1
|
Dich A, Abdelmoumene W, Belyagoubi L, Assadpour E, Belyagoubi Benhammou N, Zhang F, Jafari SM. Olive oil wastewater: a comprehensive review on examination of toxicity, valorization strategies, composition, and modern management approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6349-6379. [PMID: 40025331 DOI: 10.1007/s11356-025-36127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Olive mill wastewater (OMWW), a by-product of olive oil production, poses severe environmental challenges due to its toxicity, primarily caused by its high organic load and phenolic compounds, along with organic acids, lipids, and heavy metals. These components contribute to its elevated chemical and biological oxygen demand, making OMWW a persistent pollutant that necessitates urgent and effective treatment strategies. The ecological risks, including water contamination, soil degradation, and biodiversity loss, underscore the need for sustainable management approaches. This review explores the composition and toxicity of OMWW, examining advanced treatment technologies, e.g., bioremediation, membrane filtration, advanced oxidation processes, and integrated systems that enhance efficiency while minimizing environmental impact. In addition, this study investigates the potential for OMWW valorization as a rich source of polyphenols with antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds have significant economic value in industries such as pharmaceuticals, cosmetics, and functional foods. By evaluating sustainable extraction techniques and integrating advanced treatments with economic valorization, OMWW can be transformed from an environmental pollutant into a valuable resource. Such integrated approaches support a circular economy within the olive oil industry, reducing its ecological footprint and fostering sustainable development.
Collapse
Affiliation(s)
- Asmaâ Dich
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Waffa Abdelmoumene
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Larbi Belyagoubi
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nabila Belyagoubi Benhammou
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
2
|
Rodrigues MS, Dias LF, Nunes JP. Impact of nature-based solutions on sustainable development goals in Mediterranean agroecosystems: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123071. [PMID: 39476663 DOI: 10.1016/j.jenvman.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Mediterranean agroecosystems' vulnerability to hydroclimatic extremes threatens their resilience and sustainability. Nature-based Solutions present a sustainable strategy to address global challenges. This meta-analysis of 70 studies developed in Mediterranean climates identified solutions to improve soil health and water quality in agroecosystems by estimating their effects on soil organic matter, organic carbon, water, erosion, and Kjeldahl nitrogen, total nitrogen, nitrate, total phosphorus, phosphate, and suspended solids, respectively. Using meta-regression, we analysed how the interaction with biophysical conditions (e.g., soil texture and irrigation practices for soil health and macrophyte species and temperature for water quality) drives the effects of Nature-based Solutions. The results indicate that these solutions can improve soil health and water quality, supporting the achievement of land and water Sustainable Development Goals. Among all the options considered for rehabilitating land ecosystems, afforestation led to significant increases in soil organic carbon up to 137%. Of all tillage practices tested, eliminating soil disturbance combined with using cover crops and mulching revealed the potential to counteract agricultural land degradation, showing significant reductions in erosion as high as 98%. The individual application of organic inputs showed the potential to reverse ongoing agricultural soil degradation trends. Applying olive mill wastewater was associated with a significant increase of 249\% in soil organic matter. However, applying manure compost in no-tilled plots with herbaceous cover reduced the soil water content at field capacity by 46\%.Constructed wetlands have shown the most significant results in improving water quality by reducing pollutants and contributing to protecting and restoring aquatic ecosystems. Polycultural systems with horizontal subsurface flow reduced Kjeldahl nitrogen by 9%, nitrates and phosphorus by 3%, and total suspended solids by 10%. However, in continuous aerated systems, nitrate levels increased by 36%. The reduction in total nitrogen in subsurface vertical flow systems was 11%, while surface flow wetlands with two macrophyte species reduced total suspended solids by 6%. Implementing Nature-based Solutions in Mediterranean agroecosystems depended on biophysical conditions, highlighting the need for site-specific adaptation based on local conditions and objectives. In a global change scenario, mainstreaming these solutions as sustainable land and water management practices is vital for enhancing the resilience and sustainability of Mediterranean agroecosystems, providing ecosystem services beyond soil health and water quality, including climate change mitigation, biodiversity protection and human well-being.
