1
|
Liu R, Liu S, Bai X, Liu S, Liu Y. Biooxidation of Arsenopyrite by Acidithiobacillus ferriphilus QBS 3 Exhibits Arsenic Resistance Under Extremely Acidic Bioleaching Conditions. BIOLOGY 2025; 14:550. [PMID: 40427739 PMCID: PMC12108572 DOI: 10.3390/biology14050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025]
Abstract
As arsenopyrite is a typical arsenic-bearing sulfide ore, the biooxidation process of arsenopyrite is of great significance for the extraction of gold from arsenic-bearing gold ores and the generation of arsenic-bearing acid mine drainage. During the biooxidation of arsenopyrite, a large amount of arsenic is produced, which inhibits the growth and metabolism of microorganisms and thus affects the extraction of gold from arsenic-bearing gold ores. Therefore, the screening and enrichment of microorganisms with high arsenic resistance have become important aspects in the study of arsenopyrite biooxidation. As described in this paper, through arsenic acclimation, the maximum arsenic tolerance concentration of Acidithiobacillus ferriphilus QBS 3 isolated from arsenic-containing acid mine drainage was increased to 80 mM As(Ⅲ) and 100 mM As(V). Microorganisms with high arsenic resistance showed better bioleaching performance for arsenopyrite. After 18 days of bioleaching, the leaching rate of arsenopyrite reached 100% at a pulp concentration of 0.5%, and after 30 days of bioleaching, the leaching rate of arsenopyrite was 79.96% at a pulp concentration of 1%. Currently, research on arsenopyrite mainly focuses on the control and optimization of environmental conditions, but there have been few studies on the biooxidation process of arsenopyrite at the protein and gene levels. Therefore, combining the results of a one-month bioleaching experiment on arsenopyrite by A. ferriphilus QBS 3 and the analysis of arsenic resistance genes, a bioleaching model of arsenopyrite was constructed, which laid an experimental basis and theoretical foundation for improving the gold recovery rate from refractory arsenic-bearing ores and exploring the arsenic resistance mechanism of microorganisms during the arsenopyrite leaching process.
Collapse
Affiliation(s)
- Run Liu
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Siyu Liu
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
| | - Xiaoxuan Bai
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
| | - Shiping Liu
- Hubei Provincial Key Laboratory of Natural Products Research and Development, School of Biology and Pharmacy, Three Gorges University, Yichang 443002, China; (R.L.)
| | - Yuandong Liu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Valiyev K, Bugubaeva A, Nechaeva A, Artykova A, Melamud V, Stom D, Boduen A, Bulaev A. The Development of Innovated Complex Process for Treatment of Old Flotation Tailings of Copper-Zinc Sulfide Ore. Molecules 2024; 29:1550. [PMID: 38611828 PMCID: PMC11013658 DOI: 10.3390/molecules29071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The possibility of selective Cu and Zn leaching from the sample of old pyrite tailings, which is one of the most widespread types of solid waste forming during non-ferrous metal production, using sulfuric acid solutions and water was studied. It was shown that water leaching provided selective extraction of Cu and Zn and comparatively low iron ion extraction. At the same time, acid leaching provided the obtainment of pregnant solutions with high ferric ion concentration, which can be used for oxidative leaching of substandard copper concentrates. Water and acid leaching also provided increased Au recovery by cyanidation. The results suggest that acid leaching can be an effective approach for processing old flotation tailings, which allows the extraction of base metals from these wastes and treating flotation tailings for subsequent cyanidation. Effective flotation treatment methods should also provide environmental load reduction, which is caused by the long-term storage of metal-bearing wastes.
Collapse
Affiliation(s)
- Khussain Valiyev
- Research Institute of Applied Biotechnology, Akhmet Baitursynuly Kostanay Regional University, 47A Baitursynov Str., Kostanay 110000, Kazakhstan;
| | - Aliya Bugubaeva
- Research Institute of Applied Biotechnology, Akhmet Baitursynuly Kostanay Regional University, 47A Baitursynov Str., Kostanay 110000, Kazakhstan;
| | - Aleksandra Nechaeva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 7/2 60-letiya Oktyabrya Ave., 117312 Moscow, Russia; (A.N.); (A.A.); (V.M.)
| | - Alena Artykova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 7/2 60-letiya Oktyabrya Ave., 117312 Moscow, Russia; (A.N.); (A.A.); (V.M.)
| | - Vitaliy Melamud
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 7/2 60-letiya Oktyabrya Ave., 117312 Moscow, Russia; (A.N.); (A.A.); (V.M.)
| | - Devard Stom
- Baikal Museum SB RAS, 1 Akademicheskaya Str., 664520 Listvyanka, Russia;
- Faculty of Biology and Soil Studies, Irkutsk State University, 1 Karla Marksa Str., 664003 Irkutsk, Russia
| | - Anna Boduen
- RIVS Group of Companies, 11A Zheleznovodskaya Str., 199155 Saint Petersburg, Russia;
| | - Aleksandr Bulaev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 7/2 60-letiya Oktyabrya Ave., 117312 Moscow, Russia; (A.N.); (A.A.); (V.M.)
| |
Collapse
|
3
|
Acosta Hernández I, Muñoz Morales M, Fernández Morales FJ, Rodríguez Romero L, Villaseñor Camacho J. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics. ENVIRONMENTAL RESEARCH 2023; 238:117183. [PMID: 37769830 DOI: 10.1016/j.envres.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.
Collapse
Affiliation(s)
- Irene Acosta Hernández
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Martín Muñoz Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Francisco Jesús Fernández Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Luis Rodríguez Romero
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - José Villaseñor Camacho
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Guo X, Chen S, Han Y, Hao C, Feng X, Zhang B. Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117615. [PMID: 36893541 DOI: 10.1016/j.jenvman.2023.117615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The bioleaching process is widely used in the treatment of ores or solid wastes, but little is known about its application in the treatment of vanadium-bearing smelting ash. This study investigated bioleaching of smelting ash with Acidithiobacillus ferrooxidans. The vanadium-bearing smelting ash was first treated with 0.1 M acetate buffer and then leached in the culture of Acidithiobacillus ferrooxidans. Comparison between one-step and two-step leaching process indicated that microbial metabolites could contribute to the bioleaching. The Acidithiobacillus ferrooxidans demonstrated a high vanadium leaching potential, solubilizing 41.9% of vanadium from the smelting ash. The optimal leaching condition was determined, which was 1% pulp density, 10% inoculum volume, an initial pH of 1.8, and 3 Fe2+g/L. The compositional analysis showed that the fraction of reducible, oxidizable, and acid-soluble was transferred into the leaching liquor. Therefore, as the alternative to the chemical/physical process, an efficient bioleaching process was proposed to enhance the recovery of vanadium from the vanadium-bearing smelting ash.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China.
| | - Yawei Han
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Chunbo Hao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Xiujuan Feng
- The School of Mines, China University of Mining and Technology(CUMT);MechanoChemistry Research Institute, China University of Mining and Technology(CUMT), Xuzhou, Jiangsu, 221116, China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China.
