1
|
Imfeld G, Meite F, Ehrhart L, Fournier B, Heger TJ. Dissipation of pesticides and responses of bacterial, fungal and protistan communities in a multi-contaminated vineyard soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116994. [PMID: 39236652 DOI: 10.1016/j.ecoenv.2024.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions. Pesticide dissipation half-lives ranged from 27 to over 300 days, depending on the physicochemical properties of the pesticides and the soil conditions. In both autoclaved and non-autoclaved soil experiments, over 50 % of hydrophobic pesticides (dimethomorph > isoxaben > simazine = atrazine = carbendazim) dissipated within 200 days at 20°C and 30°C. However, the contribution of biodegradation to the overall dissipation of soluble pesticides (rac-metalaxyl > isoproturon = pyrimethanil > S-metolachlor) increased to over 75 % at 30°C and 40 % water content. This suggests that soluble pesticides became more bioavailable, with degradation activity increasing with higher temperature and soil water content. In contrast, the primary process contributing to the dissipation of hydrophobic pesticides was sequestration to soil. High-throughput amplicon sequencing analysis indicated that water content, temperature, and pesticides had domain-specific effects on the diversity and taxonomic composition of bacterial, fungal, and protistan communities. Soil physicochemical properties had a more significant effect than pesticides on the various microbial domains in the vineyard soil. However, pesticide exposure emerged as a secondary factor explaining the variations in microbial communities, with a more substantial effect on protists compared to bacterial and fungal communities. Overall, our results highlight the variability in the dissipation kinetics and processes of pesticides in a multi-contaminated vineyard soil, as well as their effects on bacterial, fungal, and protistan communities.
Collapse
Affiliation(s)
- Gwenaël Imfeld
- Earth & Environment Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Fatima Meite
- Earth & Environment Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, 5 rue Descartes, Strasbourg F-67084, France
| | - Lucas Ehrhart
- Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland
| | - Bertrand Fournier
- Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland; Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany
| | - Thierry J Heger
- Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland
| |
Collapse
|
2
|
Lépori CMO, Luna MA, Challier C, Beassoni PR, Correa NM, Falcone RD. Exploring the Properties of Unilamellar Vesicle Bilayers Formed by Ionic Liquid Surfactants for Future Applications in Nanomedicine. J Phys Chem B 2024; 128:6940-6950. [PMID: 38956449 DOI: 10.1021/acs.jpcb.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Two ionic liquids (ILs) with amphiphilic properties composed of 1-butyl-3-methylimidazolium dioctylsulfosuccinate (bmim-AOT) and 1-hexyl-3-methylimidazolium dioctylsulfosuccinate (hmim-AOT) form unilamellar vesicles spontaneously simply by dissolving the IL-like surfactant in water. These novel vesicles were characterized using two different and highly sensitive fluorescent probes: 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN) and trans-4-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (HC). These fluorescent probes provide information about the physicochemical properties of the bilayer, such as micropolarity, microviscosity, and electron-donor capacity. In addition, the biocompatibility of these vesicles with the blood medium was evaluated, and their toxicity was determined using Dictyostelium discoideum amoebas. First, using PRODAN and HC, it was found that the bilayer composition and the chemical structure of the ions at the interface produced differences between both amphiphiles, making the vesicles different. Thus, the bilayer of hmim-AOT vesicles is less polar, more rigid, and has a lower electron-donor capacity than those made by bmim-AOT. Finally, the results obtained from the hemolysis studies and the growth behavior of unicellular amoebas, particularly utilizing the D. discoideum assay, showed that both vesicular systems do not produce toxic effects up to a concentration of 0.02 mg/mL. This elegant assay, devoid of animal usage, highlights the potential of these newly organized systems for the delivery of drugs and bioactive molecules of different polarities.
Collapse
Affiliation(s)
- Cristian M O Lépori
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - M Alejandra Luna
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - Cecilia Challier
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - Paola R Beassoni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), CONICET-UNRC, X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| |
Collapse
|
3
|
Evaluation of DNA Damage, Biomarkers of Oxidative Stress, and Status of Antioxidant Enzymes in Freshwater Fish ( Labeo rohita) Exposed to Pyriproxyfen. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5859266. [PMID: 35720182 PMCID: PMC9205694 DOI: 10.1155/2022/5859266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
Pyriproxyfen (PPF) mimics a natural hormone in insects and disrupts their growth. It is a well-known synthetic insecticide and aromatic juvenile hormone analog frequently used in agriculture and vegetable crops to control various insect species. At present, scanty information is available about the possible potential threats of PPF in aquatic organisms. Therefore, in this study, different toxico-pathologic endpoints of PPF like DNA damage, biomarkers of oxidative stress, and status of antioxidant enzymes were determined in Labeo rohita (freshwater fish). In our study, 60 active, free from any external obvious ailments, same size, age, and body mass were randomly allocated to four glass aquaria (T0-T3) separately containing 100 L water. The fish present in groups T1, T2, and T3 were administered PPF dissolved in water 300, 600, and 900 μg/L for 30 days. Different tissues including the blood and visceral organs were obtained from each fish on days 10, 20, and 30 of the experiment. Results on various morphological and nuclear changes in red blood cells of PPF-exposed Labeo rohita fish including pear-shaped erythrocytes, spherocytes, red blood cells with a blebbed nucleus, micronucleus, and nuclear remnants were significantly increased. Our results on genotoxicity (comet assay) recorded significantly (P ≤ 0.05) increased DNA damage in various tissues of insecticide-exposed fish. The results on oxidative stress profile (reactive oxygen species and thiobarbituric acid reactive substances) and antioxidant enzymes (reduced glutathione superoxide dismutase, peroxidase, and catalase) in multiple tissues of Labeo rohita fish concluded significantly (P ≤ 0.05) higher quantity of biomarkers of oxidative stress and lower concentrations of different antioxidant enzymes in treated fish. Hence, the findings of our experimental research determine that PPF could induce adverse toxic impacts on multiple tissues of Labeo rohita fish.