Collapse
Affiliation(s)
- Miguel Silva Rodrigues
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1749-016, Portugal.
| | - Luís Filipe Dias
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1749-016, Portugal.
| | - João Pedro Nunes
- Soil Physics and Land Management Group, Wageningen University and Research, P.O. Box 9101, 6700 HB, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Khalil J, Jaafar AAK, Habib H, Bouguerra S, Nogueira V, Rodríguez-Seijo A. The impact of olive mill wastewater on soil properties, nutrient and heavy metal availability - A study case from Syrian vertisols. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119861. [PMID: 38142600 DOI: 10.1016/j.jenvman.2023.119861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Olive oil mill wastewater (OMW) is an environmental concern in olive oil producers' regions due to its use in agricultural soils as an organic amendment. However, OMW can also be used as organic fertilizer due to their high organic matter and nutrient levels, but its use, when it occurs without environmental management, can cause serious environmental implications for soils and waters. This work evaluated the impact of different OMW levels on a set of physicochemical parameters from an agricultural vertisol where wheat grew (Triticum aestivum L var. Douma 1). A set of physicochemical parameters were conducted before adding different levels of OMW (0, 5, 10 and 15 L m-2) at two soil depths (0-30 and 30-60 cm) and for the two growing seasons to determine: i) the effect of OMW treatments on the studied physicochemical soil properties (bulk density, soil porosity, soil pH, electrical conductivity and organic matter), ii) available primary (N, P, K) and secondary macronutrients (Ca, Mg and Na), ii) micronutrients (Cu Fe, Mn and Zn), and iv) available heavy metals (Cd and Pb). The results indicated that soil physicochemical parameters were slightly improved, mainly due to improvement in organic matter, macro- and micronutrients, usually proportionally to the olive mill wastewater dose. Cadmium and Pb were within the permissible limits. The increased OMW had different behaviour on the soil nutritional balances of different elements, leading to nutrient imbalances, although in some cases, they were improved. However, the plant growth was not affected, and it was improved under 10 L m-2 and 15 L m-2 doses. The results offer valuable data about the use of OMW as organic fertilizer for crops and their potential impact on soil properties.
Collapse
Affiliation(s)
- Jehan Khalil
- Department of Soil Science, Faculty of Agricultural, Damascus University, Damascus, Syrian Arab Republic.
| | - Abd Al Karim Jaafar
- Department of Soil Science, Faculty of Agricultural, Damascus University, Damascus, Syrian Arab Republic.
| | - Hassan Habib
- Department of Soil Science, Faculty of Agricultural, Damascus University, Damascus, Syrian Arab Republic.
| | - Sirine Bouguerra
- GreenUPorto, Sustainable Agrifood Production Research Center & Inov4Agro | Rua da Agrária 747, 4485-64, Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N. 4169-007 Porto, Portugal.
| | - Verónica Nogueira
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N. 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Andrés Rodríguez-Seijo
- Department of Plant Biology and Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
4
|
Zakraoui M, Hannachi H, Pasković I, Vidović N, Polić Pasković M, Palčić I, Major N, Goreta Ban S, Hamrouni L. Effect of Geographical Location on the Phenolic and Mineral Composition of Chetoui Olive Leaves. Foods 2023; 12:2565. [PMID: 37444304 DOI: 10.3390/foods12132565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated the influence of pedological parameters and variation of altitude on the mineral nutrients, phenolic compounds, and antioxidant activities of olive leaves. Samples of the Chetoui cultivar were collected from eight geographical locations with different altitudes. Levels of phenolic compounds varied according to the altitude. Classification of the locations revealed that altitude 1 (>500 m) was characterized by high levels of secoiridoids and simple phenols, while altitude 2 (500-300 m) and altitude 3 (<300 m) were higher in flavonoids. Levels of Mn, Ca and B in the leaves and level of Zn in the soil were significantly correlated with the abundance of oleuropein and luteolin-7-O glucoside, the most important phenols in Chetoui olive leaves. The results suggest that, in addition to pedological criteria, environmental conditions also influence the formation of phenolic compounds.