| |
Collapse
|
5
|
Silva JG, da Silva MT, Dias RM, Cardoso VL, de Resende MM. Biolixiviation of Metals from Computer Printed Circuit Boards by Acidithiobacillus ferrooxidans and Bioremoval of Metals by Mixed Culture Subjected to a Magnetic Field. Curr Microbiol 2023; 80:197. [PMID: 37119300 DOI: 10.1007/s00284-023-03307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Crushed and ground printed circuit board (PCB) samples were characterized to evaluate copper, lead, and aluminum using X-ray fluorescence spectroscopy (XRF) and the morphology was done by scanning electron microscopy (SEM). The XRF characterizations showed 0.12% lead, 3.72% copper, and 12.73% aluminum in the PCBs. The metal solubilization experiments using Acidithiobacillus ferrooxidans indicated higher values of total metal solubilization when the initial pH of the inoculum was adjusted. However, these experiments did not show higher metal solubilization by bioleaching. The sequential bioremoval experiments using mixed culture after bioleaching assays with A. ferrooxidans with initial adjustment of inoculum pH and without applying a magnetic field removed 100% of Al, 27.34% of Cu, and 96.43% of Pb from the lixiviate medium; with magnetic field application, 100% of Al, 83.82% of Cu, and 98.27% of Pb were removed. A similar bioleaching experiment without inoculum pH adjustment and without field application achieved 99.74% removal for Cu and 91.92% for Pb. When the magnetic field was applied, 100% of Cu and 95.76% of Pb were removed. Bioreactors with a magnetic field do not show significantly better removal of any of the metals analyzed.
Collapse
Affiliation(s)
- Jessica Gatti Silva
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, P.O. Box 593, Uberlândia, MG, 38408-144, Brazil
| | - Mayara Teixeira da Silva
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, P.O. Box 593, Uberlândia, MG, 38408-144, Brazil
| | - Roseli Mendonça Dias
- Civil Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, Campus Santa Mônica - Bloco 1Y, Uberlândia, MG, CEP: 38408-144, Brazil
| | - Vicelma Luiz Cardoso
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, P.O. Box 593, Uberlândia, MG, 38408-144, Brazil
| | - Miriam Maria de Resende
- Chemical Engineering Faculty, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, P.O. Box 593, Uberlândia, MG, 38408-144, Brazil.
| |
Collapse
|
6
|
Zhou S, Liao X, Li S, Fang X, Guan Z, Ye M, Sun S. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114192. [PMID: 34861501 DOI: 10.1016/j.jenvman.2021.114192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Unwieldy fine sulfide ores are produced during mining; without being appropriately disposed of, they can cause environmental pollution and waste resources. This study investigated the leaching performance of a moderately thermophilic consortia (Leptospirillum ferriphilum + Acidithiobacillus caldus + Sulfobacillus benefaciens) for fine lead-zinc sulfide raw ore. The results showed this microbial community created a low pH, high ORP, and high cell concentration environment for mineral leaching, improving bioleaching efficiency. Under the action of this consortia, the zinc leaching rate reached 96.44 in 8 days, and reached 100% after 12 days. EPS analysis indicated that the consortia could mediate the secretion of more polysaccharides to ensure leaching efficiency. EPS levels and amino acids were the main factors affecting bioleaching. An analysis of mineral surface characteristics showed the consortia effectively leached pyrite and sphalerite from the fine sulfide ore, and prevented the mineral surface forming the jarosite that could hinder bioleaching. This study found that bioleaching reduced the potential environmental toxicity of the minerals, providing an important reference for guiding the bioleaching of unwieldy fine sulfide raw ore.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| |
Collapse
|
7
|
Rodriguez Rodriguez N, Everaert M, Folens K, Bussé J, Abo Atia T, Williamson AJ, Machiels L, Spooren J, Boon N, Du Laing G, Binnemans K. Combined Hydro–Solvo–Bioleaching Approach toward the Valorization of a Sulfidic Copper Mine Tailing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nerea Rodriguez Rodriguez
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, Leuven B-3001, Belgium
- SIM vzw, Technologiepark 48, Zwijnaarde, Gent B-9052, Belgium
| | - Maarten Everaert
- SIM vzw, Technologiepark 48, Zwijnaarde, Gent B-9052, Belgium
- Unit Sustainable Materials Management, Flemish Institute for Technological Research (VITO n.v.), Boeretang 200, Mol B-2400, Belgium
| | - Karel Folens
- SIM vzw, Technologiepark 48, Zwijnaarde, Gent B-9052, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent B-9000, Belgium
| | - Jakob Bussé
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, Leuven B-3001, Belgium
| | - Thomas Abo Atia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, Leuven B-3001, Belgium
- SIM vzw, Technologiepark 48, Zwijnaarde, Gent B-9052, Belgium
- Unit Sustainable Materials Management, Flemish Institute for Technological Research (VITO n.v.), Boeretang 200, Mol B-2400, Belgium
| | - Adam J. Williamson
- SIM vzw, Technologiepark 48, Zwijnaarde, Gent B-9052, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent B-9000, Belgium
| | - Lieven Machiels
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, Leuven B-3001, Belgium
- SIM vzw, Technologiepark 48, Zwijnaarde, Gent B-9052, Belgium
| | - Jeroen Spooren
- Unit Sustainable Materials Management, Flemish Institute for Technological Research (VITO n.v.), Boeretang 200, Mol B-2400, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent B-9000, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), p/a Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Gijs Du Laing
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), p/a Ghent University, Coupure Links 653, Gent 9000, Belgium
- Laboratory of Analytical Chemistry and Applied Ecochemistry (Ecochem), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent B-9000, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, Leuven B-3001, Belgium
| |
Collapse
|
8
|
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. CHEMOSPHERE 2021; 282:131108. [PMID: 34119723 DOI: 10.1016/j.chemosphere.2021.131108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.
Collapse
Affiliation(s)
| | - Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Zhan Y, Shen X, Chen M, Yang K, Xie H. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans. Lett Appl Microbiol 2021; 75:1076-1083. [PMID: 34586632 DOI: 10.1111/lam.13569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
Tellurium (Te) is a scarce and valuable metalloid, which can be found in some mine tailings. In this work, an indigenous Acidithiobacillus ferrooxidans strain was used to leach Te from mine tailings collected in the Shimian Te mine region, China. Under the optimized conditions of initial pH of 2·0, pulp density of 4% and temperature of 30°C, 47·77% of Te can be dissolved after 24 days of bioleaching. The leaching of Te by different systems such as bioleaching, Ferric ion (Fe(III)) leaching and acid leaching was compared. The results showed that the leaching behaviour of Te is similar to that of sulphur in sulphide minerals, that is, Fe(III) first oxidizes telluride (Te(-II)) in minerals to elemental Te, and then elemental Te can be oxidized by bacteria to Te(IV) and Te(VI). Besides, it was also showed by scanning electron microscope observation and Fourier transform infrared spectroscopy analysis of the ore sample before and after bioleaching that some bedded structure covered on the surface of the ore after bioleaching acting as a reaction compartment, and the changing of active groups indicated a possible attachment between bacteria and ore. There is an indirect mechanism involved in bioleaching of Te.
