1
|
Brillas E, Peralta-Hernández JM. Fluoroquinolone ciprofloxacin removal from synthetic and real wastewaters by single and combined electrochemical advanced oxidation processes. A review. CHEMOSPHERE 2025; 380:144457. [PMID: 40334616 DOI: 10.1016/j.chemosphere.2025.144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Ciprofloxacin (CIP) is a widely prescribed fluoroquinolone antibiotic detected in the aquatic environment fostering the emergence of bacteria and posing risks the human health and ecosystem integrity. The present comprehensive critical review deals with CIP removal from synthetic and real wastewater by electrochemical advanced oxidation processes (EAOPs) up to 2024. Lower performance was obtained in real wastewaters than synthetic ones because their components scavenged-generated oxidizing agents. Anodic oxidation (AO) has been developed with active dimensionally stable anodes (DSA) and the non-active potent boron-doped diamond (BDD) one, where CIP solutions in chloride medium reached a maximal of 75 % mineralization. A more rapid CIP degradation and up to 96 % mineralization have been found for homogeneous electro-Fenton (EF) with Pt and Fe2+ catalyst. Heterogeneous Fenton with functionalized iron cathodes and solid iron catalysts, and heterogeneous EF-like with non-ferrous catalysts gave worse results. Novel modified EF processes with dual cathodes for direct.•OH production after H2O2 electrogeneration allowed up to 96 % mineralization. Photoelectro-Fenton (PEF) with UVA light and solar PEF (SPEF) can yield overall mineralization by the rapid photolysis of final Fe(III)-carboxylate species formed. Photoelectrocatalysis (PEC) with new photoanodes like FTO/Ni-ZnO under UVA light yielded 87 % mineralization. Hybrid AO, EF, PEF, and PEC processes with persulfate, O3, ultrasounds, or photocatalysis were more powerful than their single EAOPs. The characteristics and performance of each method, the generation of oxidants (•OH, O2•-, and/or 1O2), its reusability, and the by-products produced are discussed. The loss of toxicity of the treated solutions by EAOPs is finally detailed.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, CP 08028, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
2
|
Wang R, Dai Z, Zhang W, Ma C. The electrocatalytic degradation of 1,4-dioxane by Co-Bi/GAC particle electrode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1132-1148. [PMID: 39215728 DOI: 10.2166/wst.2024.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Efficient degradation of industrial organic wastewater has become a significant environmental concern. Electrochemical oxidation technology is promising due to its high catalytic degradation ability. In this study, Co-Bi/GAC particle electrodes were prepared and characterized for degradation of 1,4-dioxane. The electrochemical process parameters were optimized by response surface methodology (RSM), and the influence of water quality factors on the removal rate of 1,4-dioxane was investigated. The results showed that the main influencing factors were the Co/Bi mass ratio and calcination temperature. The carrier metals, Co and Bi, existed mainly on the GAC surface as Co3O4 and Bi2O3. The removal of 1,4-dioxane was predominantly achieved through the synergistic reaction of electrode adsorption, anodic oxidation, and particle electrode oxidation, with ·OH playing a significant role as the main active free radical. Furthermore, the particle electrode was demonstrated in different acid-base conditions (pH = 3, 5, 7, 9, and 11). However, high concentrations of Cl- and NO3- hindered the degradation process, potentially participating in competitive reactions. Despite this, the particle electrode exhibited good stability after five cycles. The results provide a new perspective for constructing efficient and stable three-dimensional (3D) electrocatalytic particle electrodes to remove complex industrial wastewater.
Collapse
Affiliation(s)
- Rui Wang
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| | - Zhineng Dai
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China; Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen, China E-mail:
| | - Wenqi Zhang
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| | - Chao Ma
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
3
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
4
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
5
|
Larralde-Piña IA, Acuña-Askar K, Villanueva-Rodríguez M, Guzmán-Mar JL, Murillo-Sierra JC, Ruiz-Ruiz EJ. An optimized electro-fenton pretreatment for the degradation and mineralization of a mixture of ofloxacin, norfloxacin, and ciprofloxacin. CHEMOSPHERE 2023; 344:140339. [PMID: 37820878 DOI: 10.1016/j.chemosphere.2023.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The electro-Fenton process (EFP) is a powerful advanced oxidation process beneficial to treating recalcitrant contaminants, and there has been a continuing interest in combining this technology to enhance the efficiency of conventional wastewater treatment processes. In this work, an optimized EFP process is performed as pretreatment for the degradation and mineralization of three blank fluoroquinolones (FQs) drugs: ofloxacin (OFL), norfloxacin (NOR), and ciprofloxacin (CIP). The optimization of the experiment was carried out using a Box-Behnken experimental design. Faster and complete degradation of the drugs mixture was achieved in 90 min with 61.12 ± 2.0% of mineralization in 180 min, under the optimized conditions: j = 244.0 mA cm-2, [Fe2+] = 0.31 mM, and [FQs] = 87.0 mg L-1. Furthermore, a low toxicity effluent was obtained in 90 min of the experiment, according to bioassay toxicity with Vibrio fischeri. Five short-chain carboxylic acids, including oxalic, maleic, oxamic, formic, and fumaric acids, were detected and quantified, in addition to F- and NO3- inorganic ions. The inhibition of the reactive oxygen species with scavenger proof was also evaluated in this paper.
Collapse
Affiliation(s)
- I A Larralde-Piña
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, Nuevo León, C.P. 66455, México
| | - K Acuña-Askar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Medicina, Depto. de Microbiología, Monterrey, Nuevo León, C.P. 64460, México
| | - M Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, Nuevo León, C.P. 66455, México
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, Nuevo León, C.P. 66455, México
| | - J C Murillo-Sierra
- Universidad de Concepción, Facultad de Ciencias Químicas, Edmundo Larenas 129, Concepción, Chile
| | - E J Ruiz-Ruiz
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, Nuevo León, C.P. 66455, México.
| |
Collapse
|
6
|
Bolognino I, Pelosato R, Marcì G, Natali Sora I. Comparison of Ten Metal-Doped LaFeO 3 Samples on Photocatalytic Degradation of Antibiotics in Water under Visible Light: Role of Surface Area and Aqueous Phosphate Ions. Molecules 2023; 28:molecules28093807. [PMID: 37175217 PMCID: PMC10179954 DOI: 10.3390/molecules28093807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Doping semiconducting oxides, such as LaFeO3 (LF), with metallic elements is a good strategy to improve the performance of photocatalysts. In this study, LF and ten different nanopowders metal-doped at the La or Fe site of LaFeO3 were evaluated in the photocatalytic degradation of ciprofloxacin (CP) and oxytetracycline (OTC). The following metals were used in the doping (mol%) process of LF: Pd 3% and 5%; Cu 10%; Mg 5%, 10%, and 20%; Ga 10%; Y 10% and 20%; and Sr 20%. The doped samples were synthetized using a citrate auto-combustion technique. From the X-ray diffraction (XRD) data, only a single crystalline phase, namely an orthorhombic perovskite structure, was observed except for trace amounts of PdO in the sample with Pd 5%. The specific surface area (SSA) ranged from 9 m2 g-1 (Ga 10%) to 20 m2 g-1 (Mg 20%). SEM images show that all samples were constituted from agglomerates of particles whose sizes ranged from ca. 20 nm (Mg 20%) to ca. 100 nm (Pd 5%). Dilute aqueous solutions (5 × 10-6 M) prepared for both CP and OTC were irradiated for 240 min under visible-light and in the presence of H2O2 (10-2 M). The results indicate a 78% removal of OTC with Cu 10% doped LF in a phosphate buffer (pH = 5.0). The degradation of CP is affected by pH and phosphate ions, with 78% (in unbuffered solution) and 54% (in phosphate buffer, pH = 5.0) removal achieved with Mg 10% doped LF. The reactions follow a pseudo-first order kinetic. Overall, this study is expected to deepen the assessment of photocatalytic activity by using substrates with different absorption capacities on photocatalysts.
