1
|
Leite BA, Rossato B, Dorta DJ, Gravato C, Palma de Oliveira D. Exploring DiPP (diisopentyl phthalate) neurotoxicity and the detoxification process in zebrafish larvae - A Silent contaminant? ENVIRONMENTAL RESEARCH 2025; 269:120825. [PMID: 39800301 DOI: 10.1016/j.envres.2025.120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.5-1000 μg l-1) affect the different developmental stages (24, 48, 72, 120, and 144 hpf) of embryos and larvae of zebrafish. DiPP induced deleterious alterations in neuromuscular development and morphometry of organs, Low concentrations of DiPP decreased acetylcholinesterase and cellular energy allocation concomitantly with increased glutathione S-transferase. Zebrafish swimming period seemed to be decreased not only due to direct neurotoxicity, but also to less allocation of energy for behavioral purposes. Moreover, high concentrations of DiPP induced spinal deformities and developmental alterations specially of the eye and liver of larvae. These findings emphasize that DiPP exerts complex effects that should be considered when assessing its potential effects on health of humans and the total environment. The biomarkers and behavioral parameters showed to be good complimentary early-warning tools exhibiting a high sensitivity compared to FET.
Collapse
Affiliation(s)
- Bianca Arruda Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Rossato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040901, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
2
|
Wang X, Zhou S, Dong J, Wei Z, Liu Y, Huang Y, Sui J, Zhu L. The impact of bisphenol A on gill health: A focus on mitochondrial dysfunction induced disorders of energy metabolism and apoptosis in Meretrix petechialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107259. [PMID: 39874627 DOI: 10.1016/j.aquatox.2025.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Bisphenol A (BPA), a well-known chemical compound used in various daily goods, has been associated with adverse effects on animal metabolic processes. However, the specific impacts of BPA exposure on clam gills remain largely unexplored. To investigate the effects of BPA on energy metabolism and apoptosis in Meretrix petechialis gills, clams were exposed to varying concentrations of BPA (1, 10, and 100 μg/L) for 21 days. Results showed that BPA exposure induced gill histopathological injuries and inhibited filtration rates. Transmission electron microscopy (TEM) analysis revealed mitochondrial injury and dysfunction as potential mechanisms of gill damage. Transcriptome analysis identified differentially expressed genes (DEGs) primarily enriched in energy metabolism and apoptosis pathways. BPA-induced changes in ATP content, ATPase, and lactate dehydrogenase (LDH) activities suggested dysregulation of energy metabolism. TUNEL staining demonstrated enhanced apoptotic signals with increasing BPA concentrations. Activation of the caspase-3/9 pathway indicated a concentration-dependent, mitochondria-dependent apoptotic process. Additionally, the expression of genes associated with mitochondria (NNT, TOMM40, and SLC25A11), energy metabolism (PCK1 and pdhC), inducing mitochondria-dependent apoptosis (NFKB1, RAC1, and TRAF2), and oxidative stress (GSTT1) was affected by BPA exposure. Integrated biomarker response version 2 (IBRv2) values further confirmed a concentration-dependent gill toxicity of BPA via the mitochondrial pathway. These findings provide a deeper understanding of the toxicological mechanisms underlying BPA-induced toxicity in bivalves and contribute to assessing the risks posed by BPA in benthic ecosystems.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jianhao Dong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Zhengjia Wei
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, Shandong 264000, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Junhui Sui
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Mohan A, Matthews B, Räsänen K. Direct and indirect effects of chemical pollution: Fungicides alter growth, feeding, and pigmentation of the freshwater detritivore Asellus aquaticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117017. [PMID: 39305775 DOI: 10.1016/j.ecoenv.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 10/17/2024]
Abstract
Anthropogenic chemical pollutants, such as fungicides, pose significant threats to natural ecosystems. Although the direct impacts of numerous chemicals are well-documented in simple environmental contexts, their indirect impacts are poorly understood. This study used two individual level laboratory experiments to assess direct and indirect effects of fungicides on the isopod Asellus aquaticus, a keystone detritivore in freshwater systems. First, a range-finding assay on three widely used fungicides (Fluazinam, Tebuconazole, Urea) showed that Tebuconazole had the strongest concentration-dependent negative effects on A. aquaticus growth and food consumption. Second, a factorial experiment using Tebuconazole assessed its direct and diet-mediated effects and showed that Tebuconazole reduced growth, feeding, and pigmentation through both pathways. The results indicate that assessing only direct impacts of toxic chemicals could overlook critical interactions that are relevant in natural systems, such as those associated with diet. Our study highlights the importance of considering both direct and indirect effects in environmental toxicology to better understand the full impacts of chemical pollutants in nature.
