wang Y, Wen Y. Long-term exposure investigating the estrogenic potency of estriol in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:86-92. [PMID: 24230975 DOI: 10.1016/j.cbpc.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/17/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
Abstract
The growth, development, and ERα and Vtg-I gene expressions of Japanese ricefish (Oryzias latipes; medaka) exposed to different concentrations of estriol (E3), including one environmentally relevant concentration, during embryo-adult life stages were evaluated. At the early life stage, fertilized eggs were exposed to 5, 50, 500, 5000ng/L E3 for 15days, and the hatched fry were exposed continuously to the same concentrations for an additional 15days. Exposure to 500 and 5000ng/L E3 resulted in adverse effects on hatchability and time to hatching. At 5000ng/L, the gross abnormality rate was increased and the number of females that hatched was twice that of males. When the fish were exposed to 5-5000ng/L E3 for further 60days, the male hepatosomatic index (HSI) was increased at 5000ng/L. The female gonadosomatic index (GSI) was decreased at 500 and 5000ng/L E3, while the male GSI at 5000ng/L E3 was increased and sex reversal was also found at this concentration. Quantitative RT-PCR showed that the hepatic vitellogenin-I (Vtg-I) genes were up-regulated in females at 500 and 5000ng/L E3 and in males at all E3 concentrations, whereas E3 did not affect estrogen receptor α (ERα) mRNA transcription. These results showed that E3 at environmental concentration of 5ng/L has no adverse effects on growth and development of the Japanese medaka. However, in this study, if we only focused on Vtg gene change in males, E3 had strong estrogenic effects on male medaka under the conditions of these experiments.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jia Kang
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yipei Wang
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Wen
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
33
|
Chen Y, Yu G, Cao Q, Zhang H, Lin Q, Hong Y. Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. CHEMOSPHERE 2013; 93:1765-1772. [PMID: 23827484 DOI: 10.1016/j.chemosphere.2013.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
The presence of pharmaceuticals in aquatic environment has become a topic of concern because of their potential adverse effects on human health and wildlife species. A total of 45 dewatered sewage sludge samples were collected throughout China and analyzed for 30 commonly consumed pharmaceutical residues. Ofloxacin was found to be the dominant contaminant with concentrations up to 24760 μg kg(-1), followed by oxytetracycline (5280 μg kg(-1)), norfloxacin (5280 μg kg(-1)) and ketoprofen (4458 μg kg(-1)). The concentration of pharmaceutical residues varied greatly depending on the operation conditions of wastewater treatment plants and sampling locations. Poor agreement was found between the predicted (calculation based on the annual consumption and coefficient of sludge water partition) and detected concentrations of the pharmaceuticals indicating that the occurrence of pharmaceutical residues was affected by various factors such as loading rates, sewage properties and the chemical properties such as the contribution from polar groups. National wide fate and ecotoxicity study is required for the development of control strategies.
Collapse
Affiliation(s)
- Yongshan Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; School of Environment, THU-VEOLIA Joint Research Center for Advanced Environmental Technology, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | | | |
Collapse
|
34
|
Lei B, Wen Y, Wang X, Zha J, Li W, Wang Z, Sun Y, Kang J, Wang Y. Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes). CHEMOSPHERE 2013; 93:1104-1110. [PMID: 23830040 DOI: 10.1016/j.chemosphere.2013.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/16/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
The fertilized eggs of Japanese medaka (Oryzias latipes) were exposed to estrone (E1) at 5-5000 ng L(-1) for 15 d, and the hatched fry were exposed continuously to the same concentrations for the additional 15 d. Adverse effects on hatchability, time to hatching, and gross abnormalities occurred at 50 ng L(-1) or above. Then the fry were divided into a continual exposure group, and a water recovery group. When the fry were exposed to E1 for another 60 d, there was a decrease in the hepatosomatic index (HSI) of males and the influence disappeared in the water recovery group. The gonadosonatic index (GSI) of females at 500 ng L(-1) decreased significantly in another 60 d exposure. While the fry were maintained in dechlorinated tap water for 60 d, a significant decrease in female GSI was observed at 50 ng L(-1) or above. An increased GSI was found in males in both continual exposure and water recovery groups at all E1 treatments. Quantitative RT-PCR showed that vitellogenin-I (Vtg-I) gene expressions in the female liver were significantly down-regulated at 50 ng L(-1) in the continual exposure group, and at 500 ng L(-1) in the water recovery group, while male Vtg-I genes were significantly up-regulated for all E1 treatments. In addition, all E1 treatments caused sex reversal of males. These results suggest that E1 at 5 ng L(-1) or above have unrecoverable impacts on the gonadal growth and development of medaka, even if only early life stages were exposed to E1.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai 200444, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|