Collapse
Affiliation(s)
- Isabella Bolognino
- Department of Engineering and Applied Sciences and INSTM, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Renato Pelosato
- Department of Engineering and Applied Sciences and INSTM, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Giuseppe Marcì
- "Schiavello Grillone" Photocatalysis Group, Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Isabella Natali Sora
- Department of Engineering and Applied Sciences and INSTM, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| |
Collapse
|
7
|
He J, Ye Q, Zhu Y, Yang M, Zhao L. Enhanced degradation performance and mineralization of ciprofloxacin by ionizing radiation combined with g-C3N4/CDs. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Zhao K, Zhang Y. Effective and continuous degradation of pollutants via carbon felt loaded with Co3O4 as three-dimensional electrode: Collaboration between ROS. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Saravanan A, Deivayanai VC, Kumar PS, Rangasamy G, Hemavathy RV, Harshana T, Gayathri N, Alagumalai K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. CHEMOSPHERE 2022; 308:136524. [PMID: 36165838 DOI: 10.1016/j.chemosphere.2022.136524] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of several contaminants in waterbodies raises global pollution and creates major risks to mankind, wildlife, as well as other living organisms. Development of an effective, feasible, cost-effective and eco-friendly approach for treating wastewater that is discharged from various industries is important for bringing down the deposition of contaminants into environment. Advanced oxidation process is an efficient technique for treating wastewater owing to its advantages such as high oxidation efficacy and does not produce any secondary pollutants. Advanced oxidation process can be performed through various methods such as ozone, Fenton, electrochemical, photolysis, sonolysis, etc. These methods have been widely utilized for degradation of emerging pollutants that cannot be destroyed using conventional approaches. This review focuses on wastewater treatment using advanced oxidation process. A brief discussion on mechanism involved is provided. In addition, various types of advanced oxidation process and their mechanism are explained in detail. Challenges faced during wastewater treatment process using oxidation, electrochemical, Fenton, photocatalysis and sonolysis are discussed elaborately. Advanced oxidation process can be viewed as potential approach for treating wastewater with certain modifications and solving challenges.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - T Harshana
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - N Gayathri
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | |
Collapse
|
10
|
Xu J, Hu D, Wang Y, Zhang Z. α-(Fe, Cu)OOH/RGO nanocomposites for heterogeneous photo-Fenton-like degradation of ciprofloxacin under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78874-78886. [PMID: 35697989 DOI: 10.1007/s11356-022-21245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CIP) is a third-generation fluoroquinolones (FQs) antibiotic, and the occurrence of CIP in the water environment has raised growing concerns owning to its environmental toxicity. In this paper, a novel α-(Fe, Cu)OOH/RGO nanocomposite was synthesized via a one-step reflux method for CIP degradation through a photo-Fenton-like process. When the RGO content was 1 wt%, CIP degradation ratio by the α-(Fe, Cu)OOH/RGO nanocomposite reached 100% under visible light irradiation within 120 min, and total organic carbon (TOC) removal ratio reached 60% within 180 min. The result of molecular fluorescence spectra highlighted that the loading of RGO on the α-(Fe, Cu)OOH significantly increased the content of hydroxyl radicals (·OH) in the heterogeneous photo-Fenton-like system and simultaneously inhibited the recombination of photogenerated electron and hole, which played critical roles in the enhancement of CIP degradation. In addition, 11 main intermediates were identified as the degradation products of CIP in the α-(Fe, Cu)OOH/RGO/H2O2/visible light reaction systems using liquid chromatograph-mass spectrometer (LC-MS) analyses. The results demonstrated that three degradation pathways for CIP removal by α-(Fe, Cu)OOH/RGO nanocomposite occurred, including (i) oxidation on the piperazine ring and dealkylation, (ii) defluorination and decarboxylation, and (iii) hydroxylation on the quinolone ring. This work would provide a novel insight of CIP degradation pathways in photo-Fenton-like processes.
Collapse
Affiliation(s)
- Junge Xu
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Die Hu
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Ziwei Zhang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
11
|
Guo J, Liu T, Peng H, Zheng X. Efficient Adsorption-Photocatalytic Removal of Tetracycline Hydrochloride over Octahedral MnS. Int J Mol Sci 2022; 23:9343. [PMID: 36012607 PMCID: PMC9408993 DOI: 10.3390/ijms23169343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
To disclose the effect of crystal plane on the adsorption-photocatalytic activity of MnS, octahedral MnS was prepared via the hydrothermal route to enhance the adsorption and photocatalytic efficiencies of tetracycline hydrochloride (TCH) in visible light region. The optimal MnS treated at 433 K for 16 h could remove 94.83% TCH solution of 260 mg L-1 within 180 min, and its adsorption-photocatalytic efficiency declined to 89.68% after five cycles. Its excellent adsorption-photocatalytic activity and durability were ascribed to the sufficient vacant sites of octahedral structure for TCH adsorption and the feasible band-gap structure for visible-light response. In addition, the band gap structure (1.37 eV) of MnS with a conduction band value of -0.58 eV and a valence band value of 0.79 eV was favorable for the generation of O2-, while unsuitable for the formation of OH. Hence, octahedral MnS was a potential material for the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Tingting Liu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| | - Hao Peng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Xiaogang Zheng
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| |
Collapse
|
12
|
Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Yang C, Fan Y, Shang S, Li P, Li XY. Fabrication of a permeable SnO 2-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater. ENVIRONMENT INTERNATIONAL 2021; 157:106827. [PMID: 34418849 DOI: 10.1016/j.envint.2021.106827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (ECO) is an appealing technology for treating emerging organic pollutants in wastewater. However, the conventional flow-by ECO process is expensive with a low energy efficiency owing to the limitations of mass transport of contaminants to the limited surface area of the anode. In this study, a novel freestanding porous and permeable SnO2-Sb anode was fabricated by one-step sintering using micrometer-sized (NH4)2CO3 grains as the pore-forming agents. This permeable SnO2-Sb anode without Ti substrate functioned as a reactive anodic filter (RAF) in an ECO cell to treat wastewater containing ciprofloxacin (CIP). Forcing the wastewater through the porous RAF depth-wise improved the mass transport and vastly enlarged the electroactive surface area. Compared with the conventional flow-by configuration, the flow-through RAF exhibited a 12-fold increase in the mass transfer rate constant (60.7 × 10-6 m s-1) and a 5-fold increase in the CIP degradation rate constant (0.077 min-1). At a cell potential of 4.0 V, more than 92% of the CIP was degraded in a single-pass operation at a filtration flux of 54 L m-2 h-1 and a short retention time of 1.7 min through the RAF. The robustness and stability of the RAF were demonstrated by its remarkable CIP degradation efficacy of 99% during 200 h of operation. The mechanism of CIP degradation was examined using probe molecules and density functional theory calculations and found to be a combined effect of direct electron transfer and oxidation by generated radicals (OH and SO4-). The great potential of RAF in flow-through ECO was further validated by its effective removal (>92%) of various organic pollutants in actual municipal wastewater at a low energy consumption of 0.33 kWh m-3. The RAF-based ECO process thus provides an advanced environmental technology for the oxidation of toxic and recalcitrant organic pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiang Fan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shanshan Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pu Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
