1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Ardeshir RA, Dehghani F. The role of estrogen receptor α and heat shock protein 90 in the apoptosis of fish liver cells after fipronil exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:91. [PMID: 40332693 DOI: 10.1007/s10695-025-01508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Fipronil (FPN) as an insecticide can excessively enter aquatic ecosystems and may act as endocrine-disrupting chemicals by binding to estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). Currently, there is limited information on the xenoestrogen role of FPN in the transcriptional modulation of hepatic genes involved in cell apoptosis. Three experiments were used in this study to determine how the FPN interference between the ER, AhR, and intermediate chaperons can induce apoptosis and change the expression of erα, erβ, erβ2, hsp70, hsp90, p53, bad1, bcl2, ahr, cyp1a, and caspase9 genes in common carp (Cyprinus carpio) hepatocytes. The IC50 values of FPN and 17β estradiol (E2) (positive control) in fish hepatocytes were determined (5 µg/mL). In the first experiment, exposure (6, 24, and 48 h) of hepatocytes to the low (0.1 µg/mL) and high (1 µg/mL) doses of FPN up-regulated apoptosis, pro-apoptotic genes (caspase9 and bad1), and chaperone protein genes (hsp70 and hsp90), while down-regulated anti-apoptotic genes (p53and bcl2). Additionally, there was a significant increase in the expression of the genes erα, ahr, and cyp1a that was dependent on both time and dose. ERα antagonist and a high dose of FPN were administered to the hepatocytes in the second experiment, which reduced cell apoptosis. In the third experiment, anti-apoptotic gene expression increased, and cell apoptosis and ahr and cyp1a gene expression significantly decreased when HSP90 and ERα antagonists were applied in comparison to the control group (P < 0.05). Based on this study, we demonstrate that FPN-induced apoptosis in fish hepatocytes is mediated by erα and hsp90 through transcriptional regulation of pro-apoptotic and anti-apoptotic genes.
Collapse
Affiliation(s)
- Rashid Alijani Ardeshir
- Marine Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Fatemeh Dehghani
- Department of Nursing, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
3
|
Camacho-Jiménez L, González-Ruiz R, Yepiz-Plascencia G. Persistent organic pollutants (POPs) in marine crustaceans: Bioaccumulation, physiological and cellular responses. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106184. [PMID: 37769555 DOI: 10.1016/j.marenvres.2023.106184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in marine ecosystems. These compounds can be accumulated in water, sediments and organisms, persist in time, and have toxic effects in human and wildlife. POPs can be uptaken and bioaccumulated by crustaceans, affecting different physiological processes, including energy metabolism, immunity, osmoregulation, excretion, growth, and reproduction. Nonetheless, animals have evolved sub-cellular mechanisms for detoxification and protection from chemical stress. POPs induce the activity of enzymes involved in xenobiotic metabolism and antioxidant systems, that in vertebrates are importantly regulated at gene expression (transcriptional) level. However, the activation and control of these enzyme systems upon the exposure to POPs have been scarcely studied in invertebrate species, including crustaceans. Herein, we summarize various aspects of the bioaccumulation of POPs in marine crustaceans and their physiological effects. We specially focus on the regulation of xenobiotics metabolism and antioxidant enzymes as key sub-cellular mechanisms for detoxification and protection from chemical stress.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico.
| | - Ricardo González-Ruiz
- Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT A.C.), Camino a La Presa de San José 2055, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico
| |
Collapse
|
4
|
Park SY, Lee J, Hong S, Kim T, Yoon SJ, Lee C, Kwon BO, Hu W, Wang T, Khim JS. Evaluation of ecotoxicological effects associated with coastal sediments of the Yellow Sea large marine ecosystem using the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2022; 181:113937. [PMID: 35850088 DOI: 10.1016/j.marpolbul.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A copepod bioassay with Tigriopus japonicus was applied to evaluate the relative ecotoxicity of sediments in the Yellow and Bohai seas, and contributions of individual PAHs to copepod toxicity were evaluated. Mean toxicity was greatest in the Yellow Sea of China, followed by the Bohai Sea and Yellow Sea of Korea. Elevated concentrations of sedimentary PAHs, alkylphenols, and styrene oligomers back-supported the significant toxicities observed in bioassay. Copepod toxicity in relation to PAHs indicated the greatest contribution by indeno[1,2,3-c,d]pyrene. However, lacked contribution by PAHs, viz., 2.4 and 3.0 % for the total immobilization and mortality, respectively, indicated a large proportion of unknown toxicants being widely distributed along the Yellow Sea Large Marine Ecosystem (YSLME) coastline. Overall, the present study provides useful baseline information for evaluating the potential sedimentary toxicants, with emphasizing further investigation to identify the unknown toxicants at an LME scale, and elsewhere.