Collapse
Affiliation(s)
- Y Zhan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, P.R. China
| | - X Shen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, P.R. China
| | - M Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, P.R. China
| | - K Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, P.R. China
| | - H Xie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, P.R. China
| |
Collapse
|
10
|
Syed A, Zeyad MT, Shahid M, Elgorban AM, Alkhulaifi MM, Ansari IA. Heavy Metals Induced Modulations in Growth, Physiology, Cellular Viability, and Biofilm Formation of an Identified Bacterial Isolate. ACS OMEGA 2021; 6:25076-25088. [PMID: 34604686 PMCID: PMC8482775 DOI: 10.1021/acsomega.1c04396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/17/2023]
Abstract
The release of untreated tannery effluents comprising biotoxic heavy metal (HM) compounds into the ecosystem is one of our society's most serious environmental and health issues. After discharge, HM-containing industrial effluents reach agricultural soils and thus negatively affect the soil microbial diversity. Considering these, we assessed the effect of HMs on identified soil beneficial bacteria. Here, the effects of four heavy metals (HMs), viz., chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb), on cellular growth, physiology, cell permeability, and biofilm formation of Enterobacter cloacae MC9 (accession no.: MT672587) were evaluated. HMs in a concentration range of 25-200 μg mL-1 were used throughout the study. Among HMs, Cd in general had the maximum detrimental effect on bacterial physiology. With increasing concentrations of HMs, bacterial activities consistently decreased. For instance, 200 μgCr mL-1 concentration greatly and significantly (p ≤ 0.05) reduced the synthesis of indole-3-acetic acid (IAA) by 70% over control. Furthermore, 200 μg mL-1 Cd maximally and significantly (p ≤ 0.05) reduced the synthesis of 2,3-dihydroxybenzoic acid (2,3-DHBA), salicylic acid (SA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, and extra polymeric substances (EPSs) of E. cloacae MC9 by 80, 81, 77, and 59%, respectively, over control. While assessing the toxic effect of HMs on the P-solubilizing activity of E. cloacae, the toxicity pattern followed the order Cr (mean value = 94.6 μg mL-1) > Cd (mean value = 127.2 μg mL-1) > Pb (mean value = 132.4 μg mL-1) > Ni (mean value = 140.4 μg mL-1). Furthermore, the colony-forming unit (CFU) count (Log10) of strain MC9 was completely inhibited at 150, 175, and 200 μg mL-1 concentrations of Cr and Cd. The confocal laser scanning microscopic (CLSM) analysis of HM-treated bacterial cells showed an increased number of red-colored dead cells as the concentration of HMs increased from 25 to 200 μg mL-1. Likewise, the biofilm formation ability of strain MC9 was maximally (p ≤ 0.05) inhibited at higher concentrations of Cd. In summary, the present investigation undoubtedly suggests that E. cloacae strain MC9 recovered from the HM-contaminated rhizosphere endowed with multiple activities could play an important role in agricultural practices to augment crop productivity in soils contaminated with HMs. Also, there is an urgent need to control the direct discharge of industrial waste into running water to minimize heavy metal pollution. Furthermore, before the application of HMs in agricultural fields, their appropriate field dosages must be carefully monitored.
Collapse
Affiliation(s)
- Asad Syed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| |
Collapse
|
11
|
Li J, Zhang B, Yang M, Lin H. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125843. [PMID: 33865106 DOI: 10.1016/j.jhazmat.2021.125843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Bioleaching is promising to meet the demand of strategic vanadium both economically and environmentally. Whereas the combination of bioleaching with traditional techniques is of great interest, little is known on bioleaching of vanadium from abundant vanadium-bearing resources utilized/produced in existing processes. This study investigated the bioleaching of vanadium from vanadium-titanium magnetite, steel slag, and clinker, which are common raw mineral and intermediates used in conventional vanadium extraction process. Clinker had greater leachability by Acidithiobacillus ferrooxidans, compared to vanadium-titanium magnetite and steel slag. Pulp density, inoculum volume, initial pH and initial Fe2+ concentration had influencing effects on this bioleaching process. Under optimal condition with 3% pulp density, 10% inoculum volume, initial pH at 1.8, and 3 g/L initial Fe2+ concentration, the bioleaching of clinker achieved the maximum vanadium leaching efficiency of 59.0%. Both X-ray fluorescence and energy dispersive spectroscopy analysis confirmed the reduction of vanadium content in the solid residues after leaching. The results of Community Bureau of Reference sequential extraction suggested that vanadium in acid-soluble and oxidizable phase was more easily leachable. This study is helpful to develop sustainable and practical techniques for vanadium extraction from abundant raw materials and step forward in combining bioleaching with traditional process.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Meng Yang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
12
|
Feng S, Qiu Y, Huang Z, Yin Y, Zhang H, Zhu D, Tong Y, Yang H. The adaptation mechanisms of Acidithiobacillus caldus CCTCC M 2018054 to extreme acid stress: Bioleaching performance, physiology, and transcriptomics. ENVIRONMENTAL RESEARCH 2021; 199:111341. [PMID: 34015291 DOI: 10.1016/j.envres.2021.111341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 05/09/2023]
Abstract
To understand the acid-resistant mechanism of bioleaching microorganism Acidithiobacillus caldus CCTCC M 2018054, its physiology and metabolic changes at the transcriptional level under extreme acid stress were systemically studied. Scanning electron microscopy (SEM), Fourier transform infrared reflection (FTIR) and X-ray diffraction (XRD) showed that with an increase in acidity, the absorption peak of sulfur oxidation-related functional groups such as S-O decreased significantly, and a dense sulfur passivation film appeared on the surface of the ore. Confocal laser scanning microscopy (CLSM) revealed that coverage scale of extracellular polymeric substance (EPS) and biofilm fluctuated accordingly along with the increasing acid stress (pH-stat 1.5, 1.2 0.9 and 0.6) during the bioleaching process. In response to acid stress, the increased levels of intracellular glutamic acid, alanine, cysteine, and proline contributed to the maintenance of intracellular pH homeostasis via decarboxylation and alkaline neutralization. Higher unsaturated fatty acid content was closely related to membrane fluidity. Up to 490 and 447 differentially expressed genes (DEGs) were identified at pH 1.5 vs pH 1.2 and pH 1.2 vs pH 0.9, respectively, and 177 common DEGs were associated with two-component system (TCS) regulation, transporter regulation, energy metabolism, and stress response. The upregulation of kdpB helped cells defend against proton invasion, whereas the downregulation of cysB and cbl implied stronger oxidation of sulfur compounds. The transcriptional level of sqr, sor, and soxA was significantly increased and consolidated the energy supply needed for resisting acid stress. Furthermore, eight of the identified DEGs (sor, cbl, ompA, atpF, nuoH, nuoC, sqr, grxB) were verified as being related to the acid stress response process. This study contributes toward expanding the application of these acidophiles in industrial bioleaching.