Collapse
Affiliation(s)
- Mariem Zakraoui
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
- Faculty of Sciences of Tunis, University of El Manar, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2029, Tunisia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikolina Vidović
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
| |
Collapse
|
5
|
Saf C, Gondet L, Villain-Gambier M, Belaqziz M, Trebouet D, Ouazzani N. Investigation of the agroecological applications of olive mill wastewater fractions from the ultrafiltration-nanofiltration process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117467. [PMID: 36764180 DOI: 10.1016/j.jenvman.2023.117467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Agricultural applications of olive mill wastewater (OMW) represent a critical challenge, consistent with waste recycling and the trend towards a more sustainable pattern of agriculture. In this context, an integrated study on the agroecological applications of OMW from the ultrafiltration (UF) - nanofiltration (NF) process was carried out. This process generated three fractions: UF retentate and NF permeate, depleted in salts and phenolic compounds, were studied for their fertilization and irrigation potential, while NF retentate, enriched in these elements, was studied for its potential as a bioherbicide. The phytotoxicity of the NF retentate fraction on two crops (maize and flax) was evaluated on seedlings growth and chloroplast pigments content. In addition, the induced defense responses in maize and flax seedlings were investigated by measuring two parameters: the activity of the detoxification enzyme glutathione-S-transferase (GST) and the concentration of polyphenols, as a component of the antioxidant defense strategy in plants. Biomass, height, and chloroplast pigments content decreased progressively with increasing NF retentate concentration. Conversely, an increase in GST activity and polyphenol concentration was observed. These results highlighted the ability of OMW to induce an oxidative stress on maize and flax seedlings, triggering a defense response through GST and phenolic compounds. On the other hand, in vitro tests on the phytotoxicity of the NF retentate fraction on the common weed Sinapis arvensis were carried out. No germination was observed even with the lowest dilution applied, thus establishing the first data about the selectivity of potential OMW-derived bioherbicides. On the other hand, UF retentate and NF permeate treatments led to a significant increase in maize growth: these fractions could then be considered as a promising organic fertilizer for degraded agricultural soils, as well as an alternative water source for crops irrigation.
Collapse
Affiliation(s)
- Chaima Saf
- Laboratory of Water, Biodiversity and Climate Change, Cadi Ayyad University, Marrakech, Morocco; Université de Strasbourg, CNRS, UMR 7178, F-67000, Strasbourg, France
| | - Laurence Gondet
- Université de Strasbourg, CNRS, UMR 7178, F-67000, Strasbourg, France.
| | | | | | | | - Naaila Ouazzani
- Laboratory of Water, Biodiversity and Climate Change, Cadi Ayyad University, Marrakech, Morocco; National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
6
|
Evaluation of Biobed Bio-Mixture from Olive Oil Mill Wastewater Treatment as a Soil Organic Amendment in a Circular Economy Context. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This study, based on circular economy principles and sustainable development practices, aims to present the results of soil samples analysis after their mixture with a biobed bio-mixture of straw, soil and compost, used for two consecutive years as organic bio-filter of olive oil mill wastewater. So far, exhausted bio-mixtures used in biobeds to minimize pesticide point-source contamination turned out to contain residues of pesticides, and they are considered hazardous wastes; thus, they require special treatment before their disposal. Contrariwise, saturated bio-mixtures from bio-bed systems utilized for olive mill wastewater (OMWW) treatment not only do not require any special treatment before their final disposal but also can be exploited as a soil amendment. To this end, the effects of the used bio-mixture application in three different proportions as a soil amendment on the physical and chemical properties of medium-texture soil were investigated. The application of water simulating a typical irrigation period during a growing season took place. Upon completion of the water application, soil samples were collected from two different depths of the columns and analyzed, and leachates collected from the columns were also analyzed. Soil texture, organic matter, calcium carbonate, electrical conductivity (EC), pH, total nitrogen, nitrates, nitrites, ammonium, available phosphorus, exchangeable potassium, sodium, calcium and magnesium, exchangeable sodium percentage (ESP), cation exchange capacity (CEC), available iron, manganese, copper, zinc and boron were monitored in the soil samples as indexes of potential soil amendment, and EC, pH, nitrates, potassium, sodium, calcium, magnesium, sodium adsorption ratio (SAR), total hardness, iron, manganese, copper, zinc and boron were monitored in the leachates as indexes of potential groundwater contamination.The study demonstrated the effective use of saturated bio-mixture as an organic soil amendment, while the impact of selected amendments on groundwater was the minimum.