Collapse
Affiliation(s)
- Shin Yeong Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Wenyou Hu
- Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Zhang M, Hu Y, Yang F, Zhang J, Zhang J, Yu W, Wang M, Lv X, Li J, Bai T, Chang F. Interaction between AhR and HIF-1 signaling pathways mediated by ARNT/HIF-1β. BMC Pharmacol Toxicol 2022; 23:26. [PMID: 35473600 PMCID: PMC9044668 DOI: 10.1186/s40360-022-00564-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/29/2022] [Indexed: 04/12/2024] Open
Abstract
Background The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. Methods This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. Results BaP can enhance the binding ability of HIF-1α protein to HIF-1β/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1β/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. Conclusion It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00564-8.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Pharmacy Experimental Teaching Center of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, China
| | - Yuxia Hu
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Hohhot, China
| | - Jingwen Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jianxin Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Wanjia Yu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Department of Pharmacology of Basic medical College, Inner Mongolia Medical university, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| | - Fuhou Chang
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
6
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
He Y, Lin W, Shi C, Li R, Mu C, Wang C, Ye Y. Accumulation, detoxification, and toxicity of dibutyl phthalate in the swimming crab. CHEMOSPHERE 2022; 289:133183. [PMID: 34883125 DOI: 10.1016/j.chemosphere.2021.133183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly used and toxic phthalate esters and has a variety of harmful effects on aquatic animals. However, there is still a lack of knowledge on the accumulation, detoxification, and toxicity of DBP in aquatic animals. In this study, we chose the swimming crab Portunus trituberculatus, an ecologically and economically important species, as the model and investigated the metabolism of DBP and its effects on the detoxification, antioxidation, survival and growth of the crab juveniles to better understand DBP-triggered molecular response over different time courses. As a result, DBP could be accumulated in the swimming crab in a concentration-dependent manner and metabolized to monobutyl phthalate (MBP) and phthalic acid (PA) through de-esterification. DBP exposure induced the different responses of three cytochrome P450 members and antioxidant enzyme genes, enhanced gene transcript and protein levels of glutathione-S-transferase and two heat stress proteins and malondialdehyde accumulation, decreased glutathione level, and inhibited antioxidant enzyme activities. Further, no significant effect of DBP was observed in crab survival, size, and weight but there was molting retardation. Therefore, DBP induced strong detoxification and antioxidative defense mechanisms to overcome detrimental effects of DBP on the swimming crab juveniles despite a molting retardation as a trade-off in fitness costs. The prevalent coexistence of DBP with MBP and PA during the whole exposure period is raising concerns on the combined action and ecological risk to aquatic animals.
Collapse
Affiliation(s)
- Yimin He
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Weichuan Lin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China.
| |
Collapse
|
8
|
Tang L, Liu YL, Qin G, Lin Q, Zhang YH. Effects of tributyltin on gonad and brood pouch development of male pregnant lined seahorse (Hippocampus erectus) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124854. [PMID: 33370696 DOI: 10.1016/j.jhazmat.2020.124854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The male pregnancy of seahorses is unique, but their reproductive response to environmental disturbances has not yet been clarified. Tributyltin (TBT) is known to have an endocrine disrupting effect on the reproductive system of coastal marine organisms. This study evaluated the potential effects of exposure to environmentally relevant concentrations of TBT on the development of gonads and brood pouch of the lined seahorse (Hippocampus erectus). Physiological, histological, and transcriptional analyses were conducted, and results showed that high levels of TBT bioaccumulation occurred in male and female seahorses. TBT led to ovarian follicular atresia and apoptosis with the elevation of androgen levels, accompanied by the induction of genes associated with lysosomes and autophagosomes. Comparative transcriptional analyses revealed the likely inhibition of spermatogenesis via the suppression of cyclic AMP and androgen synthesis. Notably, the transcriptional profiles showed that TBT potentially affects the immune system, angiogenesis, and embryo nourishment of the brood pouch, which indicates that it has negative effects on the male reproductive system of seahorses. In summary, this study reveals that environmental levels of TBT potentially affect the reproductive efficiency of seahorses, and may ultimately lead to a reduction in their populations in coastal environments.