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yongkang Qiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhuangzhuang Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yijun Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yanjun Tong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hailin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, China.
| |
Collapse
|
13
|
Moazzam P, Boroumand Y, Rabiei P, Baghbaderani SS, Mokarian P, Mohagheghian F, Mohammed LJ, Razmjou A. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. CHEMOSPHERE 2021; 277:130196. [PMID: 33784558 DOI: 10.1016/j.chemosphere.2021.130196] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Sorour Salehi Baghbaderani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parastou Mokarian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fereshteh Mohagheghian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Layth Jasim Mohammed
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
14
|
Motamedizadeh M, Azizi A, Bahri Z. Recycling lead from a zinc plant residue (ZPR) using brine leaching and cementation with aluminum powder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42121-42134. [PMID: 33797050 DOI: 10.1007/s11356-021-13643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This research investigated the treatment process of an Iranian zinc plant residue for recycling lead utilizing brine leaching and cementation with aluminum powder. Response surface modeling was employed for this purpose and accordingly, two quadratic mathematical models with R2 of 0.9058 and 0.9463 were identified for relationship between process parameters. The ANOVA and 3D response surface graphs exhibited that the leaching and cementation processes were significantly depended on the interactive effects between influential parameters. The interaction effects of liquid/solid ratio with NaCl concentration, temperature and stirring rate, and quadratic effect of NaCl concentration had the largest impact on the recovery. It was also distinguished that the most impressive parameters on the cementation performance were the linear effect of Al:Pb molar ratio, cementation time and temperature, and the quadratic impact of agitation rate. Additionally, numerical optimization was carried out by desirability function approach and the maximum leaching recovery of lead (77.14%) was achieved at 400 g/L NaCl concentration, 10 mL/g liquid/solid ratio, 300 rpm stirring speed, 50 °C temperature, and 60-min leaching time. Also, the highest cementation efficiency (74.97%) was determined after 75 min at 1.5 Al:Pb molar (stoichiometry) ratio, ~ 420 rpm agitation rate, and 50 °C temperature. Furthermore, thermodynamic conclusions implied an endothermic nature and good affinity of lead toward each two processes.
Collapse
Affiliation(s)
- Moslem Motamedizadeh
- Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
| | - Asghar Azizi
- Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran.
| | - Zahra Bahri
- Department of Control and Modeling of Mineral Processing Systems, Institute of Mineral Processing, ACECR at Tarbiat Modares, Tehran, Iran
| |
Collapse
|
15
|
Chen Q, Tao Y, Feng Y, Zhang Q, Liu Y. Utilization of modified copper slag activated by Na 2SO 4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112608. [PMID: 33901826 DOI: 10.1016/j.jenvman.2021.112608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Serious heavy metals pollution was characterized in the lead/zinc mine tailings dam and surrounding soils, as well as copper slag disposal sites. This study investigates the efficacy of modified granulated copper slag (MGCS) as a partial replacement of ordinary Portland cement (OPC) for lead/zinc mine tailings-based cemented paste backfill (CPB) application using Na2SO4 (CSN) and CaO (CSC) as alkali-activated materials. The effect of different scenarios was ascertained by unconfined compressive strength (UCS). Also, the correlated microstructural evolution and mineralogical phase generation were obtained by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray diffraction (XRD). The main findings proved that CSN was more effective in improving mechanical performance. Na2SO4 was found associated with C-S-H gel formation accompanied by a compact microstructure and better pore distribution with lower porosity. However, deposition of chloride compound was found in the surface layer of CSN samples, which could bring deterioration to the mechanical properties. Results above extend the knowledge of reusing MGCS as supplementary material to CPB, promoting the concept of a circular economy demand for both lead/zinc mine extraction and copper industries.
Collapse
Affiliation(s)
- Qiusong Chen
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; Sinosteel Maanshan Institute of Mining Research Company Limited, Maanshan, 243000, China
| | - Yunbo Tao
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Yan Feng
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Qinli Zhang
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Yikai Liu
- Department of Geosciences, University of Padova, Padova, 35131, Italy.
| |
Collapse
|
16
|
Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9941979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The accumulation of mine tailings on Earth is a serious environmental challenge. The importance for the recovery of heavy metals, together with the economic benefits of precious and base metals, is a strong incentive to develop sustainable methods to recover metals from tailings. Currently, researchers are attempting to improve the efficiency of metal recovery from tailings using bioleaching, a more sustainable method compared to traditional methods. In this work, the research status of using biological leaching technologies to recover heavy metals from tailings was reviewed. Furthermore, CiteSpace 5.7.R2 was used to visually analyze the keywords of relevant studies on biological leaching of tailings to intuitively establish the current research hotspots. We found that current research has made recent progress on influencing factors and microbial genetic data, and innovations have also been made regarding the improvement of the rate of metal leaching by biological leaching combined with other technologies. This is of great significance for the development of bioleaching technologies and industrial production of heavy metals in tailings. Finally, challenges and opportunities for bioleaching provide directions for further research by the scientific community.
Collapse
|
17
|
Ye M, Liang J, Liao X, Li L, Feng X, Qian W, Zhou S, Sun S. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111795. [PMID: 33338773 DOI: 10.1016/j.jenvman.2020.111795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The production of large volumes of waste flotation tailings results in environmental pollution and presents a major ecological and environmental risk. This study investigates bioleaching of waste flotation tailings using Acidithiobacillus ferrooxidans. The experiments were performed with 5.00% solid concentration, pH 2.0 with 100 mL medium for 25 d in the lab. The pH, OPR, metal concentration, dissolved organic matter (DOM) in leachate and extracellular polymeric substances (EPS) were recorded. Bioleaching tailing materials were finally characterized. Results showed that microorganisms, acclimating with mine tailings, effectively accelerated the bioleaching process, achieving maximum Zn and Fe extraction efficiencies of 95.45% and 83.98%, respectively, after 25 days. Compared with raw mine tailings, bioleaching could reduce 96.36% and 95.84% leachable Zn and Pb, and Pb presented a low risk (4.13%), while Zn, Cu, and Cr posed no risk (0.34%, 0.64%, and 0%). Toxicity and environmental risk analysis revealed bioleaching process significantly reduced the environmental risk associated with mine tailings. EPS analysis indicated that the loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) fractions contained different organic substances, which played different roles in the bioleaching process. Pearson correlation analysis revealed that EPS was highly correlated with bioleaching behavior (p < 0.05), and EPS was the main factor affecting the bioleaching process, promoting bioleaching in the LB-EPS and TB-EPS fractions.