Collapse
|
7
|
Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. WATER 2022. [DOI: 10.3390/w14111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this review is to collect and analyze the recently published research concerning the conventional and sustainable treatment processes for olive mill wastewater (OMW). In the conventional treatment processes, it is noticed that the main objective is to meet the environmental regulations for remediated wastewater without considering the economical values of its valuable constituents such as polyphenols. These substances have many important environmental values and could be used in many vital applications. Conversely, sustainable treatment processes aim to recover the valuable constituents through different processes and then treat the residual wastewater. Both approaches’ operational and design parameters were analyzed to generalize their advantages and possible applications. A valorization-treatment approach for OMW is expected to make it a sustainable resource for ingredients of high economical value that could lead to a profitable business. In addition, inclusion of a recovery process will detoxify the residual OMW, simplify its management treatment, and allow the possible reuse of the vast amounts of processed water. In a nutshell, the proposed approach led to zero waste with a closed water cycle development.
Collapse
|
8
|
Petoussi MA, Kalogerakis N. Olive mill wastewater phytoremediation employing economically important woody plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114076. [PMID: 34781052 DOI: 10.1016/j.jenvman.2021.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study two plant species, Punica granatum L. and Myrtus communis L., have been tested as candidates for phytoremediation of olive mill wastewater (OMW) through recirculation in soil pilot units, according to the proposed patented technology by Santori and Cicalini [EP1216963 A. 26 Jun 2002]. Wastewater was treated in batches of low to high organics strength (COD: 2 700-45 700 mg/L) during summer months of two consecutive years. Dynamics of the most important wastewater parameters were investigated, and corresponding removal rates were estimated. During treatment of low organic load OMW, average removal rate of organics, phenolics, total nitrogen and total phosphorus were 0.68 g-COD/kg-soil d, 0.073 g-TPh/kg-soil d, 0.033 g-TN/kg-soil d and 0.0074 g-TP/kg-soil d respectively and plants proved to be tolerant to the OMW. During treatment of high organic load OMW removal rates were roughly 10-fold higher although phytotoxic symptoms were observed. Plants were found to contribute greatly to the OMW treatment process since organics removal rates in pilot units were found to be at least 10-fold higher than in wastewater treatment in non-vegetated soil. Plant species with high added value products such as pomegranate and myrtle trees were used in this study, improving the circular economy potential of the aforementioned technology. Moreover, its efficiency has been demonstrated by quantification of the overall removal rates of key constituents as well as the contribution of the plants in the OMW treatment.