Collapse
Affiliation(s)
- Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ya-Li Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Yan-Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
9
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Hu Y, Zhou C, Liu G. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138852. [PMID: 32570313 DOI: 10.1016/j.scitotenv.2020.138852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Both the frequent occurrence of accidental petroleum spills and the ubiquitous presence of microplastics (MPs) in the sea may pose severe threats to marine species. However, the immunotoxic impacts of these two types of pollutants and the underlying toxication mechanisms still remain largely unknown in sessile filter-feeding bivalve mollusks. Therefore, the impacts of exposure to petroleum hydrocarbons and MPs alone or in combination on the total count, cell type composition, and phagocytic activity of hemocytes were investigated in the blood clam, Tegillarca granosa. In addition, the intracellular ROS content, cell viability, degree of DNA damage, and expression levels of genes from immune-, apoptosis-, and immunotoxicity-related pathways were analyzed to reveal the potential toxication mechanisms. The results demonstrated that exposure to petroleum hydrocarbons and MPs alone or in combination at environmentally realistic concentrations could exert significant immunotoxic impacts on the blood clam, which may be caused by alterations in a series of physiological and molecular processes. In addition, the immunotoxicity of petroleum hydrocarbons could be significantly aggravated by the copresence of MPs, which suggests that coexposure to these two pollutants deserves closer attention.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Ma J, Chen QL, O'Connor P, Sheng GD. Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113463. [PMID: 31677875 DOI: 10.1016/j.envpol.2019.113463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Growing evidence suggests that metallic oxide nanoparticles can pose a severe risk to the health of invertebrates. Previous attention has been mostly paid to the effects of metallic oxide nanoparticles on the survival, growth and physiology of animals. In comparison, the effects on gut microbiota and incidence of antibiotic resistance genes (ARGs) in soil fauna remain poorly understood. We conducted a microcosm study to explore the responses of the non-target soil invertebrate Enchytraeus crypticus gut microbiota and resistomes to copper oxide nanoparticles (CuO NPs) and copper nitrate by using bacterial 16S rRNA gene amplicons sequencing and high throughput quantitative PCR. The results showed that exposure to Cu2+ resulted in higher bioaccumulation (P < 0.05) and lower body weight and reproduction (P < 0.05) of Enchytraeus crypticus than exposure to CuO NPs. Nevertheless, exposure to CuO NPs for 21 days markedly increased the alpha-diversity of the gut microbiota of Enchytraeus crypticus (P < 0.05) and shifted the gut microbial communities, with a significant decline in the relative abundance of the phylum Planctomycetes (from 37.26% to 19.80%, P < 0.05) and a significant elevation in the relative abundance of the phyla Bacteroidetes, Firmicutes and Acidobacteria (P < 0.05). The number of detected ARGs in the Enchytraeus crypticus gut significantly decreased from 45 in the Control treatment to 16 in the Cu(NO3)2 treatment and 20 in the CuO NPs treatment. The abundance of ARGs in the Enchytraeus crypticus gut were also significantly decreased to 38.48% when exposure to Cu(NO3)2 and 44.90% when exposure to CuO NPs (P < 0.05) compared with the controls. These results extend our understanding of the effects of metallic oxide nanoparticles on the gut microbiota and resistome of soil invertebrates.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide 5005, Australia
| | - G Daniel Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
12
|
Wang SR, Chen X, Ling S, Ni RZ, Guo H, Xu JW. MicroRNA expression, targeting, release dynamics and early-warning biomarkers in acute cardiotoxicity induced by triptolide in rats. Biomed Pharmacother 2019; 111:1467-1477. [PMID: 30841462 DOI: 10.1016/j.biopha.2018.12.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/21/2022] Open
Abstract