Collapse
Affiliation(s)
- Maoyou Ye
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory of Development and Comprehensive Utilization of Mineral Resources, Guangdong Institute of Resource Comprehensive Utilization, Guangzhou, 510650, China.
| | - Jialin Liang
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojian Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lili Li
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xidan Feng
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wei Qian
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Siyu Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
18
|
Zheng Y, Wang L, Zhu Y, Li X, Ren Y. A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123307. [PMID: 32653783 DOI: 10.1016/j.jhazmat.2020.123307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Bioleaching by coupling iron oxidization with microbial growth is a process frequently used to extract target metals from sulfide tailing piles. However, the slower leaching, longer operational times, and lower efficiency compared to those of other extracting processes are the most important reasons that make this approach unattractive for the recovery of target elements. A triple-chamber microbial fuel cell (MFC) was explored to elevate the dissolution of sulfide tailings via in-situ removal of bioleached Fe3+/Fe2+ and SO42-, during which iron and SO42- ions were synchronously recovered as Fe(OH)3 and S° in the first and second cathode chambers, respectively. 107.9 % of iron and 99.8 % of sulfur contained in the sulfide tailings was bioleached over 50 h, with 80.0 % iron and 22.1 % sulfur elements synchronously recovered. The purities of the Fe(OH)3 and S° precipitates with high metallurgical values were up to 93.1 % and 90.2 %, respectively. The excellent leaching performance of the explored triple-chamber MFC was attributed to the synergistic effect of Acidithiobacillia catalysis and electrochemical oxidation. The explored approach, by virtue of having the higher bioleaching efficiency, less aggressive conditions and shorter operating times than the conventional bioleaching, is of potential commercial value.
Collapse
Affiliation(s)
- Yan Zheng
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| | - Ling Wang
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China.
| | - Yueping Ren
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China
| |
Collapse
|
19
|
Lan J, Sun Y, Chen X, Zhan W, Du Y, Zhang TC, Ye H, Du D, Hou H. Bio-leaching of manganese from electrolytic manganese slag by Microbacterium trichothecenolyticum Y1: Mechanism and characteristics of microbial metabolites. BIORESOURCE TECHNOLOGY 2021; 319:124056. [PMID: 33038655 DOI: 10.1016/j.biortech.2020.124056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The related microbial metabolomics on biological recovery of manganese (Mn) from Electrolytic Manganese Slag (EMS) has not been studied. This study aimed at open the door to the metabolic characteristics of microorganisms in leaching Mn from EMS by using waste molasses (WM) as carbon source. Results show Microbacterium trichothecenolyticum Y1 (Y1) could effectively leach Mn from EMS in combination with using waste molasses as carbon and energy sources. For the first time, Y1 was identified to be capable of generating and then metabolizing several organic acids or other organic matter (e.g., fumaric acid, succinic acid, malic acid, glyoxylic acid, 3-hydroxybutyric acid, glutaric acid, L(+)-tartaric acid, citric acid, tetrahydrofolic acid, and L-methionine). The production of organic acids by Y1 bacteria was promoted by EMS with the carbon source. This study demonstrated for the first time that metabolic characteristics and carbon source metabolic pathways of Y1 in bioleaching of Mn from EMS.
Collapse
Affiliation(s)
- Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China; School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| | - Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xiaohong Chen
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Wei Zhan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaguang Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Hengpeng Ye
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
20
|
Saidi M, Kadkhodayan H. Toxic heavy metal removal from sulfide ores using potassium permanganate: Process development and waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111354. [PMID: 32956940 DOI: 10.1016/j.jenvman.2020.111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
A monolithic new attitude utilizing Aspen Plus software and Taguchi method has been applied to evaluate a novel configuration for removal of toxic heavy metals during sulfide ores recovery using potassium permanganate (KMnO4). In this new configuration, KMnO4 has been produced by sludge recovery of cobalt purification step containing manganese (IV) oxide (MnO2). Also, in this suggested configuration, the required sulfuric acid (H2SO4) solvent has been provided by recovery of sulfur compounds released during leaching process of sulfide ores. The optimum condition obtained by Taguchi experimental design has been used as initial data for the simulation and sensitivity analysis of process via Aspen Plus software. A systematic study of the design and operating condition has been made for key performance metrics such as removal of toxic heavy metal from sulfide ores, recovery of KMnO4 from sludge containing MnO2 and conversion of released sulfide gases to H2SO4 at the different operating condition such as H2SO4 concentration of 60-90 g/L, operating temperature of 60-150 °C, agitation rate of 100-400 rpm, reaction time of 0.5-2 h, solid to liquid ratio of 1:1-1:4, particle size of 10-500 μm, additive amount of 10-40 wt% and oxygen pressure of 0.5-2 MPa. The optimum condition for removal of toxic heavy metal have been found to be H2SO4 concentration of 70 g/L, temperature of 90 °C, agitation rate of 200 rpm, reaction time of 1.5 h, particle size of 500 μm, solid to liquid ratio of 1:2, additive amount of 40 wt% and oxygen pressure of 1.5 MPa. According to simulation results, the maximum conversion of released sulfide gases to H2SO4, recovery of KMnO4 and toxic heavy metals removal during designed process at optimized condition are 98%, 91% and 99%, respectively.
Collapse
Affiliation(s)
- Majid Saidi
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran.
| | - Hossein Kadkhodayan
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| |
Collapse
|
21
|
Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. MINERALS 2020. [DOI: 10.3390/min10111013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Globally, the amounts of metal ore deposits have been declining, so the research directions investigating the extraction of metals from materials that are classified as waste are gaining more importance every year. High concentrations of Cu, Pb, Zn, and Fe were analyzed in the sludge sediment (Zlaté Hory, Czech Republic), which is a waste product of the mining industry. In the bioleaching process, bacterial cells have been established as being able to convert metals from solid to liquid phase. However, the most important parameters of bioleaching are particle size, pH, and pulp density, thus our research focused on their optimization. The acidophilic and mesophilic bacteria Acidithiobacillus ferrooxidans were applied due to the high Fe content in the sample. The recovery of metals in the leachate was determined by F-AAS and the residual metal concentrations in the waste fraction were analyzed by XRF. The grain size fractions <40 µm –200 µm were investigated. The atomic absorption spectrometry (AAS) results show that the highest Fe (76.48%), Cu (82.01%), and Pb (88.90%) recoveries were obtained at particle size of 71–100 μm. Zn was dissolved for all fractions above 90%. Experiments with different pH values were performed at a pH of 1.6–2.0. The highest dissolution rates of Zn, Fe, and Cu were achieved with a suspension pH of 1.8, where 98.73% of Zn, 85.42% of Fe, and 96.44% of Cu were recovered. Due to the high percentage dissolution of metals, experiments were performed under pilot conditions in a bioreactor at a pulp density of 2.5% and 4.2% (w/v). From an economic point of view, the leaching time of 28 days was evaluated as sufficient.