Collapse
|
4
|
Wu C, Chao Y, Shu L, Qiu R. Interactions between soil protists and pollutants: An unsolved puzzle. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128297. [PMID: 35077968 DOI: 10.1016/j.jhazmat.2022.128297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Soil protists are essential but often overlooked in soils, although they play crucial functional roles in the terrestrial ecosystem. While soil protists have drawn increased attention to their functional role in soils, their interaction with soil pollutants remains unresolved. This review provides a first overview of the current understanding of interactions between soil protists and major pollutants (heavy metals, organic pollutants, nanoparticles, and soil pathogens). We summarize how soil pollutants affect protists and vice versa, showing that we are just beginning to understand their complex interactions. In addition, we identify five research gaps, including hidden diversity, adaptive mechanisms, species interactions, soil bioindicators and environmental applications, and we hope that our review will help promote and build research guidelines for the future. In conclusion, a better understanding of soil pollutant-protist interactions will significantly increase our knowledge of the pollution ecology in the soil and how soil organisms respond and adapt to environmental pollution, which will contribute to the bioremediation and environmental applications of protists in soil.
Collapse
Affiliation(s)
- Chenyuan Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Akram R, Iqbal R, Hussain R, Ali M. Effects of bisphenol a on hematological, serum biochemical, and histopathological biomarkers in bighead carp (Aristichthys nobilis) under long-term exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21380-21395. [PMID: 34757555 DOI: 10.1007/s11356-021-17329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume chemicals produced in the world and is frequently used in dental sealants, water bottles, food, and beverage packaging. Due to persistent applications, BPA has become a potential threat to a variety of organisms including public health. In this study, a total of 80 bighead carps were randomly placed in different four groups (A-D). Fish in groups B, C, and D were exposed to BPA @500, 1000, and 1500 μg/L, respectively for 60 days. Fish in group A served as an untreated control group. The body weight was significantly decreased while the absolute and relative weight of different visceral organs increased significantly (p < 0.05) in fish exposed to higher concentration (1500 μg/L) of BPA. Results on proximate analysis showed significantly lower values of crude proteins, lipids, and moisture contents while increased contents of ash in muscles of treated fish. The erythrocyte counts, hemoglobin concentration, lymphocytes, and monocytes significantly decreased while total leukocyte and neutrophil counts significantly increased in treated fish. Results exhibited that different serum biochemistry parameters like serum albumin and total proteins decreased significantly (p < 0.05) while alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), urea, creatinine, glucose, cholesterol, and lactate dehydrogenase (LDH) increased significantly (p < 0.05) in treated fish. Histopathological ailments like pyknosis, degeneration of glomeruli, increased Bowman's space, ceroid formation in kidneys while ceroid formation, hemorrhages, pyknosis, karyorrhexis, karyolysis, nuclear hypertrophy, and eccentric nuclei were observed in the liver of treated fish. Histological observation of different sections of the brain of treated fish exhibited degeneration of neurons in the cerebellum, lipofuscin deposition, microgliosis, necrotic neurons, inflammatory cells, and hemorrhage. Results on light microscopic observation of different sections of the heart of bighead carp revealed necrosis, inflammatory reaction, neutrophilic myocarditis, and hemorrhages. In conclusion, it is suggested that BPA induces adverse effects on physical, blood-biochemical parameters, and histopathological changes in multiple visceral tissues of exposed fish.
Collapse
Affiliation(s)
- Rabia Akram
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan.