Tripterygium wilfordii Hook. F. is a plant used in traditional Chinese medicine to treat rheumatoid arthritis, lupus erythematosus, and psoriasis in China. However, its main active substance, triptolide, has toxic effects on the heart, liver, and kidneys, which limit its clinical application. Therefore, determining the mechanism of cardiotoxicity in triptolide and identifying effective early-warning biomarkers is beneficial for preventing irreversible myocardial injury. We observed changes in microRNAs and aryl hydrocarbon receptor (AhR) as potential biomarkers in triptolide-induced acute cardiotoxicity by using techniques such as polymerase chain reaction (PCR) assay. The results revealed that triptolide increased the heart/body ratio and caused myocardial fiber breakage, cardiomyocyte hypertrophy, increased cell gaps, and nuclear dissolution in treated male rats. Real-time PCR array detection revealed a more than 2-fold increase in the expression of 108 microRNA genes in the hearts of the male rats; this not only regulated the signaling pathways of ErbB, FOXO, AMPK, Hippo, HIF-1α, mTOR, and PI3K-Akt but also participated in biological processes such as cell adhesion, cell cycling, action potential, locomotory behavior, apoptosis, and DNA binding. Moreover, triptolide reduced the circulatory and cardiac levels of AhR protein as a target of these microRNAs and the messenger RNA expression of its downstream gene CYP1 A1. However, decreases in myocardial lactate dehydrogenase, creatine kinase MB, catalase, and glutathione peroxidase activity and an increase in circulating cardiac troponin I were observed only in male rats. Moreover, plasma microRNAs exhibited dynamic change. These results revealed that circulating microRNAs and AhR protein are potentially early-warning biomarkers for triptolide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shu-Rong Wang
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaomiao Chen
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ling
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong-Zhen Ni
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huining Guo
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Identification of the full 26 cytochrome P450 (CYP) genes and analysis of their expression in response to benzo[α]pyrene in the marine rotifer Brachionus rotundiformis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:185-192. [PMID: 30551045 DOI: 10.1016/j.cbd.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022]
Abstract
Cytochrome P450s (CYPs) are a large gene superfamily that are found in all living organisms. CYPs have a key role in detoxification of xenobiotics and endogenous chemicals. Although aquatic invertebrate CYPs and their detoxification mechanisms have been reported, little is known about interspecific comparison of CYPs and their detoxification mechanism in the rotifer Brachionus spp. The aim of this study was to identify the entire CYPs in the rotifer Brachionus rotundiformis (B. rotundiformis) and compare B. rotundiformis-CYPs to the previously reported CYPs in other model Brachionus spp. (B. koreanus, B. plicatilis, and B. calyciflorus). To validate the model, the rotifer, specifically Brachionus rotundiformis was exposed to various concentrations of B[α]P, which is widely used PAH xenobiotic, and analyzed gene expression in response to B[α]P. Here, in silico analysis results showed the total of 26 CYPs from the rotifer B. rotundiformis. Based on the phylogenetic analysis, the 26 B. rotundiformis-CYPs were separated into five different clans: 2, 3, 4, mitochondrial, and 46 clans in comparison to three rotifers species, B. koreanus, B. plicatilis, and B. calyciflorus. To understand the detoxification mechanisms of 26 B. rotundiformis-CYPs, we investigated transcriptional expression of 26 CYPs and found that five CYPs (CYP3045A2, CYP3045B4, CYP3045C10, CYP3049A5, and CYP3049E8) were significantly increased (P < 0.05) in response to 10 and 100 μg B[α]P. In addition, we identified the aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) and observed slight up-regulation of B. rotundiformis-AhR and -ARNT, indicating that these CYPs are likely associated with detoxification mechanism and could be used as potential molecular biomarkers of B[α]P in B. rotundiformis. Overall, this study will be helpful for expanding our knowledge of invertebrate CYPs on detoxification mechanisms associated with AhR signaling pathway in rotifers.