15
|
He G, Zhang T, Zhang Q, Dong F, Wang Y. Characterization of enoxacin (ENO) during ClO 2 disinfection in water distribution system: Kinetics, byproducts, toxicity evaluation and halogenated disinfection byproducts (DBPs) formation potential. CHEMOSPHERE 2021; 283:131251. [PMID: 34182641 DOI: 10.1016/j.chemosphere.2021.131251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Enoxacin (ENO) is widespread in water because it is commonly used as a human and veterinary antibiotic. However, little effort has been dedicated to revealing the transformation mechanisms of ENO destruction using ClO2, especially within a water distribution system (WDS). To address this knowledge gap, the kinetics, byproducts, toxicity, and formation potential of halogenated disinfection byproducts (DBPs) associated with ENO destruction using ClO2 in a pilot-scale PE pipe was explored for the first time. Statistical analyses showed that the destruction efficiency of ENO in the pilot-scale PE pipe was lower than that in deionized water (DI water), and the reactions in DI water followed the second-order kinetic model. Furthermore, pH has a significant effect on the destruction of ENO, and the removal ratio increased at a higher pH. Additionally, increasing the flow rate elevated the ENO removal efficiency; however, the influence of flow velocity was limited to ENO destruction. The ENO removal rates within the diverse pipes exhibited the following order: stainless steel pipe < PE pipe < ductile iron pipe. Nine possible intermediates were identified, and those that were formed by piperazine group cleavage represented the major primary byproducts of the entire destruction process. Additionally, the ENO destruction in a pilot-scale PE pipe had minimal influence on halogenated DBPs and chlorite formation. Finally, the toxicity evaluation illustrated that the presence of ENO increased the potential risk of water quality safety when treated with ClO2.
Collapse
Affiliation(s)
- Guilin He
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Qingzhou Zhang
- School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao, 066004, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
16
|
Huang A, Zhi D, Zhou Y. A novel modified Fe-Mn binary oxide graphite felt (FMBO-GF) cathode in a neutral electro-Fenton system for ciprofloxacin degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117310. [PMID: 34052647 DOI: 10.1016/j.envpol.2021.117310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
A graphite felt (GF) cathode was firstly modified by Fe-Mn binary oxide (FMBO), active carbon (AC), carbon black (CB), and polytetrafluoroethylene (PTFE), which exhibits satisfactory ciprofloxacin (CIP) removal efficiency at neutral pH value in electro-Fenton (EF) system. Morphological data showed that modified cathodes have larger surface area and volume pore as well as more active sites. And electrochemical properties have proved stronger current response after modification. In compassion to the unmodified GF, the FMBO/AC/CB modified GF (FMBO-GF) has wider pH range and higher CIP removal efficiency due to its unique nanoparticles structure. The CIP removal efficiency achieved 95.40% in 30 min, and the removal efficiency of total organic carbon (TOC) achieved 93.77% in 2 h when conditions were optimal (25 mg/L initial CIP concentration, 2 mA/cm2 current density, FMBO/AC: CB: PTFE of 1:1:5, and 7 initial pH value) in this study. The results of great degradation and mineralization of CIP in this study indicate that the FMBO-GF cathode has huge potential on antibiotics removals in neutral environment.
Collapse
Affiliation(s)
- Anqi Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
17
|
Liu Z, Wan J, Ma Y, Wang Y. In situ synthesis of FeOCl@MoS 2 on graphite felt as novel electro-Fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH. CHEMOSPHERE 2021; 273:129747. [PMID: 33540330 DOI: 10.1016/j.chemosphere.2021.129747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The traditional Electro-Fenton (EF) is an efficient technology for wastewater treatment but suffers from the acidic condition requirement and external catalyst addition. To overcome these challenges, a GF@MoS2@FeOCl cathode was fabricated using a facile method. The as-prepared GF@MoS2@FeOCl cathode showed excellent performance for ciprofloxacin (CIP) degradation in EF process with RuO2/Ti electrode as the anode. H2O2 was electro-generated and activated on-site at the cathode at mild pH without adding Fe2+. CIP was 100% removed with 74.4% of mineralization in 90 min at pH 6. The GF@MoS2@FeOCl cathode exhibited good reusability after consecutive runs of degradation. The degradation intermediates were investigated, and the possible mechanism was proposed. This work demonstrated that the prepared GF@MoS2@FeOCl cathode is a promising candidate for contaminants treatment in an EF system.
Collapse
Affiliation(s)
- Zejun Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, PR China.
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, PR China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, PR China
| |
Collapse
|
18
|
Yao B, Luo Z, Yang J, Zhi D, Zhou Y. Fe IIFe III layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process. ENVIRONMENTAL RESEARCH 2021; 197:111144. [PMID: 33844966 DOI: 10.1016/j.envres.2021.111144] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 05/22/2023]
Abstract
The disadvantages of limited working pH range and poor stability have hindered the practical application of traditional electro-Fenton process. In this research, a novel heterogeneous electro-Fenton (HEF) process with FeIIFeIII layered double hydroxide/carbon felt (FeIIFeIII LDH/CF) as cathode was developed for the rapid destruction of ciprofloxacin (CIP) in bulk solution. Effects of crucial influencing factors (initial pH, current intensity) on CIP degradation were investigated. Results indicated that FeIIFeIII LDH/CF cathode was efficient for CIP degradation (88.11%). Furthermore, CIP degradation performance in HEF could remain stable over wide range of pH (pH 3-9). The catalytic degradation of CIP in HEF process might be a combined effect of homogeneous EF reaction, anodic oxidation, and surface catalysis process via≡FeII/≡FeIII cycle. Possible degradation pathways were proposed. The results suggested that FeIIFeIII LDH/CF cathode showed great application potential for CIP degradation.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Da Costa Soares IC, Oriol R, Ye Z, Martínez-Huitle CA, Cabot PL, Brillas E, Sirés I. Photoelectro-Fenton treatment of pesticide triclopyr at neutral pH using Fe(III)-EDDS under UVA light or sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23833-23848. [PMID: 33175352 DOI: 10.1007/s11356-020-11421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
One of the main challenges of electrochemical Fenton-based processes is the treatment of organic pollutants at near-neutral pH. As a potential approach to this problem, this work addresses the use of a low content of soluble chelated metal catalyst, formed between Fe(III) and ethylenediamine-N,N'-disuccinic (EDDS) acid (1:1), to degrade the herbicide triclopyr in 0.050 M Na2SO4 solutions at pH 7.0 by photoelectro-Fenton with UVA light or sunlight (PEF and SPEF, respectively). Comparison with electro-Fenton treatments revealed the crucial role of the photo-Fenton-like reaction, since this promoted the production of soluble Fe(II) that enhanced the pesticide removal. Hydroxyl radicals formed at the anode surface and in the bulk were the main oxidants. A boron-doped diamond (BDD) anode yielded a greater mineralization than an IrO2-based one, at the expense of reduced cost-effectiveness. The effect of catalyst concentration and current density on the performance of PEF with BDD was examined. The PEF trials in 0.25 mM Na2SO4 + 0.35 mM NaCl medium showed a large influence of generated active chlorine as oxidant, being IrO2 more suitable than RuO2 and BDD. In SPEF with BDD, the higher light intensity from solar photons accelerated the removal of the catalyst and triclopyr, with small effect on mineralization. A plausible route for the herbicide degradation by Fe(III)-EDDS-catalyzed PEF and SPEF is finally proposed based on detected byproducts: three heteroaromatic and four linear N-aliphatic compounds, formamide, and tartronic and oxamic acids.