Collapse
|
22
|
Chaerun SK, Putri EA, Mubarok MZ. Bioleaching of Indonesian Galena Concentrate With an Iron- and Sulfur-Oxidizing Mixotrophic Bacterium at Room Temperature. Front Microbiol 2020; 11:557548. [PMID: 33133032 PMCID: PMC7578375 DOI: 10.3389/fmicb.2020.557548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Biohydrometallurgy is believed to be a promising future study field for the recovery of lead (Pb) from ores/concentrates since the pyrometallurgical/hydrometallurgical processes have been largely applied to recover Pb to date, which operates at high temperature and generates volatile Pb matters that are hazardous and carcinogenic to human health. Hence, the main purpose of this study was to investigate the biohydrometallurgical extraction of Pb from the Indonesian galena concentrate through bioleaching using an iron- and sulfur-oxidizing mixotrophic bacterium (identified as Citrobacter sp.). The bioleaching experiments were conducted in shake flasks containing the modified LB broth medium supplemented with galena concentrate with a particle size of d80 = 75 μm at room temperature. Both semi-direct and direct bioleaching methods were employed in this study. The bacterium was able to extract lead (Pb) from galena concentrate with high selectivity to Cu and Zn (0.99 and 0.86, respectively). The highest extraction level of 90 g lead dissolved/kg galena concentrate was achieved using direct bioleaching method at bioleaching conditions of 2% w/v pulp density, 5 g/L FeCl3, 50 g/L NaCl, 20 g/L molasses and a rotation speed of 180 rpm at room temperature (25°C). The addition of FeCl3, NaCl, and molasses increased the lead leaching efficiencies, which were also evidenced by the FTIR, XRD, and SEM-EDS analyses. From industrial and commercial standpoints, the selective bioleaching represented in this study may be beneficial to the development of lead leaching from sulfide minerals, since insoluble anglesite (PbSO4) precipitates are formed during ferric sulfate oxidation, thus making the recovery of lead through bioleaching unpractical.
Collapse
Affiliation(s)
- Siti Khodijah Chaerun
- Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, Indonesia.,Geomicrobiology-Biomining and Biocorrosion Laboratory, Microbial Culture Collection Laboratory, Biosciences and Biotechnology Research Center (BBRC), Institut Teknologi Bandung, Bandung, Indonesia
| | - Edina Amadea Putri
- Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | - Mohammad Zaki Mubarok
- Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
23
|
Capeness MJ, Horsfall LE. Synthetic biology approaches towards the recycling of metals from the environment. Biochem Soc Trans 2020; 48:1367-1378. [PMID: 32627824 PMCID: PMC7458392 DOI: 10.1042/bst20190837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Metals are a finite resource and their demand for use within existing and new technologies means metal scarcity is increasingly a global challenge. Conversely, there are areas containing such high levels of metal pollution that they are hazardous to life, and there is loss of material at every stage of the lifecycle of metals and their products. While traditional resource extraction methods are becoming less cost effective, due to a lowering quality of ore, industrial practices have begun turning to newer technologies to tap into metal resources currently locked up in contaminated land or lost in the extraction and manufacturing processes. One such technology uses biology for the remediation of metals, simultaneously extracting resources, decontaminating land, and reducing waste. Using biology for the identification and recovery of metals is considered a much 'greener' alternative to that of chemical methods, and this approach is about to undergo a renaissance thanks to synthetic biology. Synthetic biology couples molecular genetics with traditional engineering principles, incorporating a modular and standardised practice into the assembly of genetic parts. This has allowed the use of non-model organisms in place of the normal laboratory strains, as well as the adaption of environmentally sourced genetic material to standardised parts and practices. While synthetic biology is revolutionising the genetic capability of standard model organisms, there has been limited incursion into current practices for the biological recovery of metals from environmental sources. This mini-review will focus on some of the areas that have potential roles to play in these processes.
Collapse
Affiliation(s)
- Michael J. Capeness
- Centre for Systems and Synthetic Biology, and the Centre for Science at Extreme Conditions, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Louise E. Horsfall
- Centre for Systems and Synthetic Biology, and the Centre for Science at Extreme Conditions, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| |
Collapse
|
24
|
Zeng C, Hu H, Feng X, Wang K, Zhang Q. Activating CaCO 3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. CHEMOSPHERE 2020; 249:126227. [PMID: 32087456 DOI: 10.1016/j.chemosphere.2020.126227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Efficient lead removal from metal-containing wastewater, such as acid mine drainage (AMD), is an important step in environmental purification and secondary resources recovery. In this paper, a novel approach by mechanochemically activating CaCO3 through simply wet ball milling in metal-containing solution was developed, where selective Pb2+ precipitation in the form of PbCO3 was achieved based on its reaction with the CO32- from the activated CaCO3. By such milling operation, the removal efficiency of Pb2+ from aqueous solution could reach over 99%, while more than 99% Zn2+ (as well as Mn, Ni and Cd) was remaining in the solutions, demonstrating the feasibility and high effectiveness of precipitating Pb2+ and serving the purpose of recovering other metals without Pb impurity. The solubility differences between Pb carbonate and other carbonates of Zn, Mn, Ni or Cd were understood to be the main pathway and using CaCO3 would offer an easy operation and environmental friendly process to purify the metals-containing wastewater by precipitating Pb, compared with the difficulties when using alkaline neutralization to treat them. In addition, basic zinc carbonate (a zinc-containing ore waste) as an alternative precipitant to CaCO3 in the separation process was also confirmed to increase the zinc recovery in the solution while maintaining high Pb2+ removal efficiency.
Collapse
Affiliation(s)
- Chaocheng Zeng
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huimin Hu
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China.
| | - Xinhao Feng
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Kui Wang
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Qiwu Zhang
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China.
| |
Collapse
|
25
|
Geng H, Wang F, Yan C, Tian Z, Chen H, Zhou B, Yuan R, Yao J. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121136. [PMID: 31525690 DOI: 10.1016/j.jhazmat.2019.121136] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The migration of metals (e.g., Fe, Cd, Co, Cr, Cu, Mn, Ni, and Zn) in both of iron tailings under different pH leachates was studied by laboratory static leaching experiments. The results indicated that Fe showed the highest leaching concentration at an initial pH of 2, reaching 16.19 and 51.72 mg L-1 in the Qian'anling (Q0) and Majuanzi (M0) iron tailings, respectively. Metal ions manifested a strong pH dependence. In addition, the leaching behavior of Cd, Cr, Fe, and Cu for the two tailings was also evaluated under leaching by three low-molecular-weight organic acids (LMWOAs). The results indicated the leaching of Cd and Fe followed the order of citric acid > malic acid > oxalic acid and that the leaching order for Cr and Cu was citric acid > oxalic acid > malic acid. The concentration of Fe was low in 5 mM oxalic acid leaching for 20 days because of the hydrolysis precipitation of iron ions and the complexation with organic ligand. The crystal lattice on the tailings was significantly damaged after leaching. The CO32- peak appeared in M0 with different treatments, and the proportion of COO- fitting peak areas increased markedly after leaching with LMWOAs.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, 101500, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
26
|
Li S, Tian Z, Liu R, Zhou W, Cheng H, Sun J, Zhao K, Wang Y, Zhou H. Effective multi-metal removal from plant incineration ash via the combination of bioleaching and brine leaching. RSC Adv 2020; 10:1388-1399. [PMID: 35494665 PMCID: PMC9048034 DOI: 10.1039/c9ra08267k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
Plant incineration ash is the final product from the remediation of multi-metal contaminated soils by the phytoextraction process. The content of heavy metals in plant ash was found to be higher than the regulatory criteria and it was thus classified as hazardous waste. So far, no eco-friendly and cost-effective technology has been developed for the management of this residue. Herein, a cleaner strategy of bioleaching combined with brine leaching of multi-metals from plant ash was developed. The bioleaching results indicated that 88.7% (Zn), 93.2% (Cd), 99.9% (Mn) and 13.8% (Pb) were achieved under optimum conditions of Fe(ii) concentration 6.0 g L-1, pH 1.8 and pulp density 15% (w/v). Subsequently, the introduction of brine leaching using 200 g L-1 NaCl significantly increased Pb recovery to 70.6% under conditions of 15% (w/v) pulp density, thereby ultimately achieving deep recovery of all metals. An investigation of the mechanism revealed that H+ attack and microorganisms were the dominant mechanism for bioleaching of Zn, Cd and Mn, and the bioleaching kinetics of Zn in ash were controlled by interface mass transfer and diffusion across the product layer. Risk assessment tests indicated that the leached residues could pass the TCLP test standard and be safely reused as nonhazardous materials. These findings demonstrated that the two-stage leaching strategy was feasible and promising for multi-metal removal from plant ash.