Collapse
Affiliation(s)
- Margarita A Petoussi
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
9
|
Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. BIOLOGY 2020; 9:biology9120450. [PMID: 33291288 PMCID: PMC7762183 DOI: 10.3390/biology9120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Olive oil is the most common vegetable oil used for human nutrition, and its production represents a major economic sector in Mediterranean countries. The milling industry generates large amounts of liquid and solid residues, whose disposal is complicated and costly due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and phenolic compounds. This review describes recent advances and multidisciplinary approaches in the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural compounds may be potentially used in numerous sustainable applications in agriculture such as fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative impact on the environment and are harmful to human health. Abstract Olive oil production generates high amounts of liquid and solid wastes. For a long time, such complex matrices were considered only as an environmental issue, due to their polluting properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth when applied to soil due to the high content of organic matter and mineral nutrients. Moreover, OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly due to the presence of bioactive molecules including phenols and polysaccharides. This review covers the recent advances made in the identification, isolation, and characterization of OMW-derived bioactive molecules able to influence important plant processes such as plant growth and defend against pathogens. Such studies are relevant from different points of view. First, basic research in plant biology may benefit from the isolation and characterization of new biomolecules to be potentially applied in crop growth and protection against diseases. Moreover, the valorization of waste materials is necessary for the development of a circular economy, which is foreseen to drive the future development of a more sustainable agriculture.
Collapse
|
10
|
Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2481-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
11
|
Babić S, Malev O, Pflieger M, Lebedev AT, Mazur DM, Kužić A, Čož-Rakovac R, Trebše P. Toxicity evaluation of olive oil mill wastewater and its polar fraction using multiple whole-organism bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:903-914. [PMID: 31412527 DOI: 10.1016/j.scitotenv.2019.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Olive mill wastewater (OMW) as a by-product of olive oil extraction process has significant polluting properties mainly related to high organic load, increased COD/BOD ratio, high phenolic content and relatively acidic pH. Raw OMW from Slovenian Istria olive oil mill and its polar fraction were investigated in this study. Chemical characterization of OMW polar fraction identified tyrosol as the most abundant phenolic product, followed by catechol. Lethal and sub-lethal effects of OMW matrix and its polar fraction were tested using a battery of bioassays with model organisms: bacteria Vibrio fischeri, algae Chlorella vulgaris, water fleas Daphnia magna, zebrafish Danio rerio embryos, clover Trifolium repens and wheat Triticum aestivum. Raw OMW sample was the most toxic to V. fischeri (EC50 = 0.24% of OMW sample final concentration), followed by D. magna (EC50 = 1.43%), C. vulgaris (EC50 = 5.20%), D. rerio (EC50 = 7.05%), seeds T. repens (EC50 = 8.68%) and T. aestivum (EC50 = 11.58%). Similar toxicity trend was observed during exposure to OMW polar fraction, showing EC50 values 2.75-4.11 times lower comparing to raw OMW. Tested samples induced also sub-acute effects to clover and wheat (decreased roots, sprouts elongation); and to zebrafish embryos (increased mortality, higher abnormality rate, decreased hatching and pigmentation formation rate). A comprehensive approach using a battery of bioassays, like those used in this study should be applied during ecotoxicity monitoring of untreated and treated OMW.
Collapse
Affiliation(s)
- Sanja Babić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Olga Malev
- Srebrnjak Children's Hospital, Department for Translational Medicine, Srebrnjak 100, Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, Zagreb, Croatia
| | - Maryline Pflieger
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Dmitry M Mazur
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Anita Kužić
- TAPI/Analytical R&D, Pliva Croatia Ltd., prilaz Baruna Filipovića 28, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Morón MC, Pozo-Morales L, Benito Mora C, Garvi D, Lebrato J. OMW spillage control tool based on tracking p-Coumaric acid degradation by HPLC. ENVIRONMENTAL TECHNOLOGY 2019; 40:2157-2172. [PMID: 29421964 DOI: 10.1080/09593330.2018.1439108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Olive mill wastewater (OMW) is a major watercourse pollutant agent with a high concentration of phenolic compounds. It is estimated that 30 million OMW m3 are released into rivers every year. Protecting the health of these courses against the uncontrolled discharges implies establishing an adequate legislation, where spillage control tools play a fundamental role. In this paper, a new tool for OMW spillage control is discussed. It is based on the use of a RP-HPLC-UV protocol to track p-Coumaric acid (pCA), a characteristic OMW phenolic compound, and its derivative compounds through their chemical oxidation and biological anaerobic degradation. Laboratory assays and real-life experiences allowed to determine degradation routes and apparition times for every pCA derivative, making it possible to detect an OMW spill and assess its age. Moreover, this RP-HPLC-UV introduces solid advantages over previous detection procedures, namely, quicker response times and smaller costs than HPLC methods and superior specificity than colorimetric methods. Finally, this tool was put to test in an actual OMW-polluted watercourse. In all scenarios, the tool demonstrated solid reliability.