Collapse
Affiliation(s)
- Izabelle C Da Costa Soares
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal, RN, 59072-900, Brazil
| | - Roger Oriol
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Zhihong Ye
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Carlos A Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal, RN, 59072-900, Brazil
| | - Pere L Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
20
|
Yu Y, Sun Y, Zhou Y, Xu A, Xu Y, Huang F, Zhang Y. The behavior of surface acidity on photo-Fenton degradation of ciprofloxacin over sludge derived carbon: Performance and mechanism. J Colloid Interface Sci 2021; 597:84-93. [PMID: 33872889 DOI: 10.1016/j.jcis.2021.03.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 01/03/2023]
Abstract
Sludge derived carbon (SC) has been widely used in advanced oxidation processes as an effective and economic catalyst. In this study, we applied surface modified SC for the first time to catalyze the heterogeneous photo-Fenton process with ciprofloxacin, a highly concerned emerging contaminant, as a model substance. H2SO4 was used to acidify the SCs under varying acid dosages, temperatures, and reaction time lengths. The surface acidity of SCs was quantitatively characterized with NH3-TPD. A strong correlation between the surface acidity and the catalytic activity was clearly demonstrated. The highest catalytic activity was obtained with SC whose acidity was 0.149 mmol·g-1 after being modified with 6 mol·L-1 H2SO4 at -20 ℃ for 24 h. In addition, XRD, XRF, BET, XPS, and HRTEM were also used to characterize the obtained SC. ·OH radicals were found to be the main reactive species by EPR. Ten transformation products were identified by GC-MS, based on which three possible reaction pathways were proposed.
Collapse
Affiliation(s)
- Yang Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yifei Sun
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuanbo Zhou
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Anlin Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yongjun Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
21
|
Nair KM, Kumaravel V, Pillai SC. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. CHEMOSPHERE 2021; 269:129325. [PMID: 33385665 DOI: 10.1016/j.chemosphere.2020.129325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (H2O2) via 2e─ oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (●OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3-9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1-9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best H2O2 production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed.
Collapse
Affiliation(s)
- Keerthi M Nair
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Vignesh Kumaravel
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.
| |
Collapse
|
22
|
Yang X, Chen Z, Zhao W, Liu C, Qian X, Zhang M, Wei G, Khan E, Hau Ng Y, Sik Ok Y. Recent advances in photodegradation of antibiotic residues in water. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 405:126806. [PMID: 32904764 PMCID: PMC7457966 DOI: 10.1016/j.cej.2020.126806] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Antibiotics are widely present in the environment due to their extensive and long-term use in modern medicine. The presence and dispersal of these compounds in the environment lead to the dissemination of antibiotic residues, thereby seriously threatening human and ecosystem health. Thus, the effective management of antibiotic residues in water and the practical applications of the management methods are long-term matters of contention among academics. Particularly, photocatalysis has attracted extensive interest as it enables the treatment of antibiotic residues in an eco-friendly manner. Considerable progress has been achieved in the implementation of photocatalytic treatment of antibiotic residues in the past few years. Therefore, this review provides a comprehensive overview of the recent developments on this important topic. This review primarily focuses on the application of photocatalysis as a promising solution for the efficient decomposition of antibiotic residues in water. Particular emphasis was laid on improvement and modification strategies, such as augmented light harvesting, improved charge separation, and strengthened interface interaction, all of which enable the design of powerful photocatalysts to enhance the photocatalytic removal of antibiotics.
Collapse
Affiliation(s)
- Xiuru Yang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Wan Zhao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Chunxi Liu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Xiaoxiao Qian
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone Hangzhou, 310018, China
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Aseman-Bashiz E, Rezaee A, Moussavi G. Ciprofloxacin removal from aqueous solutions using modified electrochemical Fenton processes with iron green catalysts. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Zhou M, Li C, Zhao L, Ning J, Pan X, Cai G, Zhu G. Synergetic effect of nano zero-valent iron and activated carbon on high-level ciprofloxacin removal in hydrolysis-acidogenesis of anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142261. [PMID: 33207529 DOI: 10.1016/j.scitotenv.2020.142261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Ciprofloxacin is the most commonly prescribed antibiotic, and its widespread use poses threat to environmental safety. The removal of ciprofloxacin from contaminated water has remained a major challenge. The present study investigated adding nanoscale zero-valent iron (NZVI) and activated carbon (AC) on high-level ciprofloxacin removal in hydrolysis-acidogenesis stage of anaerobic digestion. The results showed that the degradation rate of ciprofloxacin increased from 22.61% (Blank group) to 72.41% after adding NZVI/AC with concentration of ciprofloxacin in effluent decreasing from 8.25 mg L-1 to 3.48 mg L-1. The volatile fatty acids (VFAs) yield increased by 173.7% compared with the Blank group. In addition, the NZVI/AC group achieved the highest chemical oxygen demand (COD) removal rate and acidogenesis rate. The microbial community analysis presented that hydrolytic and acidogenic bacteria and microorganisms related to degrading ciprofloxacin were obviously improved in the NZVI/AC group. Moreover, eleven transformation products and the main degradation pathways were proposed based on mass spectrometry information. In summary, the NZVI/AC addition supplied promising approach for ciprofloxacin wastewater treatment.