Collapse
Affiliation(s)
- Akshay Mohan
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum 6047, Switzerland.
| | - Katja Räsänen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| |
Collapse
|
4
|
Luo M, Feng B, Zhu W, Liang Z, Xu W, Fu J, Miao L, Dong Z. Proteomics and metabolomics analysis of American shad (Alosa sapidissima) liver responses to heat stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111686. [PMID: 38936462 DOI: 10.1016/j.cbpa.2024.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The dramatic changes in the global climate pose a major threat to the survival of many organisms, including fish. To date, the regulatory mechanisms behind the physiological responses of fish to temperature changes have been studied, and a comprehensive analysis of the regulatory mechanisms of temperature tolerance will help to propose effective strategies for fish to cope with global warming. In this study, we investigated the expression profiles of proteins and metabolites in liver tissues of American shad (Alosa sapidissima) corresponding to different water temperatures (24 °C, 27 °C and 30 °C) at various times (1-month intervals) under natural culture conditions. Proteomic analysis showed that the expression levels of the heat shock protein family (e.g. HSPE1, HSP70, HSPA5 and HSPA.1) increase significantly with temperature and that many differentially expressed proteins were highly enriched especially in pathways related to the endoplasmic reticulum, oxidative phosphorylation and glycolysis/gluconeogenesis processes. In addition, the results of conjoint metabolomics and proteomics analysis suggested that the contents of several important amino acids and chemical compounds, including L-serine, L-isoleucine, L-cystine, choline and betaine, changed significantly under high-temperature environmental stress, affecting the metabolic levels of starch, amino acid and glucose, which is thought to represent a possible energy conservation method for A. sapidissima to cope with rapid changes in external temperature. In summary, our findings demonstrate that living under high temperatures for a long period of time leads to different physiological defense responses in A. sapidissima, which provides some new ideas for analyzing the molecular regulatory patterns of adaptation to high temperature and also provides a theoretical basis for the subsequent improvement of fish culture in response to global warming.
Collapse
Affiliation(s)
- Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, 210036, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, 210036, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
5
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
6
|
Rana A, Ghosh S, Patel A, Das A, Bhunia A, Manna D, Volkmer D, Biswas S. Superhydrophobic Metal-Organic Framework-Based Composite Featuring Removal of Hydrophobic Drugs and Pesticides and Antibacterial Activities. Inorg Chem 2024; 63:15311-15322. [PMID: 39115455 DOI: 10.1021/acs.inorgchem.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The widespread use and contamination of natural sources by new-generation drugs and pesticides have enhanced concern about environmental pollution. Understanding the above importance, we developed a superhydrophobic metal-organic framework (MOF) (SHMOF': [Zr6O4(OH)4(BDC-NH-CO-R)2.4(BDC-NH2)0.6(CF3COO)6]·2.5H2O·4DMF) for ecological remediation via adsorption-based separation of hydrophobic drugs (flurbiprofen) and pesticides (fluazinam). The newly developed SHMOF' has a high adsorption capacity toward flurbiprofen and fluazinam, i.e., 435 and 575 mg/g, respectively. The adsorption equilibrium time of the MOF is very short (15 and 10 min for flurbiprofen and fluazinam, respectively). The outstanding superhydrophobic nature of the MOF was employed to separate flurbiprofen and fluazinam from highly alkaline and acidic media and environmental water samples. The SHMOF' has excellent selectivity toward the adsorption-based separation of flurbiprofen and fluazinam in the coexistence of common analytes. Again, we developed a polypropylene (PP) fabric-based composite of SHMOF' (SHMOF'@PP) to separate the hydrophobic targeted analytes by using a zero-energy-consuming filtration-based separation method, which made this separation process cost-efficient and user-friendly. Moreover, Ag nanoparticles were doped to the superhydrophobic composite. The Ag-doped reusable SHMOF'@PP@Ag composite exhibited excellent bacterial antiadhesion and antibacterial properties toward Staphylococcus aureus bacteria.