Collapse
Affiliation(s)
- M C Morón
- a TAR Group RNM159 PAIDI, Department of Applied Physic I, University of Seville , Seville , Spain
| | - L Pozo-Morales
- b Department of Chemical Engineering, University of Seville , Seville , Spain
| | - C Benito Mora
- c TAR Group RNM159 PAIDI, University of Seville , Seville , Spain
| | - D Garvi
- c TAR Group RNM159 PAIDI, University of Seville , Seville , Spain
| | - J Lebrato
- d TAR Group RNM159 PAIDI, Escuela Politécnica Superior, University of Seville , Seville , Spain
| |
Collapse
|
13
|
Flores N, Sharif F, Yasri N, Brillas E, Sirés I, Roberts EPL. Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes. CHEMOSPHERE 2018; 201:807-815. [PMID: 29550575 DOI: 10.1016/j.chemosphere.2018.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
This work compares the ability of physical and chemical treatments, namely adsorption and electrochemical advanced oxidation processes, to remove tyrosol from aqueous medium. Adsorption on graphene nanoplatelets (GNPs) performed much better than that with a graphite intercalation compound. Adsorption isotherms were found to follow the Freundlich model (R2 = 0.96), which is characteristic of a chemisorption process. Successful electrochemical regeneration enables 5 successive adsorption/regeneration cycles before corrosion of GNPs occurs. Other typical aromatic contaminants that may coexist with tyrosol can be also adsorbed on GNPs. Percentage of regeneration efficiency of GNPs showed a higher affinity towards Lewis acids group compounds and a lower one towards Lewis base. The treatment of 100 mL of 0.723 mM tyrosol solutions in non-chlorinated and chlorinated matrices at pH 3.0 was carried out by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF). Trials were made with a BDD anode and an air-diffusion cathode at 10-30 mA cm-2. Hydroxyl radicals formed at the anode from water oxidation and/or in the bulk from Fenton's reaction between added Fe2+ and generated H2O2, along with active chlorine produced in chlorinated medium, were the main oxidants. Tyrosol concentration always decayed following a pseudo-first-order kinetics and its mineralization rose as EO-H2O2 < EF < PEF, more rapidly in the chlorinated matrix. The potent photolysis of intermediates under UVA radiation explained the almost total mineralization achieved by PEF in the latter medium. The effect of current density and tyrosol content on the performance of all processes was examined.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Farbod Sharif
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Nael Yasri
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Edward P L Roberts
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
14
|
Koutsos TM, Chatzistathis T, Balampekou EI. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:942-953. [PMID: 29227945 DOI: 10.1016/j.scitotenv.2017.12.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
The disposal of olive mill wastewater (OMW) is a serious environmental issue for the Mediterranean countries. However, there is still no common European legislation on the management and the re-use of OMW in agriculture, in the frame of sustainable crop management and the standards for the safe OMW disposal and re-use are left to be set by each EU country, individually. This review paper presents the most effective and sustainable practices for OMW, (treatment, application and management), which can maximize the benefits of OMW on crops and soils, while minimizing the potential hazards for public health, thus promoting environmental sustainability. The findings of this synthetic work suggest that there is enough information and proven sustainable practices to go ahead with the initial formulation of a new consensual framework, environmentally acceptable, socially bearable and economically viable, that could hopefully help to set the standards for the re-use of olive mil wastewater and can lead to a common EU policy on the management and re-use of OMW.