Collapse
|
14
|
Lee BY, Lee MC, Jeong CB, Kim HJ, Hagiwara A, Souissi S, Han J, Lee JS. RNA-Seq-based transcriptome profiling and expression of 16 cytochrome P450 genes in the benzo[α]pyrene-exposed estuarine copepod Eurytemora affinis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:142-150. [PMID: 30196245 DOI: 10.1016/j.cbd.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023]
Abstract
The calanoid copepod Eurytemora affinis is one of the most abundant estuarine species and is considered to be an ideal candidate species for ecotoxicological research. An RNA-Seq-based transcriptome was developed from whole bodies of this species. Among 142,442 contigs of the de novo assembly by Trinity, 48,480 open reading frame (ORF) contigs were found using TransDecoder. A total of 17,762 genes were identified by BLAST analysis, which covers about 75% of the annotated genes in the E. affinis genome. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that most annotated sequences were related to metabolism pathways, including xenobiotic biodegradation. Using transcriptome data, we identified putative transcripts related to xenobiotic processing genes including phase I enzymes, phase II enzymes, transporters, and transcription factors. To understand the CYP-mediated detoxification metabolism of xenobiotics, we measured the transcriptional levels of 16 CYPs (within full sequences) of E. affinis in response to benzo[α]pyrene (B[α]P). Most Ea-CYP genes were significantly down- and/or up-regulated (P < 0.05) in response to B[α]P, suggesting that Ea-CYP genes are likely involved in detoxification (mainly in biotransformation of xenobiotics) with particular genes, demonstrating significant upregulation or downregulation compared to others, as shown in other copepod model species (e.g. Tigriopus japonicus and Paracyclopina nana). This study will provide insight into the potential role of E. affinis in response to various toxic or xenobiotic chemicals in the marine environment.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Cote d'Opale, UMR 8187, LOG, Laboratoire d'Oceanologie et de Geosciences, 62930 Wimereux, France
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Barros S, Montes R, Quintana JB, Rodil R, André A, Capitão A, Soares J, Santos MM, Neuparth T. Chronic environmentally relevant levels of simvastatin disrupt embryonic development, biochemical and molecular responses in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:47-57. [PMID: 29879595 DOI: 10.1016/j.aquatox.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). Globally, SIM induced several effects that did not follow a dose-response relationship; embryonic development, biochemical and molecular markers, were significantly impacted in the lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of statin effects in teleosts, demonstrating significant impacts at environmentally relevant concentrations and highlight the importance of addressing the effects of chemicals under chronic low-level concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
16
|
Poynton HC, Hasenbein S, Benoit JB, Sepulveda MS, Poelchau MF, Hughes DST, Murali SC, Chen S, Glastad KM, Goodisman MAD, Werren JH, Vineis JH, Bowen JL, Friedrich M, Jones J, Robertson HM, Feyereisen R, Mechler-Hickson A, Mathers N, Lee CE, Colbourne JK, Biales A, Johnston JS, Wellborn GA, Rosendale AJ, Cridge AG, Munoz-Torres MC, Bain PA, Manny AR, Major KM, Lambert FN, Vulpe CD, Tuck P, Blalock BJ, Lin YY, Smith ME, Ochoa-Acuña H, Chen MJM, Childers CP, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Gibbs RA, Richards S. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6009-6022. [PMID: 29634279 DOI: 10.15482/usda.adc/1415994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.