Collapse
Affiliation(s)
- Abhijeet Rana
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Anjali Patel
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Aruntima Das
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Asamanjoy Bhunia
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Dirk Volkmer
- Institute of Physics, Chair of Solid State and Materials Chemistry, University of Augsburg, Universitaetsstrasse 1, 86159 Augsburg, Germany
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Ahmed AIM, Macirella R, Talarico F, Muoio MF, Mezzasalma M, Tronci V, Lal P, Gharbi N, Brunelli E. Effect of short-term exposure to the strobilurin fungicide dimoxystrobin: Morphofunctional, behavioural and mitochondrial alterations in Danio rerio embryos and larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116493. [PMID: 38805825 DOI: 10.1016/j.ecoenv.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Strobilurins, among the most used fungicides worldwide, are considered non-toxic to mammals and birds, but there is growing evidence that these compounds are highly toxic to aquatic species. Dimoxystrobin has been included in the 3rd Watch List of the European Commission, and it has been classified as very toxic to aquatic life. However, previous studies focused on acute toxicity and only two reports are available on its impact on fish, and none on its effects during the early life stages. Here, we evaluated for the first time the effects induced on zebrafish embryos and larvae by two dimoxystrobin sublethal concentrations (6.56 and 13.13 μg/L) falling in the range of predicted environmental concentrations. We demonstrated that short-term exposure to dimoxystrobin may exert adverse effects on multiple targets, inducing severe morphological alterations. Moreover, we showed enhanced mRNA levels of genes related to the mitochondrial respiratory chain and ATP production. Impairment of the swim bladder inflation has also been recorded, which may be related to the observed swimming performance alterations.
Collapse
Affiliation(s)
- Abdalmoiz I M Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Federica Talarico
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Mariarosaria F Muoio
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Valentina Tronci
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, Bergen 5006, Norway
| | - Pradeep Lal
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, Bergen 5006, Norway
| | - Naouel Gharbi
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, Bergen 5006, Norway.
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy.
| |
Collapse
|
8
|
Konig I, Iftikhar N, Henry E, English C, Ivantsova E, Souders CL, Marcussi S, Martyniuk CJ. Toxicity assessment of carvacrol and its acetylated derivative in early staged zebrafish (Danio rerio): Safer alternatives to fipronil-based pesticides? Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109762. [PMID: 37813296 DOI: 10.1016/j.cbpc.2023.109762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Fipronil is a broad-spectrum pesticide presenting high acute toxicity to non-target organisms, particularly to aquatic species. Natural compounds stand out as promising alternatives to the use of synthetic pesticides such as fipronil. Thus, our study aimed to compare the toxicity of carvacrol (natural), acetylcarvacrol (semisynthetic), and fipronil (synthetic) to early staged zebrafish. We conducted a series of toxicity assays at concentrations ranging from 0.01 μM to 25 μM for fipronil and 0.01 μM to 200 μM for carvacrol and acetylcarvacrol, depending on the assay, after 7-days post-fertilization (dpf). The potency (EC50) of fipronil was ∼1 μM for both deformities and mortality at 7 dpf, whereas EC50 was >50 μM for carvacrol and >70 μM for acetylcarvacrol. Fipronil at 0.1 and 1 μM caused a decrease in body length and swim bladder area of larvae at 7dpf, but no difference was observed for either carvacrol or acetylcarvacrol. Based upon the visual motor response test, fipronil induced hypoactivity in larval zebrafish at 1 μM and acetylcarvacrol induced hyperactivity at 0.1 μM. Anxiolytic-type behaviors were not affected by any of these chemicals. All chemicals increased the production of reactive oxygen species at 7 dpf, but not at 2 dpf. Genes related to swim bladder inflation, oxidative stress, lipid metabolism, and mitochondrial activity were measured; only fipronil induced upregulation of atp5f1c. There were no changes were observed in oxygen consumption rates of fish and apoptosis. Taken together, our data suggest that carvacrol and its derivative may be safer replacements for fipronil due to their lower acute toxicity.