Collapse
Affiliation(s)
- T M Koutsos
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Chatzistathis
- Hellenic Agricultural Organization Demeter, Institute of Soil and Water Resources, Thessaloniki, Greece
| | - E I Balampekou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Flores N, Brillas E, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I. Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/electrochemical Fenton-based processes. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:58-66. [PMID: 29289766 DOI: 10.1016/j.jhazmat.2017.12.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/24/2017] [Accepted: 12/21/2017] [Indexed: 05/25/2023]
Abstract
The treatment of olive oil mill wastewater (OOMW) by novel sequential processes involving electrocoagulation (EC) followed by electro-Fenton (EF) or photoelectro-Fenton (PEF) under UVA irradiation has been studied using a boron-doped diamond anode and an air-diffusion cathode for H2O2 electrogeneration. Their performance was monitored from the removal of total organic carbon (TOC), chemical oxygen demand, turbidity, total solids and total nitrogen, as well as from the energy consumption. Preliminary EC assays were performed with one pair of electrodes made of Al, Fe, AISI 304 or AISI 316L. The Fe/Fe cell showed the best performance, yielding 40% TOC decay in 20 min. Subsequent EF or PEF at natural pH 7.2 performed similarly, whereas PEF became superior at pH 3.0 due to the action of UVA photons. Comparison between EC/PEF and single EF or PEF at pH 3.0 and 25 mA cm-2 with 0.50 mM Fe2+ revealed the positive outcome of the sequential process, attaining 97.1% TOC abatement after 600 min. GC-MS analysis of the raw wastewater allowed identifying 18 cyclic and 27 aliphatic compounds, most of which could not be removed by EC. The final solutions in EC/EF and EC/PEF contained a large plethora of persistent long-chain aliphatic acids and alkanes.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Litaor MI, Khadya N. The impact of olive mill wastewater spreading on soils using integrated approach of proximal soil survey, spatial, and multivariate analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7469-7478. [PMID: 29280105 DOI: 10.1007/s11356-017-1062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Olive oil production generates a large amount of olive mill wastewater (OMW), the most difficult to treat of agro-industrial effluents. Spreading of OMW across the soilscape has become the most frequently used practice in several Mediterranean basin countries but is hotly debated because of its potential to impair soil environs. The research hypothesis states that soil deterioration is correlated strongly with the spatiotemporal rate of OMW application; thus, the spatial pattern of the soil attributes should be established in conjunction with the rate of OMW spreading. The spatial pattern was ascertained using proximal soil sensing that measures the apparent electrical conductance (ECa). Eight representative locations were identified using grouping analysis of the ECa data. The soils were analyzed for selected physical and chemical attributes known to be affected by OMW spreading as well as ancillary parameters needed for the calibration of the ECa. Discriminant analysis successfully categorized 76% of the ECa groups, selecting CEC, sand, pH, and ESP as the most powerful discriminatory variables in the grouping analysis. The correlation coefficients between the measured ECa, and the calculated ECa, and soil moisture were very high (r > 0.77, P < 0.05), suggesting that the proximal soil survey results are well calibrated. The spreading of untreated OMW over more than 7 years did not impair the soils under study. No significant changes in soil chemo-physical properties such as pH (< 7.66), electrical conductivity in saturated paste (< 3.58 dS m-1), sodium adsorption ratio (< 2.3), potassium adsorption ratio (< 0.33), exchangeable sodium percentage (< 3.85%), and unsaturated hydraulic conductivity (< 0.3 cm h-1) were found in comparison with untreated soils. The results support the premise that moderate quantities of OMW (50-70 m3 ha-1 year-1) equally spread over the soilscape will have little impact on soil health.
Collapse
Affiliation(s)
- M Iggy Litaor
- MIGAL - Galilee Research Institute, 11016, Kiryat Shmona, Israel.