Collapse
Affiliation(s)
- Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100084, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
25
|
Carneiro JF, Aquino JM, Silva BF, Silva AJ, Rocha-Filho RC. Comparing the electrochemical degradation of the fluoroquinolone antibiotics norfloxacin and ciprofloxacin using distinct electrolytes and a BDD anode: evolution of main oxidation byproducts and toxicity. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104433. [PMID: 32953450 PMCID: PMC7487200 DOI: 10.1016/j.jece.2020.104433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 05/04/2023]
Abstract
The effects of the supporting electrolytes (SEs) Na2SO4, NaCl, Na2CO3, NaNO3, and Na3PO4 on the anodic oxidation of norfloxacin (NOR) and ciprofloxacin (CIPRO), assessed by the respective degradation kinetics and byproducts and electrolyzed solution antimicrobial activity, are compared. Galvanostatic anodic oxidations were performed in a filter-press flow cell fitted with a boron-doped diamond anode. Removal rates higher than the theoretical one for a process purely controlled by mass transfer were found for all SEs, indicative of contribution by indirect oxidation processes. However, the removal rates for NaCl were about tenfold higher, with the lowest energy consumption per order (EC O) of targeted pollutant removal rate (ca. 0.7 kW h m-3 order-1), a very competitive performance. The TOC removal rates were also affected by the SE, but not as markedly. The antimicrobial activity of the electrolyzed solutions against Escherichia coli showed distinct temporal profiles, depending on the fluoroquinolone and SE. For instance, when Na3PO4 was used, the antimicrobial activity was completely removed for NOR, but none for CIPRO; conversely, when NaCl was used, complete removal was attained only for CIPRO. From LC-MS/MS analyses of Na3PO4 electrolyzed solutions, rupture of the fluoroquinolone ring leading to byproducts with no toxicity against E. coli occurred only for NOR, whereas exactly the opposite occurred for the NaCl solutions. Clearly, the nature of both the SE and the fluoroquinolone influence the oxidation steps of the respective molecule; this was also evidenced by the distinct short-chain carboxylic acids identified in the degradation of NOR and CIPRO.
Collapse
Affiliation(s)
- Jussara F Carneiro
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - José M Aquino
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - Bianca F Silva
- Instituto de Química de Araraquara, Departamento de Química Analítica, Universidade Estadual Paulista, 14800-900 Araraquara, SP, Brazil
| | - Adilson J Silva
- Departamento de Engenharia Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - Romeu C Rocha-Filho
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
26
|
Cui J, Li X, Muhammad Y, Shi C, Li H, Su H. Residual organics removal from manganese electrochemical solution using combined Fenton oxidation process with adsorption over activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44240-44248. [PMID: 32761526 DOI: 10.1007/s11356-020-10290-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The removal of residual organics from manganese (Mn) electrochemical solution using combined Fenton oxidation process with adsorption over activated carbon (AC) was investigated. The effect of operating conditions such as dosage of H2O2, H2O2/Fe2+ ratio, initial pH value, reaction temperature, and reaction time on Fenton oxidation was studied. Experimental results indicated that a maximum chemical oxygen demand (COD) of 83.2% was obtained under the optimized set of conditions: H2O2 concentration of 0.15 mol/L, H2O2/Fe2+ molar ratio of 3, initial pH value of 3, reaction temperature of 50 °C, and reaction time of 90 min. The leaching solution was furthered treated over AC and COD removal rate increased to 93.1% under 3.75 g/L dosage of AC, adsorption temperature of 70 °C, and adsorption time of 120 min. The adsorption mechanism of Mn over AC was detailly investigated, while the porous texture of AC was studied by nitrogen adsorption isotherm.
Collapse
Affiliation(s)
- Jingxian Cui
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xueping Li
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Yaseen Muhammad
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KP, 25120, Pakistan
| | - Chongyi Shi
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haibin Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haifeng Su
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
27
|
Dao TH, Vu TQM, Nguyen NT, Pham TT, Nguyen TL, Yusa SI, Pham TD. Adsorption Characteristics of Synthesized Polyelectrolytes onto Alumina Nanoparticles and their Application in Antibiotic Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13001-13011. [PMID: 33090796 DOI: 10.1021/acs.langmuir.0c02352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study aims to investigate the adsorption of synthesized poly(2-acrylamide-2-methylpropane sulfonic acid) (PAMPs) onto alumina nanoparticles and their application in the removal of ciprofloxacin (CFX) antibiotic from a water environment. The PAMPs were successfully synthesized and characterized by nuclear magnetic resonance and gel-permeation chromatography methods. The number- and weight-average molecular weights of PAMPs were 6.76 × 105 and 7.28 × 106 g/mol, respectively. The charge reversal of nanoalumina after PAMPs modification from positive to -37.5 mV was determined by ζ-potential measurement, while the appearance of C ═ O and N-H functional groups in PAMPs observed by Fourier-transform infrared spectroscopy confirmed them as the main indicators for adsorption of PAMPs onto a nanoalumina surface. The maximum adsorption capacity of PAMPs onto nanoalumina in 100 mg/L KCl was about 10 mg/g. The adsorption isotherms were fitted well by a two-step adsorption model. Application of PAMPs-modified nanoalumina (PAMNA) in CFX removal was also thoroughly studied. The optimum conditions for CFX removal using PAMNA were found to be pH 6, 10 mM NaCl, contact time 90 min, and adsorption dosage 5 mg/mL. The CFX adsorption isotherms and kinetics were in accordance with the two-step and pseudo-second-order models, respectively. The application for CFX removal in actual hospital wastewater was greater than 80%. The results of this study demonstrate that PAMNA is a new and promising material for antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Thi-Huong Dao
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Thi-Quynh-Mai Vu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Ngoc-Trung Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Thu-Thao Pham
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Thi-Lien Nguyen
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Tien-Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| |
Collapse
|
28
|
Liu JM, Ji ZY, Shi YB, Yuan P, Guo XF, Zhao LM, Li SM, Li H, Yuan JS. Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115348. [PMID: 32841862 DOI: 10.1016/j.envpol.2020.115348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the H2O2 generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe2+ concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min-1. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.
Collapse
Affiliation(s)
- Jia-Ming Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Zhi-Yong Ji
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China.
| | - Ya-Bin Shi
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; Department of Chemical Engineering, Beijing Jiaotong University Haibin College, Huanghua, 061199, China
| | - Peng Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Xiao-Fu Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Li-Ming Zhao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Shu-Ming Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Hong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Jun-Sheng Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| |
Collapse
|
29
|
Adsorption Behavior of Polyelectrolyte onto Alumina and Application in Ciprofloxacin Removal. Polymers (Basel) 2020; 12:polym12071554. [PMID: 32674270 PMCID: PMC7407586 DOI: 10.3390/polym12071554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to investigate the adsorption behavior of a strong polyelectrolyte poly(styrenesulfonate) (PSS) onto alumina particles. Adsorption of PSS onto positively charged alumina surface increased with increasing ionic strength, indicating that non-electrostatic and electrostatic interaction controlled the adsorption. The removal of an emerging antibiotic ciprofloxacin (CFX) from water environment using PSS-modified alumina (PMA) was also studied. The removal of CFX using PMA was much higher than that using alumina particles without PSS modification in all pH ranges of 2–11. The removal of CFX reached 98% under the optimum conditions of pH 6, contact time of 120 min, adsorbent dosage of five milligrams per milliliter and ionic strength 104-M NaCl. The adsorption isotherms of CFX at different salt concentrations fit well with a two-step adsorption model, while the adsorption kinetic fit well with a pseudo-second-order model with a good correlation coefficient (R2 > 0.9969). The CFX-removal from a hospital wastewater using PMA was more than 75%. Our study demonstrates that adsorption of PSS onto alumina to modify the particle surface is important to form a novel adsorbent PMA for CFX-removal from water environments.