Collapse
Affiliation(s)
- Isaac Konig
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nazish Iftikhar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Evelyn Henry
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Silvana Marcussi
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
9
|
Reis CG, Bastos LM, Chitolina R, Gallas-Lopes M, Zanona QK, Becker SZ, Herrmann AP, Piato A. Neurobehavioral effects of fungicides in zebrafish: a systematic review and meta-analysis. Sci Rep 2023; 13:18142. [PMID: 37875532 PMCID: PMC10598008 DOI: 10.1038/s41598-023-45350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pesticides are widely used in global agriculture to achieve high productivity levels. Among them, fungicides are specifically designed to inhibit fungal growth in crops and seeds. However, their application often results in environmental contamination, as these chemicals can persistently be detected in surface waters. This poses a potential threat to non-target organisms, including humans, that inhabit the affected ecosystems. In toxicologic research, the zebrafish (Danio rerio) is the most commonly used fish species to assess the potential effects of fungicide exposure, and numerous and sometimes conflicting findings have been reported. To address this, we conducted a systematic review and meta-analysis focusing on the neurobehavioral effects of fungicides in zebrafish. Our search encompassed three databases (PubMed, Scopus, and Web of Science), and the screening process followed predefined inclusion/exclusion criteria. We extracted qualitative and quantitative data, as well as assessed reporting quality, from 60 included studies. Meta-analyses were performed for the outcomes of distance traveled in larvae and adults and spontaneous movements in embryos. The results revealed a significant overall effect of fungicide exposure on distance, with a lower distance traveled in the exposed versus control group. No significant effect was observed for spontaneous movements. The overall heterogeneity was high for distance and moderate for spontaneous movements. The poor reporting practices in the field hindered a critical evaluation of the studies. Nevertheless, a sensitivity analysis did not identify any studies skewing the meta-analyses. This review underscores the necessity for better-designed and reported experiments in this field.
Collapse
Affiliation(s)
- Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo M Bastos
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Querusche K Zanona
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurofisiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sofia Z Becker
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Zhang X, Tang G, Zhou Z, Wang H, Li X, Yan G, Liu Y, Huang Y, Wang J, Cao Y. Fabrication of Enzyme-Responsive Prodrug Self-Assembly Based on Fluazinam for Reducing Toxicity to Aquatic Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12678-12687. [PMID: 37595273 DOI: 10.1021/acs.jafc.3c03762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Prodrug-based nanodrug delivery systems were drug formulations by covalently conjugating drugs with inversely polar groups via a cleavable bond to self-assemble into nanoparticles for efficient drug delivery. To improve the utilization efficiency of fluazinam (FZN), enzyme-responsive prodrugs were prepared by conjugating FZN with different alkyl aliphatic acids through a nucleophilic substitution reaction and subsequently self-assembled into nanoparticles (FZNP NPs) without using any harmful adjuvant. The obtained FZNP NPs exhibited excellent efficacies against Sclerotinia sclerotiorum as a result of improved physicochemical properties, including low surface tension, high retention, and enhanced photostability. The LC50 values of FZNP NPs toward zebrafish were 3-8 times that of FZN, which illustrated that the FZNP NPs reduced the detriments of FZN to the aquatic organisms while retaining good biological activity. Therefore, prodrug self-assembly technology would offer a potential method for improving the utilization efficiency of pesticides and lowering the risks to the ecological environment.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
11
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
12
|
Miyasato EM, Cardinale BJ. Impacts of Fungal Disease on Algal Biofuel Systems: Using Life Cycle Assessment to Compare Control Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2602-2610. [PMID: 36734469 DOI: 10.1021/acs.est.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While climate change has incentivized attention on sustainable fuel sources, algae has positioned itself as a both promising and problematic biofuel feedstock. Diseases such as fungal pathogens cause costly algal feedstock crashes, but the life cycle assessments (LCAs) used to analyze the viability of algal feedstocks for biofuel have yet to consider the impact of disease on life cycle metrics. Here, we incorporate a disease model into a well-documented LCA for algal biorefineries to compare two sustainability metrics, energy return on investment (EROI) and global warming potential (GWP). We begin by showing that failure to consider disease leads to overly optimistic LCA metric outputs. Then, we compare two leading control strategies of disease─chemical and biological. Our analyses show that biological engineering of a multispecies consortium of algae has a greater positive impact on LCA metrics than chemical control of the fungal pathogen using a fungicide. We expand how and when bi-cultures might advantageously exhibit the "dilution effect" whereby differentially susceptible species exhibit compensatory dynamics that stabilize feedstock production. Our results emphasize the impact of disease and suggest that multispecies consortia of algae can be biologically engineered to reduce greenhouse gas emissions and improve the economic viability of biofuel.