Collapse
Affiliation(s)
- Helen C Poynton
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Simone Hasenbein
- Aquatic Systems Biology Unit , Technical University of Munich , D-85354 Freising , Germany
| | - Joshua B Benoit
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Maria S Sepulveda
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Monica F Poelchau
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Daniel S T Hughes
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shwetha C Murali
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shuai Chen
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
- OmicSoft Corporation, Cary , North Carolina 27513 United States
| | - Karl M Glastad
- Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 United States
| | - Michael A D Goodisman
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 United States
| | - John H Werren
- Biology Department , University of Rochester , Rochester , New York 14627 United States
| | - Joseph H Vineis
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Markus Friedrich
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Jeffery Jones
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Hugh M Robertson
- Department of Entomology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 United States
| | - René Feyereisen
- Department of Plant and Environmental Sciences , University of Copenhagen , DK-1871 Frederiksberg , Denmark
| | - Alexandra Mechler-Hickson
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Nicholas Mathers
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Carol Eunmi Lee
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - John K Colbourne
- School of Biosciences , University of Birmingham , Birmingham B15 2TT U.K
| | - Adam Biales
- National Exposure Research Laboratory , United States Environmental Protection Agency , Cincinnati , Ohio 45268 United States
| | - J Spencer Johnston
- Department of Entomology , Texas A&M University , College Station , Texas 77843 United States
| | - Gary A Wellborn
- Department of Biology , University of Oklahoma , Norman , Oklahoma 73019 United States
| | - Andrew J Rosendale
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Andrew G Cridge
- Laboratory for Evolution and Development, Department of Biochemistry , University of Otago , Dunedin , 9054 New Zealand
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 United States
| | - Peter A Bain
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae SA 5064 Australia
| | - Austin R Manny
- Department of Microbiology & Cell Science , University of Florida , Gainesville , Florida 32611 United States
| | - Kaley M Major
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Faith N Lambert
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Chris D Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Padrig Tuck
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Bonnie J Blalock
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Yu-Yu Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Mark E Smith
- McConnell Group, Cincinnati , Ohio 45268 , United States
| | - Hugo Ochoa-Acuña
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Christopher P Childers
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Jiaxin Qu
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shannon Dugan
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Sandra L Lee
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Hsu Chao
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Huyen Dinh
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Yi Han
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | | | - Kim C Worley
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
- Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Donna M Muzny
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Richard A Gibbs
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Stephen Richards
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| |
Collapse
|
17
|
Poynton HC, Hasenbein S, Benoit JB, Sepulveda MS, Poelchau MF, Hughes DST, Murali SC, Chen S, Glastad KM, Goodisman MAD, Werren JH, Vineis JH, Bowen JL, Friedrich M, Jones J, Robertson HM, Feyereisen R, Mechler-Hickson A, Mathers N, Lee CE, Colbourne JK, Biales A, Johnston JS, Wellborn GA, Rosendale AJ, Cridge AG, Munoz-Torres MC, Bain PA, Manny AR, Major KM, Lambert FN, Vulpe CD, Tuck P, Blalock BJ, Lin YY, Smith ME, Ochoa-Acuña H, Chen MJM, Childers CP, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Gibbs RA, Richards S. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6009-6022. [PMID: 29634279 PMCID: PMC6091588 DOI: 10.1021/acs.est.8b00837] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.
Collapse
Affiliation(s)
- Helen C Poynton
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Simone Hasenbein
- Aquatic Systems Biology Unit , Technical University of Munich , D-85354 Freising , Germany
| | - Joshua B Benoit
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Maria S Sepulveda
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Monica F Poelchau
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Daniel S T Hughes
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shwetha C Murali
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shuai Chen
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
- OmicSoft Corporation, Cary , North Carolina 27513 United States
| | - Karl M Glastad
- Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 United States
| | - Michael A D Goodisman
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 United States
| | - John H Werren
- Biology Department , University of Rochester , Rochester , New York 14627 United States
| | - Joseph H Vineis
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Markus Friedrich
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Jeffery Jones