Collapse
|
30
|
Huang A, Zhi D, Tang H, Jiang L, Luo S, Zhou Y. Effect of Fe 2+, Mn 2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137560. [PMID: 32143046 DOI: 10.1016/j.scitotenv.2020.137560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
In this work, the removal of ciprofloxacin (CIP) was studied by electro-Fenton (EF) technique using different molar ratio of Mn2+/Fe2+ based on a chemically modified graphite felt (MGF) cathode. The CIP removal efficiency reached 95.62% in 30 min and the removal efficiency of total organic carbon (TOC) reached 94.00% in 8 h under optimal conditions (50 mg/L initial CIP concentration, 400 mA applied current, 2:1 M ratio of Mn2+/Fe2+, and 3 initial pH value). A possible pathway of CIP degradation was supposed according to the analysis of the by-products detected during the EF process. An expanding experiment for CIP removal was also conducted by using acid mine drainage (AMD) rich in iron and manganese to replace the homogeneous solution in EF, and the CIP removal efficiency of 89.00% in 60 min under the optimal conditions may assign new perspectives for organic pollutants removals by utilizing AMD.
Collapse
Affiliation(s)
- Anqi Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Hongmei Tang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Li Jiang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
31
|
Cuprys A, Thomson P, Ouarda Y, Suresh G, Rouissi T, Kaur Brar S, Drogui P, Surampalli RY. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121890. [PMID: 31862355 DOI: 10.1016/j.jhazmat.2019.121890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The combination of electro-oxidation and enzymatic oxidation was tested to evaluate the potency of this system to remove ciprofloxacin (CIP), a fluoroquinolone antibiotic, from water. For the electro-oxidation boron-doped diamond (BDD) and mixed metal oxides anodes were tested, at three current densities (4.42, 17.7 and 35.4 A/cm2). BDD anode at 35.4 A/cm2 exhibited the highest removal efficiency in the shortest time (>90 % removal in 6 min). For the enzymatic oxidation, laccase from Trametes versicolor was chosen. Laccase alone was not able to remove CIP; hence the influence of redox mediators was investigated. The addition of syringaldehyde (SA) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) resulted in enhanced CIP transformation. About 48.9±4.0 % of CIP remained after 4 h of treatment when SA-mediated laccase was applied and 87.8±6.6 % in the case of ABTS-mediated laccase. The coupling of enzymatic oxidation followed by electro-oxidation led to 73 % removal of the antibiotic. Additionally, the antimicrobial activity increased up to its original efficiency after the treatment. The combination of electro-oxidation followed by enzymatic oxidation led to 97-99 % removal of CIP. There was no antimicrobial activity of the solution after the treatment. The tests with wastewater confirmed the efficacy of the system to remove CIP from the complex matrix.
Collapse
Affiliation(s)
- Agnieszka Cuprys
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Paisley Thomson
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Yassine Ouarda
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Gayatri Suresh
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3 Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, USA
| |
Collapse
|
32
|
Lima VB, Goulart LA, Rocha RS, Steter JR, Lanza MRV. Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide. CHEMOSPHERE 2020; 247:125807. [PMID: 31955039 DOI: 10.1016/j.chemosphere.2019.125807] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The present work reports the degradation of the antibiotic ciprofloxacin (CIP) by different advanced oxidative process systems (UV; Anodic Oxidation; H2O2; H2O2/UV; H2O2/Fe2+ and H2O2/UV/Fe2+) in an electrochemical cell using gas diffusion electrode (GDE) for the synthesis of hydrogen peroxide. CIP degradation and mineralization were evaluated by high efficiency liquid chromatography (HPLC) and total organic carbon (TOC) techniques. Of all the systems investigated, the photoelectro-Fenton system presented the best degradation efficiency; this system promoted highly significant mineralization percentages of 54.8% and 84.6% in 90 and 360 min, and relatively lower energy consumption rates of 4110.0 and 9808.2 kWh kg-1 TOC, respectively. In 6 h period of experiment, the main degradation products of ciprofloxacin were identified, and the aliphatic acids obtained helped confirm the rupture of the aromatic ring. The application of the photoelectro-Fenton process with in situ eletroctrogeneration of H2O2 using GDE has proved to be suitably promising for the treatment of organic pollutants.
Collapse
Affiliation(s)
- Veronica B Lima
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box,780, CEP-13560-970, São Carlos, SP, Brazil
| | - Lorena A Goulart
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box,780, CEP-13560-970, São Carlos, SP, Brazil
| | - Robson S Rocha
- Lorena School of Engineering, University of São Paulo, CEP 12602-810, Lorena, SP, Brazil
| | - Juliana R Steter
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box,780, CEP-13560-970, São Carlos, SP, Brazil
| | - Marcos R V Lanza
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box,780, CEP-13560-970, São Carlos, SP, Brazil; National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Radioactives and Micropollutants (INCT-DATREM), Institute of Chemistry, São Paulo State Univeristy - Unesp, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
33
|
Degradation of ciprofloxacin antibiotic using photo-electrocatalyst process of Ni-doped ZnO deposited by RF sputtering on FTO as an anode electrode from aquatic environments: Synthesis, kinetics, and ecotoxicity study. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Liu Y, Zhang J, Liu F, Shen C, Li F, Huang M, Yang B, Wang Z, Sand W. Ultra-rapid detoxification of Sb(III) using a flow-through electro-fenton system. CHEMOSPHERE 2020; 245:125604. [PMID: 31855755 DOI: 10.1016/j.chemosphere.2019.125604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Environmental pollution caused by antimony (Sb) has attracted worldwide attention recently. Here, we employed a flow-through electro-Fenton system for the rapid and efficient detoxification of highly toxic Sb(III). A FeOCl modified carbon nanotube (CNT) filter served as functional cathode, where FeOCl as nanocatalyst promoted the generation of HO by facilitating effective Fe3+/Fe2+ cycling. Upon application of a proper potential, an ultra-rapid conversion of Sb(III) to less toxic Sb(V) can be achieved in situ just by a single-pass filtration (>99% within 2 s). Compared with the conventional batch reactor, the proposed system demonstrated ultra-rapid Sb(III) detoxification kinetics due to the convection-enhanced mass transport. The proposed flow-through E-Fenton system works effectively across a wide pH range (e.g., 3-9). EPR technique and radical quenching experiments indicate that HO and HO2 were the dominant radical species responsible for Sb(III) detoxification. At -0.4 V vs. Ag/AgCl, a >96.4% Sb(III) conversion efficiency still can be achieved when challenged with 500 μg L-1 Sb(III)-spiked tap water. The as-produced Sb(V) can be removed effectively by another Sb(V)-specific CNT filter functionalized with nanoscale iron oxides. The outcome of this research provides a promising strategy by integrating state-of-the-art electro-Fenton, membrane separation, carboncatalysis and nanotechnology for detoxification of Sb(III) and other similar heavy metal ions in polluted water.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Jie Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Fuqiang Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Manghong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany
| |
Collapse
|
35
|
Gao Y, Champagne P, Blair D, He O, Song T. Activated persulfate by iron-based materials used for refractory organics degradation: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:853-875. [PMID: 32541106 DOI: 10.2166/wst.2020.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, the advanced oxidation processes (AOPs) based on sulfate radicals (SRs) for organics degradation have become the focus of water treatment research as the oxidation ability of SRs are higher than that of hydroxyl radicals (HRs). Since the AOP-SRs can effectively mineralize organics into carbon dioxide and water under the optimized operating conditions, they are used in the degradation of refractory organics such as dyes, pesticides, pharmaceuticals, and industrial additives. SRs can be produced by activating persulfate (PS) with ultraviolet, heat, ultrasound, microwave, transition metals, and carbon. The activation of PS in iron-based transition metals is widely studied because iron is an environmentally friendly and inexpensive material. This article reviews the mechanism and application of several iron-based materials, including ferrous iron (Fe2+), ferric iron (Fe3+), zero-valent iron (Fe0), nano-sized zero-valent iron (nFe0), materials-supported nFe0, and iron-containing compounds for PS activation to degrade refractory organics. In addition, the current challenges and perspectives of the practical application of PS activated by iron-based systems in wastewater treatment are analyzed and prospected.