Collapse
Affiliation(s)
| | - Bradley J Cardinale
- Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
13
|
Huang M, Ivantsova E, Konig I, Patel N, English C, Souders CL, Martyniuk CJ. Developmental and mitochondrial toxicity assessment of perfluoroheptanoic acid (PFHpA) in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104037. [PMID: 36526081 DOI: 10.1016/j.etap.2022.104037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The potential toxicity of several perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic species are not well understood. Here, we assessed the sub-lethal toxicity potential of perfluoroheptanoic acid (PFHpA) to developing zebrafish. PFHpA was not acutely toxic to fish up to 50 µM and there was > 96% survival in all treatments. Exposure to 200 µM PFHpA decreased ATP-linked respiration of embryos. There was no evidence for ROS induction in 7-day-old larvae fish exposed to 0.1 µM or 1 µM PFHpA. Twenty-four transcripts related to mitochondrial complexes I through V were measured and atp06, cox4i1, and cyc1 levels were decreased in larval zebrafish in a concentration-dependent manner by PFHpA exposure. Locomotor activity was reduced in fish exposed to 0.1 µM PFHpA based on a visual motor response test. Anxiolytic-type behaviors were not affected by PFHpA. This study contributes to environmental risk assessments for perfluorinated chemicals.
Collapse
Affiliation(s)
- Michelle Huang
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Neep Patel
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
14
|
Saifullah S, Margus A, Kankare M, Lindström L. Repeated exposure of fluazinam fungicides affects gene expression profiles yet carries no costs on a nontarget pest. INSECT SCIENCE 2022; 29:1373-1386. [PMID: 35143114 PMCID: PMC9790412 DOI: 10.1111/1744-7917.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 05/31/2023]
Abstract
Fungicides are used to control pathogenic fungi of crop species, but they have also been shown to alter behavioral, life history and fitness related traits of nontarget insects. Here, we tested the fungicide effects on feeding behavior, survival and physiology of the nontarget pest insect, the Colorado potato beetle (CPB) (Leptinotarsa decemlineata). Feeding behavior was studied by a choice test of adult beetles, which were allowed to choose between a control and a fungicide (fluazinam) treated potato leaf. Larval survival was recorded after 24 and 72 h exposure to control and fungicide-treated leaves with 2 different concentrations. The adults did not show fungicide avoidance behavior. Similarly, survival of the larvae was not affected by the exposure to fungicides. Finally, to understand the effects of fungicides at the physiological level (gene expression), we tested whether the larval exposure to fungicide alter the expression of 5 metabolic pathway and stress associated genes. Highest concentration and 72-h exposure caused upregulation of 1 cytochrome P450 (CYP9Z14v2) and 1 insecticide resistance gene (Ldace1), whereas metabolic detoxification gene (Ugt1) was downregulated. At 24-h exposure, highest concentration caused downregulation of another common detoxification gene (Gs), while both exposure times to lowest concentration caused upregulation of the Hsp70 stress tolerance gene. Despite these overall effects, there was a considerable amount of variation among different families in the gene expression levels. Even though the behavioral effects of the fungicide treatments were minor, the expression level differences of the studied genes indicate changes on the metabolic detoxifications and stress-related pathways.