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Hugh M Robertson
- Department of Entomology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 United States
| | - René Feyereisen
- Department of Plant and Environmental Sciences , University of Copenhagen , DK-1871 Frederiksberg , Denmark
| | - Alexandra Mechler-Hickson
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Nicholas Mathers
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Carol Eunmi Lee
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - John K Colbourne
- School of Biosciences , University of Birmingham , Birmingham B15 2TT U.K
| | - Adam Biales
- National Exposure Research Laboratory , United States Environmental Protection Agency , Cincinnati , Ohio 45268 United States
| | - J Spencer Johnston
- Department of Entomology , Texas A&M University , College Station , Texas 77843 United States
| | - Gary A Wellborn
- Department of Biology , University of Oklahoma , Norman , Oklahoma 73019 United States
| | - Andrew J Rosendale
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Andrew G Cridge
- Laboratory for Evolution and Development, Department of Biochemistry , University of Otago , Dunedin , 9054 New Zealand
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 United States
| | - Peter A Bain
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae SA 5064 Australia
| | - Austin R Manny
- Department of Microbiology & Cell Science , University of Florida , Gainesville , Florida 32611 United States
| | - Kaley M Major
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Faith N Lambert
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Chris D Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Padrig Tuck
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Bonnie J Blalock
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Yu-Yu Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Mark E Smith
- McConnell Group, Cincinnati , Ohio 45268 , United States
| | - Hugo Ochoa-Acuña
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Christopher P Childers
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Jiaxin Qu
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shannon Dugan
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Sandra L Lee
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Hsu Chao
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Huyen Dinh
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Yi Han
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | | | - Kim C Worley
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
- Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Donna M Muzny
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Richard A Gibbs
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Stephen Richards
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| |
Collapse
|
18
|
Han J, Won EJ, Kang HM, Lee MC, Jeong CB, Kim HS, Hwang DS, Lee JS. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. MARINE POLLUTION BULLETIN 2017; 124:953-961. [PMID: 27686823 DOI: 10.1016/j.marpolbul.2016.09.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Marine Chemistry and Geochemistry Research Center, Korea Institute of Ocean Science and Technology, Ansan 15627, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Han J, Kim DH, Kim HS, Kim HJ, Declerck SAJ, Hagiwara A, Lee JS. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:26-33. [PMID: 29126086 DOI: 10.1016/j.cbd.2017.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
Abstract
While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
20
|
Han J, Kim HS, Kim IC, Kim S, Hwang UK, Lee JS. Effects of water accommodated fractions (WAFs) of crude oil in two congeneric copepods Tigriopus sp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:511-517. [PMID: 28783601 DOI: 10.1016/j.ecoenv.2017.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Oil pollution has deleterious effects on marine ecosystems. However, the toxicity of crude oil towards Antarctic marine organisms has not been well studied. We compared the deleterious effects of water accommodated fractions (WAFs) of crude oil on reproduction, intracellular reactive oxygen species (ROS) levels, and antioxidant enzymatic activity in Antarctic (Tigriopus kingsejongensis) and temperate (Tigriopus japonicus) copepods. Reproductive rates of T. kingsejongensis and T. japonicus were significantly reduced (P < 0.05) in response to WAFs. Furthermore, T. kingsejongensis showed elevated levels of ROS and higher antioxidant enzyme (glutathione peroxidase [GPx]) activity than T. japonicus in response to WAFs. CYP genes from congeneric copepods were identified and annotated to better understand molecular detoxification mechanisms. We observed significant up-regulation (P < 0.05) of Tk-CYP3024A3 and Tj-CYP3024A2 in response to WAFs, suggesting that CYP genes may contribute to the detoxification mechanism in response to WAF exposure. These finding also suggest that WAFs may induce oxidative stress, leading to reproductive impairment in copepods. Furthermore, Tk-CYP3024A3 and Tj-CYP3024A2 genes can be considered as potential biomarkers of WAF toxicity in the congeneric copepods T. kingsejongensis and T. japonicus. This study will be helpful for enhancing our knowledge on the harmful effects of WAFs in Antarctic and temperate copepods and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Identification of 28 cytochrome P450 genes from the transcriptome of the marine rotifer Brachionus plicatilis and analysis of their expression. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:1-7. [DOI: 10.1016/j.cbd.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 02/02/2023]
|
22
|
Han J, Kim DH, Kim HS, Nelson DR, Lee JS. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:49-57. [PMID: 28709111 DOI: 10.1016/j.cbd.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