- Department of Environmental Sciences, Tel Hai College, 12210, Upper Galilee, Israel.
| | - Nanak Khadya
- MIGAL - Galilee Research Institute, 11016, Kiryat Shmona, Israel
- Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, 32000, Haifa, Israel
| |
Collapse
|
17
|
Flores N, Sirés I, Rodríguez RM, Centellas F, Cabot PL, Garrido JA, Brillas E. Removal of 4-hydroxyphenylacetic acid from aqueous medium by electrochemical oxidation with a BDD anode: Mineralization, kinetics and oxidation products. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Flores N, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E, Sirés I. 4-Hydroxyphenylacetic acid oxidation in sulfate and real olive oil mill wastewater by electrochemical advanced processes with a boron-doped diamond anode. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:566-575. [PMID: 27694020 DOI: 10.1016/j.jhazmat.2016.09.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
The degradation of 4-hydroxyphenylacetic acid, a ubiquitous component of olive oil mill wastewater (OOMW), has been studied by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed in either a 0.050M Na2SO4 solution or a real OOMW at pH 3.0, using a cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 generation. Hydroxyl radicals formed at the BDD surface from water oxidation in all processes and/or in the bulk from Fenton's reaction between added Fe2+ and generated H2O2 in EF and PEF were the main oxidants. In both matrices, the oxidation ability of the processes increased in the order AO-H2O2<EF<PEF. The superiority of PEF was due to the photolytic action of UVA radiation on photosensitive by-products, as deduced from the quick removal of Fe(III)-oxalate complexes. The effect of current density and organic content on the performance of all treatments was examined. 4-Hydroxyphenylacetic acid decay obeyed a pseudo-first-order kinetics. The PEF treatment of 1.03mM 4-hydroxyphenylacetic acid in 0.050M Na2SO4 allowed 98% mineralization at 360min even at low current density, whereas 80% mineralization and a significant enhancement of biodegradability were achieved with the real OOMW.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Flores N, Sirés I, Garrido JA, Centellas F, Rodríguez RM, Cabot PL, Brillas E. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:3-12. [PMID: 26691522 DOI: 10.1016/j.jhazmat.2015.11.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed.
Collapse
Affiliation(s)
- Nelly Flores
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Antonio Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa María Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Romero-Güiza MS, Mata-Alvarez J, Chimenos JM, Astals S. The effect of magnesium as activator and inhibitor of anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 56:137-142. [PMID: 27402564 DOI: 10.1016/j.wasman.2016.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion stands as a key technology in the emerging green energy economy. Mg(2+) has been identified as an important element to improve digesters methane production; however the inhibition risk that high Mg(2+) concentrations can cause to the AD process must also be considered when dosing Mg reagents and wastes containing Mg(2+). Despite its importance, Mg(2+) stimulation and inhibition mechanisms as well as threshold values are scarce in the literature. This research paper investigates the impact (stimulation and inhibition) of Mg(2+) on pig manure anaerobic digestion. Mathematical modelling was used to better understand the interaction between substrate, inoculum and magnesium, where Mg(2+) inhibition was modelled by a n-component non-competitive inhibition function. Modelling was done on absolute curves rather than specific methane productions curves (new approach) to account for the lower background methane production of the inoculum as the Mg(2+) concentration increased. Results showed that no stimulation or inhibition occurred between 40 (native concentration) and 400mgMg(2+)L(-1), while minor and major inhibition were observed at 750 and 1000mgMg(2+)L(-1), and at 2000 and 4000mgMg(2+)L(-1), respectively. Mg(2+) half maximal inhibition concentration was estimated at 2140mgMg(2+)L(-1) with an inhibition order of 2. The latter indicates that Mg(2+) inhibition is a progressive rather than a steep inhibition mechanism.
Collapse
Affiliation(s)
- M S Romero-Güiza
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Department of Materials Science and Metallurgical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Mata-Alvarez
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Metallurgical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|