Collapse
Affiliation(s)
- Shahed Saifullah
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Aigi Margus
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Maaria Kankare
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Leena Lindström
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
15
|
Zhang X, Ivantsova E, Perez-Rodriguez V, Cao F, Souders CL, Martyniuk CJ. Investigating mitochondria-immune responses in zebrafish, Danio rerio (Hamilton, 1822): A case study with the herbicide dinoseb. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109357. [PMID: 35500749 DOI: 10.1016/j.cbpc.2022.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022]
Abstract
The dinitrophenol herbicide dinoseb is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Studies in fish demonstrate impaired OXPHOS is associated with altered immune system responses and locomotor activity in fish. The objective of this study was to determine the effect of dinoseb on zebrafish (Danio rerio) during early stages of development. We measured oxygen consumption rates of embryos, transcripts related to OXPHOS, growth, and the immune system (cytokines and immune-signaling transcripts), and locomotor activity. We hypothesized that OXPHOS of fish would be impaired in vivo, leading to altered basal immune system expression and locomotor activity. Oxidative respiration assessments in embryos revealed that dinoseb decreased both mean basal respiration and oligomycin-induced ATP-linked respiration. Expression levels of cytochrome c oxidase complex IV, 3-hydroxyacyl-COA dehydrogenase and superoxide dismutase 1 were decreased in larvae following exposure to dinoseb while succinate dehydrogenase complex flavoprotein subunit A, insulin growth factor 1 (igf1) and igf2a mRNA were increased in abundance. Immune-related transcripts chemokine (C-X-C motif) ligand 1 and matrix metallopeptidase 9 (MMP-9) were decreased in expression levels while toll-like receptor 5a and 5b were increased in expression. In addition, a visual motor response test was conducted on both 6 and 7 dpf larvae to determine if dinoseb impaired locomotor activity. Dinoseb decreased locomotor activity in 7 dpf larvae but not 6 dpf. This study improves knowledge of toxicity mechanisms for dinoseb in early stages of fish development and demonstrates that mitochondrial toxicants may disrupt immune signaling in zebrafish.
Collapse
Affiliation(s)
- Xujia Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Fangjie Cao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA; Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Qin Y, Wang X, Yan X, Zhu D, Wang J, Chen S, Wang S, Wen Y, Martyniuk CJ, Zhao Y. Developmental toxicity of fenbuconazole in zebrafish: effects on mitochondrial respiration and locomotor behavior. Toxicology 2022; 470:153137. [PMID: 35218879 DOI: 10.1016/j.tox.2022.153137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
Triazole fungicides are used to control the disease of cereal crops but may also cause adverse effects on non-target organisms. There is a lack of toxicity data for some triazoles such as fenbuconazole in aquatic organisms. This research was conducted to evaluate the toxicity of fenbuconazole at environmentally relevant concentrations with attention on the mitochondria, antioxidant system, and locomotor activity in zebrafish. Zebrafish were exposed to one concentration of 5, 50, 200 or 500ng/L fenbuconazole for 96h. There was no effect on survival nor percentage of fish hatched, but exposure to 200 and 500ng/L fenbuconazole resulted in malformation and hypoactivity in zebrafish. Oxygen consumption rates (OCR) of embryos were measured to determine if the fungicide impaired mitochondrial respiration. Exposure to 500ng/L fenbuconazole reduced basal OCR and oligomycin-induced ATP linked respiration in exposed fish. Fenbuconazole reduced mitochondrial membrane potential and reduced the activities of mitochondrial Complex II and III. Transcript levels of both sdhc and cyc1, each related to Complex II and III, were also altered in expression by fenbuconazole exposure, consistent with mitochondrial dysfunction in embryos. Fenbuconazole activated the antioxidant system, based upon both transcriptional and enzymatic data in zebrafish. Consistent with mitochondrial impairment, molecular docking confirmed a strong binding capacity of the fungicide at the Qi site of Complex III, revealing this complex is susceptible to fenbuconazole. This study reveals potential toxicity pathways related to fenbuconazole exposure in aquatic organisms; such data can improve risk assessments for triazole fungicides.