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Ali
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
6
|
Liu B, Zeng Q, Chen H, Liao J, Bai Y, Han Q, Qiao N, Wang S, Mehmood K, Hussain R, Ahmed BZ, Tang Z, Zhang H, Li Y. The hepatotoxicity of altrazine exposure in mice involves the intestinal microbiota. CHEMOSPHERE 2021; 272:129572. [PMID: 33485040 DOI: 10.1016/j.chemosphere.2021.129572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 05/15/2023]
Abstract
Atrazine (ATR), a bio accumulative herbicide is frequently used in agriculture to control unwanted weeds. Due to continuous application, atrazine persists in the environment and causes deleterious impacts including neurotoxicity, hepatotoxicity, and gut microbiota disorders. Therefore, this study for the first time reports the variation in the gut microbiota, induction of process of apoptosis and autophagy in mice induced by ATR. Results indicated that TUNEL-positive hepatocytes suggestive of apoptosis were increased in livers of different experimental mice. Results on metabolic analysis in liver tissues indicated an overall change in seventy-six metabolites particularly Uridine 5'-diphosphate, Propenoylcarnitine and Chinenoside V resulting in generation of energy-related metabolic disorders and imbalance of oxidation/autoxidation status. Results on gut microbiome inquisition showed that ATR changed the richness and diversity of gut microbiota of mice and number of Firmicutes. Moreover, results also revealed that ATR induced apoptosis via disruption of apoptotic (Bax, Bcl2, and Casp3) and autophagy (LC3/Map1lc3a, Beclin 1/Becn1 and P62/Sqstm1) genes. Results of our experimental study confirmed that changes in gut microbiota play a significant role in process of gut immune regulation and inflammation via different metabolites. In conclusion, the findings of our study provide a new idea for the involvement of mechanisms of detoxification in liver and inquisition of gut microbiota plays crucial role in regulation of physiological activities through liver-gut axis to mitigate toxic effects in animals.
Collapse
Affiliation(s)
- Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hanming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuman Bai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shuzhou Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Bhutto Zohaib Ahmed
- Labela University of Agriculture, Water, and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Akram R, Iqbal R, Hussain R, Jabeen F, Ali M. Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115896. [PMID: 33187850 DOI: 10.1016/j.envpol.2020.115896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA) is one of the emerging contaminants associated with deleterious health effects on both public and wildlife and is extensively incorporated into different industrial products. Therefore, the current trial was conducted to determine the oxidative stress, status of different antioxidant enzymes and genotoxic potential of bisphenol A in fresh water fish at low concentrations. For this purpose, a total of 80 fresh water bighead carp (Aristicthys nobilis) received from commercial fish center were randomly divided and kept in four groups (A-D). Fish in groups (B-D) were exposed to different levels of BPA for a period of 60 days while fish of group A served as control group. Treated fish exhibited different physical and behavioral ailments in a time and treatment manners. Results showed significantly (p < 0.05) increased quantity of different oxidative stress biomarkers such as thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH) and the contents of reactive oxygen species (ROS) in gills, liver, kidneys and brain of exposed fish. Concentration of different antioxidant enzymes like catalase, superoxide dismutase, peroxidase and total proteins was significantly (p < 0.05) decreased in gills, liver, kidneys and brain of exposed fish. Results showed significantly (p < 0.05) increased frequency of morphological alterations, nuclear changes in red blood cells and increased DNA damage potential of bisphenol A in gills, liver, kidneys and brain tissues. The current trial concludes that even at very low concentrations bisphenol A causes toxic effects via turbulences in physiological and biochemical parameters in multiple tissues of fish.
Collapse
Affiliation(s)
- Rabia Akram
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
8
|
Ghaffar A, Hussain R, Abbas G, Kalim M, Khan A, Ferrando S, Gallus L, Ahmed Z. Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1261-1271. [PMID: 30242594 DOI: 10.1007/s10646-018-1979-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to investigate the toxic effects of fipronil on common carp (Cyprinus carpio). The trial was performed in laboratory of Department of Life Sciences at the Islamia University of Bahawalpur, Punjab, Pakistan. Total of 72 fishes, with apparently no clinical signs were purchased from local fish hatchery near Bahawalpur, Punjab, Pakistan. After 2 weeks of acclimatization fish were divided into six groups in glass aquaria (each having 100 liters of water capacity) and treated with different concentrations of fipronil for 12 days: 0 mg/L-control group (A),0.02 mg/L (B),0.04 mg/L (C),0.06 mg/L (D),0.08 mg/L (E) and 0.10 mg/L (F). Blood samples were taken every 4 days for evaluation of hemato-biochemical parameters. Fish in high doses treated groups show severe abnormalities in clinical-hematological and biochemical parameters. At high dose in group E and F fish show clinical ailments such as convulsions, jerking, faintness, increase in operculum movement, body curvature and breathing difficulty. Erythrocyte count, hemoglobin, hematocrit were decreased significantly (P < 0.05) and mean corpuscular volume, total leukocyte count, neutrophils, monocytes, and lymphocytes were significantly increased. Biochemical parameters including urea, creatinine, cholesterol, triglyceride, glucose were significantly increased but albumin was significantly decreased. Nuclear and cellular abnormalities were also increased in high dose treated groups. Hence fipronil induces clinico-hematological and serum biochemical changes in common carp C. carpio.
Collapse
Affiliation(s)
- Abdul Ghaffar
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ghulam Abbas
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, 75270, Pakistan
| | - Mujahid Kalim
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ahrar Khan
- Department of Pathology,Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy.
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Zulfiqar Ahmed
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| |
Collapse
|