Collapse
Affiliation(s)
- Su Li
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Zhuang Tian
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Wenbo Zhou
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Kaifang Zhao
- Dongguan Kecheng Environmental Technology Co., Ltd. Dongguan 523899 China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| |
Collapse
|
27
|
Liao X, Sun S, Zhou S, Ye M, Liang J, Huang J, Guan Z, Li S. A new strategy on biomining of low grade base-metal sulfide tailings. BIORESOURCE TECHNOLOGY 2019; 294:122187. [PMID: 31577980 DOI: 10.1016/j.biortech.2019.122187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effect of designed microbial consortia on biomining of low grade base-metal sulfide tailings. The results show the amount of recycled metals were equal if the tailings were leached by mixed cultures of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans at three different ratios or by pure culture of L. ferriphilum, which was better than the pure culture of Acidithiobacillus ferrooxidans. qPCR (quantitative polymerase chain reaction) demonstrated only L. ferriphilum functioned in the mixtures at initial stage. The results of extracellular polymeric substances (EPS) via three-dimensional excitation-emission matrix combined with parallel factor analysis (3DEEM-PARAFAC) collected from mixed or pure cultures indicated there were no interactions between two strains. Secondary minerals were formed, but did not influence the leaching process. A new strategy for tailings biomining was proposed: only ferrous oxidizers should be added during the initial and middle biomining stage, while sulfur oxidizers should be added at the end.
Collapse
Affiliation(s)
- Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, China
| | - Jialin Liang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinjia Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
28
|
Xu DM, Zhan CL, Liu HX, Lin HZ. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35657-35669. [PMID: 31732950 DOI: 10.1007/s11356-019-06555-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Mine tailings, generated from the extraction, processing, and utilization of mineral resources, have resulted in serious acid mine drainage (AMD) pollution. Recently, scholars are paying more attention to two alternative strategies for resource recovery and ecological reclamation of mine tailings that help to improve the current tailing management, and meanwhile reduce the negative environmental outcomes. This review suggests that the principles of geochemical evolution may provide new perspective for the future in-depth studies regarding the pollution control and risk management. Recent advances in three recycling approaches of tailing resources, termed metal recovery, agricultural fertilizer, and building materials, are further described. These recycling strategies are significantly conducive to decrease the mine tailing stocks for problematic disposal. In this regard, the future recycling approaches should be industrially applicable and technically feasible to achieve the sustainable mining operation. Finally, the current state of tailing phytoremediation technologies is also discussed, while identification and selection of the ideal plants, which is perceived to be the excellent candidates of tailing reclamation, should be the focus of future studies. Based on the findings and perspectives of this review, the present study can act as an important reference for the academic participants involved in this promising field.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100082, China
| | - Chang-Lin Zhan
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Hong-Xia Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Han-Zhi Lin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100082, China
| |
Collapse
|
29
|
K. J, N. S, S. M, K. R, J. P, S. S, Dhakal N, Shahnaz T, N. S. Optimization of EDTA enriched phytoaccumulation of zinc by Ophiopogon japonicus: Comparison of Response Surface, Artificial Neural Network and Random Forest models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Meng X, Zhao H, Sun M, Zhang Y, Zhang Y, Lv X, Kim H, Vainshtein M, Wang S, Qiu G. The role of cupric ions in the oxidative dissolution process of marmatite: A dependence on Cu 2+ concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:213-223. [PMID: 31030129 DOI: 10.1016/j.scitotenv.2019.04.227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Cupric ions (Cu2+) play an important role in the oxidative dissolution process of marmatite in an acidic environment. In this work, dissolution experiments and numerous analytical techniques were utilized to investigate the role of Cu2+ in the oxidative dissolution process of marmatite in sulfuric acid. The dissolution experiments showed that the role of Cu2+ is significantly dependent on its concentration. A low Cu2+ concentration (0.25-750 mg/L) can significantly accelerate marmatite dissolution, and a relatively high Cu2+ concentration (above 1000 mg/L) can hinder marmatite dissolution. Element analysis, synchrotron radiation-based X-ray diffraction (SR-XRD) and Raman spectra of the leaching residues proved that no copper containing mineralogical phase was produced by the reactions between Cu2+ and marmatite. The X-ray photoelectron spectroscopy (XPS) analysis indicated that Cu2+ was first adsorbed on the marmatite surface and then produced Cu-S surface species. An electrochemical measurement further indicated that the adsorption of Cu2+ can remarkably enhance the electrochemical reactivity of the marmatite surface, thus catalyzing the oxidative dissolution process. However, a high percentage of Cu2+ adsorption on the marmatite surface can produce a passivation layer when the Cu2+ concentration is high in the solution, which decreases the electrochemical reactivity, thus resulting in the hinderance of the oxidative dissolution process of marmatite.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Central South University, Changsha, Hunan, China
| | - Hongbo Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy, Ministry of Education, Changsha, Hunan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, China.
| | - Menglin Sun
- Central South University, Changsha, Hunan, China
| | | | - Yanjun Zhang
- Central South University, Changsha, Hunan, China
| | - Xin Lv
- Central South University, Changsha, Hunan, China
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | - Mikhail Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS (IBPM RAS), Russia
| | - Shuai Wang
- Central South University, Changsha, Hunan, China.
| | - Guanzhou Qiu
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy, Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
31
|
A Novel Technology for Separating Copper, Lead and Zinc in Flotation Concentrate by Oxidizing Roasting and Leaching. Processes (Basel) 2019. [DOI: 10.3390/pr7060376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, oxidizing roasting was combined with leaching to separate copper, lead, and zinc from a concentrate obtained by bulk flotation of a low-grade ore sourced from the Jiama mining area of Tibet. The flotation concentrate contained 7.79% Cu, 22.00% Pb, 4.81% Zn, 8.24% S, and 12.15% CaO; copper sulfide accounted for 76.97% of the copper, lead sulfide for 25.55% of the lead, and zinc sulfide for 67.66% of the zinc. After oxidizing roasting of the flotation concentrate, the S content in the roasting slag decreased to 0.22%, indicating that most sulfide in the concentrate was transformed to oxide, which was beneficial to leaching. The calcine was subjected to sulfuric acid leaching for separation of copper, lead, and zinc; i.e., copper and zinc were leached, and lead was retained in the residue. The optimum parameters of the leaching process were: a leaching temperature of 55 °C; sulfuric acid added at 828 kg/t calcine; a liquid:solid ratio of 3:1; and a leaching time of 1.5 h. Under these conditions, the extents of leaching of copper and zinc were 87.43% and 64.38%, respectively. Copper and zinc in the leaching solution could be further separated by electrowinning. The effects of leaching parameters on the extents of leaching of copper and zinc were further revealed by X-ray diffraction and scanning electron microscopy analysis.