Collapse
Affiliation(s)
- Yingju Qin
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Di Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Siying Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Yang Wen
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, School of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida, 32611, USA
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China.
| |
Collapse
|
17
|
Huang T, Wang S, Souders CL, Ivantsova E, Wengrovitz A, Ganter J, Zhao YH, Cheng H, Martyniuk CJ. Exposure to acetochlor impairs swim bladder formation, induces heat shock protein expression, and promotes locomotor activity in zebrafish (Danio rerio) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112978. [PMID: 34794026 DOI: 10.1016/j.ecoenv.2021.112978] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Acetochlor is one of the most widely used herbicides in the world, however, there are few data on the sub-lethal effects of acetochlor on early developmental stages of fish. To address this, we measured survival, deformity, swim bladder formation, embryo oxygen consumption rates, reactive oxygen species (ROS) levels, transcripts (related to swim bladder formation, oxidative damage response, and apoptosis) and behavior responses following exposure to acetochlor (0.001 µM up to 125 µM). Exposure to acetochlor at concentrations 50 µM and above exerted 100% mortality after 3 dpf, and significantly reduced the size of the swim bladder (25 µM). In embryos, basal respiration, oligomycin-induced ATP production, and maximal respiration were decreased 30-60% following a 24 h exposure to 125 μM acetochlor. Acetochlor did not affect ROS levels up to 25 µM in larvae with acute exposure. Acetochlor at 25 µM increased mRNA levels of bax1, hsp70, and hsp90a by ~4-fold in larval zebrafish. In both the visual motor response and light-dark preference test, 25 µM acetochlor increased locomotor activity of larval fish. At lower exposure concentrations, 100 and 1000 nM acetochlor increased the mean time spent in the dark zone, suggesting promotion of anxiolytic behavior. This study presents a comprehensive evaluation of sublethal effects of acetochlor, spanning molecular responses to behavior, which can be used to refine risk assessment decisions for aquatic environments.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Shuo Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
18
|
Huang T, Souders CL, Wang S, Ganter J, He J, Zhao YH, Cheng H, Martyniuk CJ. Behavioral and developmental toxicity assessment of the strobilurin fungicide fenamidone in zebrafish embryos/larvae (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112966. [PMID: 34794025 DOI: 10.1016/j.ecoenv.2021.112966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Strobilurin fungicides are among the most widely used in the world and have characteristics that include high water solubility and toxicity to aquatic organisms. While several studies report on mechanisms of toxicity of strobilurins in fish, there are no data on the sub-lethal toxicity of fish to the fungicide fenamidone. To address this gap, survival and hatch rate, deformities, mitochondrial bioenergetics, expression of oxidative stress and apoptotic genes, and behavior (locomotor activity and anxiolytic-related behaviors) were assessed in zebrafish embryos and larvae following exposure to fenamidone. Fenamidone negatively affected development of zebrafish embryos, causing a delay of hatching time at concentrations of 2.5 and 5 μM. Fenamidone caused morphological deformities in zebrafish, including pericardial edema, yolk sac edema, tail deformities, and spinal curvature. Exposure to 1.5 μM fenamidone reduced surface area of swim bladder in larvae at 6 dpf. Fenamidone significantly reduced oxygen consumption rates of embryos; 5 μM fenamidone decreased basal respiration (~85%), oligomycin induced ATP-linked respiration (~70%), FCCP-induced maximal respiration (~75%) and non-mitochondrial respiration (~90%) compared to controls. Sod2 mRNA levels were decreased by fenamidone in larval fish. Locomotor activity was significantly decreased in zebrafish larvae following exposure to 2 μM fenamidone but there was no evidence for anxiolytic nor anxiety-related behaviors (exposures of 100 nM up to 1.5 µM). This study addresses a data gap for potential risks associated with fenamidone exposure in developing fish.