23
|
Cunha V, Santos MM, Moradas-Ferreira P, Castro LFC, Ferreira M. Simvastatin modulates gene expression of key receptors in zebrafish embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:465-476. [PMID: 28682217 DOI: 10.1080/15287394.2017.1335258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptors (NR) are involved in the regulation of several metabolic processes and it is well known that these constituents may be modulated by different chemicals classes, including pharmaceuticals that may activate or antagonize NR. In mammals, some pharmaceuticals modulate the transcription of pregnane X receptor, Pxr, peroxisome proliferator activated receptor, Ppars, and aryl hydrocarbon receptor, Ahr, affecting mRNA expression of genes belonging to various regulatory pathways, including lipid metabolism and detoxification mechanisms. The aim of this study was to determine the effects of simvastatin (SIM), an anticholesterolemic drug, on selected NR and AhR mRNA transcription levels during zebrafish early development. Embryos were collected at different development stages (0, 2, 6, 14, 24, 48, and 72 hr post fertilization (hpf)) and mRNA of all target NR was detected at all time points. Embryos (1 and 24 hpf) were exposed to different concentrations of SIM (5 or 50 μg/L) in two differing assays with varying exposure times (2 or 80 hr). The transcription levels of ahr2, raraa, rarab, rarga, pparαa, pparβ1, pparγ, pxr, rxraa, rxrab, rxrbb, rxrga, rxrgb, as well as levels of cholesterol (Chol) were measured after exposure. SIM exerted no marked effect on Chol levels, and depending upon exposure duration mRNA levels of NR and AhR either increased or decreased. After 2 hr SIM treatment in 24 hpf embryos, transcription of ppars, pxr, and ahr was up-regulated, while after 80 hr mRNA levels of pxr and ahr were decreased with no marked changes in ppars. Data demonstrate that SIM produced alterations in gene expression of NR which are involved in varying physiological functions and that may disturb regulation of different physiological processes which might impair fish survival and ecosystems regeneration.
Collapse
Affiliation(s)
- V Cunha
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - M M Santos
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - P Moradas-Ferreira
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
- d I3S-Institute for Research and Innovation in Health, University of Porto , Porto , Portugal
| | - L F C Castro
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - M Ferreira
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- e School of Marine Studies, Faculty of Science , Technology and Environment, The University of the South Pacific, Private mail box, Laucala Bay Road , Suva , Fiji Islands
| |
Collapse
|
24
|
Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog Lipid Res 2017; 67:38-57. [PMID: 28606467 DOI: 10.1016/j.plipres.2017.06.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates.
Collapse
|
25
|
Han J, Kim DH, Seo JS, Kim IC, Nelson DR, Puthumana J, Lee JS. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:42-49. [PMID: 28088650 DOI: 10.1016/j.cbpc.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 01/28/2023]
Abstract
CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
26
|
Zacchi FL, de Lima D, Flores-Nunes F, Mattos JJ, Lüchmann KH, de Miranda Gomes CHA, Bícego MC, Taniguchi S, Sasaki ST, Dias Bainy AC. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:94-103. [PMID: 28040644 DOI: 10.1016/j.aquatox.2016.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15days and then exposed to 100μgL-1 PHE for 24h and 96h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24h and 96h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24h and CYP2-like2 after 96h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96h) and GSTΩ-like (24h) in oysters kept at salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24h), GLYT-like, ARG-like (96h) and TAUT-like at 24h and 96h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Daína de Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karim Hahn Lüchmann
- Laboratory of Biochemistry and Molecular Biology - LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil
| | | | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
27
|
Chi Y, Huang Q, Zhang H, Chen Y, Dong S. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system. J Environ Sci (China) 2016; 43:216-223. [PMID: 27155427 DOI: 10.1016/j.jes.2015.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage.
Collapse
Affiliation(s)
- Yulang Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huanteng Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yajie Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
28
|
Han J, Won EJ, Kim HS, Nelson DR, Lee SJ, Park HG, Lee JS. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6982-92. [PMID: 25942333 DOI: 10.1021/acs.est.5b01244] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Eun-Ji Won
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Hui-Su Kim
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - David R Nelson
- ‡Department of Microbiology, Immunology, and Biochemistry, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Su-Jae Lee
- §Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Heum Gi Park
- ∥Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do 210-702, South Korea
| | - Jae-Seong Lee
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| |
Collapse
|
29
|
Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer 2015; 22:R69-86. [PMID: 25624167 PMCID: PMC4352112 DOI: 10.1530/erc-14-0411] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Erika Ginsburg
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - John J Bang
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Jodie M Fleming
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|