Collapse
Affiliation(s)
- Yanjiao Gao
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail: ; College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail:
| | - David Blair
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail:
| | - Ouwen He
- Department of Civil Engineering, Queen's University, Kingston K7 L 3N6, Canada and Beaty Water Research Centre, Queen's University, Kingston K7 L 3N6, Canada E-mail: ; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Centre for Cleaner Technology of Iron-steel Industry, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
36
|
Ye Z, Brillas E, Centellas F, Cabot PL, Sirés I. Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. WATER RESEARCH 2020; 169:115219. [PMID: 31689603 DOI: 10.1016/j.watres.2019.115219] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of the antidepressant fluoxetine was optimized, using an electrochemical cell composed of an IrO2-based anode an air-diffusion cathode for in-situ H2O2 production. Electrolytic trials at constant current were made in ultrapure water with different electrolytes, as well as in urban wastewater (secondary effluent) at pH 7.2. PEF with Fe(III)-EDDS (1:1) complex as catalyst outperformed electro-Fenton and PEF processes with uncomplexed Fe(II) or Fe(III). This can be explained by: (i) the larger solubilization of iron ions during the trials, favoring the production of •OH from Fenton-like reactions between H2O2 and Fe(II)-EDDS or Fe(III)-EDDS, and (ii) the occurrence of Fe(II) regeneration from Fe(III)-EDDS photoreduction, which was more efficient than conventional photo-Fenton reaction with uncomplexed Fe(III). The greatest drug concentration decays were achieved at low pH, using only 0.10 mM Fe(III)-EDDS, although complete removal in wastewater was feasible only with 0.20 mM Fe(III)-EDDS due to the greater formation of •OH. The effect of the applied current and anode nature was rather insignificant. A progressive destruction of the catalytic complex was unveiled, whereupon the mineralization mainly progressed thanks to the action of •OH adsorbed on the anode surface. Despite the incomplete mineralization using BDD as the anode, a remarkable toxicity decrease was determined. Fluoxetine degradation yielded F- and NO3- ions, along with several aromatic intermediates. These included two chloro-organics, as a result of the anodic oxidation of Cl- to active chlorine. A detailed mechanism for the Fe(III)-EDDS-catalyzed PEF treatment of fluoxetine in urban wastewater is finally proposed.
Collapse
Affiliation(s)
- Zhihong Ye
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
37
|
Mao Q, Zhou Y, Yang Y, Zhang J, Liang L, Wang H, Luo S, Luo L, Jeyakumar P, Ok YS, Rizwan M. Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H 2O 2 for ciprofloxacin removal from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120848. [PMID: 31319334 DOI: 10.1016/j.jhazmat.2019.120848] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/23/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Ciprofloxacin has been frequently detected in water environment, and its removal has become a significant public concern. Biochar-supported nanoscale zero-valent iron (BC/nZVI) to activate hydrogen peroxide (H2O2) has many advantages on promoting the removal of organic contaminants. In this paper, the BC/nZVI activating H2O2 degradation of ciprofloxacin was systematically investigated by experimental and theoretical approaches. The morphologies and property analysis showed that nZVI particles distributed uniformly on the biochar surface, which mainly include -OH, >CO and COC and CO groups. Different reaction conditions were compared to define the optimal conditions for ciprofloxacin removal in BC/nZVI/H2O2 system. More than 70% of ciprofloxacin was removed in the optimal conditions: acidic condition (pH 3∼4), low doses of H2O2 (20 mM), and temperature of 298 K. The hydroxyl radical (•OH) oxidation was the primary pathway in BC/nZVI/H2O2 degradation of ciprofloxacin process. The theoretical calculation indicated that hydrogen atom abstraction (HAA) pathways were the dominant oxidation pathways contributing 92.3% in overall second‒order rate constants (k) of •OH and ciprofloxacin. The current results are valuable to evaluate the application of BC/nZVI activating H2O2 degradation of ciprofloxacin and other fluoroquinolone antibiotics in water treatment plants.
Collapse
Affiliation(s)
- Qiming Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lifen Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| |
Collapse
|
38
|
Biochar-Supported FeS/Fe3O4 Composite for Catalyzed Fenton-Type Degradation of Ciprofloxacin. Catalysts 2019. [DOI: 10.3390/catal9121062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Fenton-type oxidation catalyzed by iron minerals is a cost-efficient and environment-friendly technology for the degradation of organic pollutants in water, but their catalytic activity needs to be enhanced. In this work, a novel biochar-supported composite containing both iron sulfide and iron oxide was prepared, and used for catalytic degradation of the antibiotic ciprofloxacin through Fenton-type reactions. Dispersion of FeS/Fe3O4 nanoparticles was observed with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). Formation of ferrous sulfide (FeS) and magnetite (Fe3O4) in the composite was validated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ciprofloxacin (initial concentration = 20 mg/L) was completely degraded within 45 min in the system catalyzed by this biochar-supported magnetic composite at a dosage of 1.0 g/L. Hydroxyl radicals (·OH) were proved to be the major reactive species contributing to the degradation reaction. The biochar increased the production of ·OH, but decreased the consumption of H2O2, and helped transform Fe3+ into Fe2+, according to the comparison studies using the unsupported FeS/Fe3O4 as the catalyst. All the three biochars prepared by pyrolysis at different temperatures (400, 500 and 600 °C) were capable for enhancing the reactivity of the iron compound catalyst.