Collapse
|
32
|
|
33
|
Fu S, Lu J. Temperature-driven variation in the removal of heavy metals from contaminated tailings leaching in northern Norway. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:123. [PMID: 30706147 DOI: 10.1007/s10661-019-7244-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
High amounts of tailings with a low recycling rate are generated during mining and smelting processes, and a lot of environmental problems were caused by heavy metal leaching from tailings. Temperature is a key point in heavy metals leaching, and knowing the effects of temperature on tailings leaching is useful for tailings management. A small-scale batch leaching experiment was conducted at different temperatures to test temperature-driven heavy metal leaching from tailings in the arctic area. The variation in the leaching of heavy metals from tailings was investigated by a small-scale batch leaching experiment. Results showed that 10 °C is a threshold temperature for the leaching activity of the tested elements. Fe, Cr, and Cu are significantly correlated with temperature in the leaching. Leaching rates of Cr, Cu, and Ni increase as temperature rises. Leaching rates of Cr, Cu, Ni, V, and Zn change by a polynomial model with temperatures, whereas that of Fe changes with a linear model. V shows an antagonistic relationship with Cu, Fe, and Ni in the leaching. However, Cu, Cr, Ni, and Fe show a synergistic relationship. Discovering the threshold temperature of leaching tailings in the arctic area and concluding the influence factors and the relationship between heavy metals leaching and temperature are useful for tailings management.
Collapse
Affiliation(s)
- Shuai Fu
- School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang, 330013, People's Republic of China.
- Department of Engineering and Safety, UiT-the Arctic University of Norway, N-9037, Tromsø, Norway.
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Jinmei Lu
- Department of Engineering and Safety, UiT-the Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
34
|
Li H, Ye M, Zheng L, Xu Y, Sun S, Du Q, Zhong Y, Ye S, Zhang D. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:390-403. [PMID: 29851391 DOI: 10.2166/wst.2018.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study explores the potential for synchronous extraction of Cu, Cr, Ni and Zn during sewage sludge bioleaching processes, using three types of bacterial cultures: a pure culture of Acidithiobacillus ferrooxidans (A. ferrooxidans); a pure culture of Acidithiobacillus thiooxidans (A. thiooxidans); and a mixed culture of A. ferrooxidans and A. thiooxidans. Variable operating parameters included initial pH, solids concentration, sulfur concentration and ferrous iron concentration, with optimization via Box-Behnken design of response surface methodology. Results indicate that the mixed culture of A. ferrooxidans and A. thiooxidans, was the most effective at bioleaching heavy metals from sewage sludge. The optimal operating conditions were as follows: an initial pH of 2.0, with concentrations of 3% solids, 6.14 g L-1 sulfur and 4.55 g L-1 ferrous iron. Maximum extraction efficiencies obtained after 14 days of bioleaching under optimal conditions, were 98.54% Cu, 57.99% Cr, 60.06% Ni and 95.60% Zn. Bioleaching kinetics were effectively simulated using a shrinking core model to explain the leaching reaction, with modelling results suggesting that the rate was determined by the diffusion step.
Collapse
Affiliation(s)
- Haifei Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Maoyou Ye
- Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail: ; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Yujian Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Dongsheng Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| |
Collapse
|
35
|
Sethurajan M, van Hullebusch ED, Nancharaiah YV. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 211:138-153. [PMID: 29408062 DOI: 10.1016/j.jenvman.2018.01.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/07/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Solid metalliferous wastes (sludges, dusts, residues, slags, red mud and tailing wastes) originating from ferrous and non-ferrous metallurgical industries are a serious environmental threat, when waste management practices are not properly followed. Metalliferous wastes generated by metallurgical industries are promising resources for biotechnological extraction of metals. These wastes still contain significant amounts of valuable non-ferrous metals, sometimes precious metals and also rare earth elements. Elemental composition and mineralogy of the metallurgical wastes is dependent on the nature of mining site and composition of primary ores mined. Most of the metalliferous wastes are oxidized in nature and contain less/no reduced sulfidic minerals (which can be quite well processed by biohydrometallurgy). However, application of biohydrometallurgy is more challenging while extracting metals from metallurgical wastes that contain oxide minerals. In this review, origin, elemental composition and mineralogy of the metallurgical solid wastes are presented. Various bio-hydrometallurgical processes that can be considered for the extraction of non-ferrous metals from metal bearing solid wastes are reviewed.
Collapse
Affiliation(s)
- Manivannan Sethurajan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands.
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India
| |
Collapse
|
36
|
Wang F, Yu J, Xiong W, Xu Y, Chi RA. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1752-1765. [PMID: 29101700 DOI: 10.1007/s11356-017-0471-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.
Collapse
Affiliation(s)
- Fen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan, Hubei, 430073, China
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Junxia Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan, Hubei, 430073, China
| | - Wanli Xiong
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan, Hubei, 430073, China
| | - Yuanlai Xu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan, Hubei, 430073, China
| | - Ru-An Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan, Hubei, 430073, China.
| |
Collapse
|
37
|
Ye M, Li G, Yan P, Ren J, Zheng L, Han D, Sun S, Huang S, Zhong Y. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. CHEMOSPHERE 2017; 185:1189-1196. [PMID: 28772358 DOI: 10.1016/j.chemosphere.2017.07.124] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na2S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na2S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na2S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings.
Collapse
Affiliation(s)
- Maoyou Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China.
| | - Guojian Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Pingfang Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Jie Ren
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Dajian Han
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China.
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of Mining and Metallurgy Industry Heavy Metals Pollution Control and Vocational Education of Environmental Protection of Guangdong Province, Guangzhou 510006, China
| | - Yujian Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
38
|
Ye M, Li G, Yan P, Zheng L, Sun S, Huang S, Li H, Chen Y, Yang L, Huang J. Production of lead concentrate from bioleached residue tailings by brine leaching followed by sulfide precipitation. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Dai S, Li Y, Zhou T, Zhao Y. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15260-15269. [PMID: 28500550 DOI: 10.1007/s11356-017-9139-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.
Collapse
Affiliation(s)
- Shijin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Tao Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Youcai Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| |
Collapse
|