Collapse
|
39
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
40
|
Ganesan S, Amirthalingam M, Arivalagan P, Govindan S, Palanisamy S, Lingassamy AP, Ponnusamy VK. Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:409-417. [PMID: 31163378 DOI: 10.1016/j.jenvman.2019.05.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical-based contaminants are the major reasons for morbidity and mortality in aquatic animals and lead to several side effects and diseases in human community. Availability of proper, efficient, and cost-effective treatment technologies is still scarce. In this study, an efficient combined treatment technique (electrochemical oxidation and adsorption processes) was developed for the complete detoxification of most commonly used antibiotic, ciprofloxacin in aqueous solution. Electrochemical degradation of ciprofloxacin was performed using titanium-based tri-metal oxide mesh type anode, and the effective oxidative potential, electrolysis time, and pH for the degradation of ciprofloxacin were thoroughly evaluated. Sulfate, fluoride ions and toxic byproducts generated during electrochemical oxidation of ciprofloxacin were subsequently removed through a simple adsorption treatment using activated charcoal for 90 min. Further, the toxicity of the treated water was assessed with the nematode Caenorhabditis elegans species at different time intervals by observing the expressions of important stress-responsive genes viz., sod-3, hsp-16.2, ctl-1,2,3 and gst-4. The results exhibited that the combined process of electrochemical oxidation and adsorption treatment is simple, low-cost as well as effective to eliminate ciprofloxacin and its toxic byproducts in aqueous solution.
Collapse
Affiliation(s)
- Sivarasan Ganesan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Environmental Ecology Laboratory, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mohankumar Amirthalingam
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Pugazhendhi Arivalagan
- Innovative Green Product Synthesis and Renewable Environment Research Group, Faculty of Environment and Labor Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Shanmugam Govindan
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Sundararaj Palanisamy
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Arul Pragasan Lingassamy
- Environmental Ecology Laboratory, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
41
|
Damodhar Ghime, Prabir Ghosh. Removal of Organic Compounds Found in the Wastewater through Electrochemical Advanced Oxidation Processes: A Review. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519050057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Malakootian M, Ahmadian M. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:587-596. [PMID: 31596269 DOI: 10.2166/wst.2019.306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the removal of ciprofloxacin (CIP) by the electro-persulfate (EC-PS) process using aluminum (Al) electrodes. The effects of variables including pH, contact time, PS concentration, initial CIP concentration and current density on the removal efficiency of CIP were studied. In order to determine the mechanisms of the EC-PS process, the radical scavenger tests, as well as energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR) were performed on the sludge. The results showed that the PS process alone had no effect on the CIP removal, and the EC process alone could remove 25% of CIP after 160 min. However, the EC-PS process under the optimum conditions: pH of 7, time of 40 min, current density of 2.75 mA/cm2, CIP concentration of 20 mg/L, and PS concentration of 0.84 mM removed 90% of CIP. The effect of the EC-PS process on the actual hospital wastewater was 81% in optimal conditions. The kinetic study also showed that the second-order kinetic model was the most consistent. The oxidation process during the initial contact was dominant in the EC-PS process and, over time, the EC process was dominant for CIP removal.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran E-mail:
| | - Mohammad Ahmadian
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran E-mail:
| |
Collapse
|
43
|
Removal of the drug procaine from acidic aqueous solutions using a flow reactor with a boron-doped diamond anode. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Lacasa E, Cañizares P, Walsh FC, Rodrigo MA, Ponce-de-León C. Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Tegze A, Sági G, Kovács K, Tóth T, Takács E, Wojnárovits L. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Li Y, Zhang S, Han Y, Cheng S, Hu W, Han J, Li Y. Heterogeneous electrocatalytic degradation of ciprofloxacin by ternary Ce3ZrFe4O14-x/CF composite cathode. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Mi X, Han J, Sun Y, Li Y, Hu W, Zhan S. Enhanced catalytic degradation by using RGO-Ce/WO 3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:365-374. [PMID: 30609402 DOI: 10.1016/j.jhazmat.2018.12.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Development of an efficient cathode in advanced oxidation process is an important challenge. In this work, we synthesized a low-cost, high-catalytic-active and stable reduced graphene oxide (RGO)-Ce/WO3 nanosheets (RCW) to modify carbon felt (CF) as cathode to degrade ciprofloxacin (CIP) in electro-Fenton process. Compared to traditional heterogeneous electro-Fenton process, carbon black was substituted by RGO and poly tetra fluoroethylene was avoided to be used as binder. We found that RCW/CF cathode reached about 100% degradation efficiency of CIP after 1 h and 98.55% mineralization degree after 8 h. Meanwhile, it had a very high current density, about 2.5 times that of CF. RCW/CF cathode produced more O2-, H2O2 and OH via one-electron reduction process (O2→O2- →H2O2). The modified cathode kept a stable performance for high CIP degradation efficiency during 5 cycles. The introduction of RGO could promote electron transfer, and the adding of Ce into the WO3 lattice provided superior conditions for the adsorption and activation of oxygen molecules, thus promoting the formation of active oxygen species on the surface of RCW. This novel RCW/CF composite is an efficient and promising electrode for removal of CIP in the wastewater.
Collapse
Affiliation(s)
- Xueyue Mi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingjing Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
48
|
Nidheesh PV, Divyapriya G, Oturan N, Trellu C, Oturan MA. Environmental Applications of Boron‐Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019. [DOI: 10.1002/celc.201801876] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur, Maharashtra India
| | - G. Divyapriya
- Environmental Water Resources Engineering DivisionDepartment of Civil EngineeringIndian Institute of Technology Madra Chennai, Tamilnadu India
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Mehmet A. Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| |
Collapse
|
49
|
Nekouei S, Nekouei F. Application of synthesized nano-CuS photocatalyst for degradation of Ofloxacin and its by-products. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1577893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shahram Nekouei
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzin Nekouei
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
da Silva LM, Gozzi F, Cavalcante RP, de Oliveira SC, Brillas E, Sirés I, Machulek A. Assessment of 4-Aminoantipyrine Degradation and Mineralization by Photoelectro-Fenton with a Boron-Doped Diamond Anode: Optimization, Treatment in Municipal Secondary Effluent, and Toxicity. ChemElectroChem 2019. [DOI: 10.1002/celc.201801651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lucas M. da Silva
- Institute of Chemistry; Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555, CP 549 Campo Grande, MS 79074-460 Brazil
| | - Fábio Gozzi
- Institute of Chemistry; Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555, CP 549 Campo Grande, MS 79074-460 Brazil
| | - Rodrigo P. Cavalcante
- Institute of Chemistry; Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555, CP 549 Campo Grande, MS 79074-460 Brazil
| | - Silvio C. de Oliveira
- Institute of Chemistry; Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555, CP 549 Campo Grande, MS 79074-460 Brazil
| | - Enric Brillas
- Departament de Química Física Facultat de Química; Universitat de Barcelona Martí i Franquès 1-11; 08028 Barcelona Spain
| | - Ignasi Sirés
- Departament de Química Física Facultat de Química; Universitat de Barcelona Martí i Franquès 1-11; 08028 Barcelona Spain
| | - Amilcar Machulek
- Institute of Chemistry; Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555, CP 549 Campo Grande, MS 79074-460 Brazil
| |
Collapse
|