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Shuo Wang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Hoffmann S, Marigliani B, Akgün-Ölmez SG, Ireland D, Cruz R, Busquet F, Flick B, Lalu M, Ghandakly EC, de Vries RBM, Witters H, Wright RA, Ölmez M, Willett C, Hartung T, Stephens ML, Tsaioun K. A Systematic Review to Compare Chemical Hazard Predictions of the Zebrafish Embryotoxicity Test With Mammalian Prenatal Developmental Toxicity. Toxicol Sci 2021; 183:14-35. [PMID: 34109416 PMCID: PMC8404989 DOI: 10.1093/toxsci/kfab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Originally developed to inform the acute toxicity of chemicals on fish, the zebrafish embryotoxicity test (ZET) has also been proposed for assessing the prenatal developmental toxicity of chemicals, potentially replacing mammalian studies. Although extensively evaluated in primary studies, a comprehensive review summarizing the available evidence for the ZET's capacity is lacking. Therefore, we conducted a systematic review of how well the presence or absence of exposure-related findings in the ZET predicts prenatal development toxicity in studies with rats and rabbits. A two-tiered systematic review of the developmental toxicity literature was performed, a review of the ZET literature was followed by one of the mammalian literature. Data were extracted using DistillerSR, and study validity was assessed with an amended SYRCLE's risk-of-bias tool. Extracted data were analyzed for each species and substance, which provided the basis for comparing the 2 test methods. Although limited by the number of 24 included chemicals, our results suggest that the ZET has potential to identify chemicals that are mammalian prenatal developmental toxicants, with a tendency for overprediction. Furthermore, our analysis confirmed the need for further standardization of the ZET. In addition, we identified contextual and methodological challenges in the application of systematic review approaches to toxicological questions. One key to overcoming these challenges is a transition to more comprehensive and transparent planning, conduct and reporting of toxicological studies. The first step toward bringing about this change is to create broad awareness in the toxicological community of the need for and benefits of more evidence-based approaches.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- seh consulting + services, 33106 Paderborn, Germany
| | - Bianca Marigliani
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, 12231-280 São Paulo, Brazil
| | - Sevcan Gül Akgün-Ölmez
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, 34722, Turkey
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Rebecca Cruz
- Laboratory of Dental Clinical Research, Universidade Federal Fluminense, Niterói, 20520-040 Rio de Janeiro, Brazil
| | | | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | - Manoj Lalu
- Department of Anesthesiology and Pain Medicine, Ottawa Hospital Research Institute, Ottawa, K1H 8L6 Ontario, Canada
| | - Elizabeth C Ghandakly
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Rob B M de Vries
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Systematic Review Centre for Laboratory Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, 6500HB Nijmegen, The Netherlands
| | | | - Robert A Wright
- William H. Welch Medical Library, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Metin Ölmez
- Umraniye Family Health Center (No. 44), Turkish Ministry of Health, 34760 Istanbul, Turkey
| | - Catherine Willett
- Humane Society International, Washington, 20037 District of Columbia, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Martin L Stephens
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
20
|
Souders CL, Wei C, Schmidt JT, Da Fonte DF, Xing L, Trudeau VL, Martyniuk CJ. Mitochondria of teleost radial glia: A novel target of neuroendocrine disruption by environmental chemicals? Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108995. [PMID: 33545344 DOI: 10.1016/j.cbpc.2021.108995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022]
Abstract
In teleost fish, radial glial cells (RGCs) are progenitor cells for neurons and the major cell type synthesizing neuroestrogens. We hypothesized that chemical exposure impairs mitochondrial bioenergetics of RGCs, which then may lead to downstream consequences for neuroestrogen production. Here we provide proof of concept that mitochondria of RGCs can be perturbed by fungicides. We isolated RGCs from a mixed sex population of goldfish (Carassius auratus) and measured metabolic capacity of primary cells to a model mitotoxin fluazinam, a broad-spectrum fungicide that inhibits mitochondria electron transport chain (or ETC) Complex I. Using immunocytochemistry and real-time PCR, we demonstrate that the goldfish primary cell cultures are highly enriched for glia after multiple passages. Cytotoxicity assays revealed that glia treated with >25 μM fluazinam for 24 and 48-h showed reduced viability. As such, metabolic assays were conducted with non-cytotoxic concentrations (0.25-12.5 μM). Fluazinam did not affect oxygen consumption rates of RGCs at 24 h, but after 48 h, oligomycin induced ATP-linked respiration was decreased by both 6.25 and 12.5 μM fluazinam. Moreover, concentrations as low as 0.25 μM disrupted the mitochondrial membrane potential of RGCs, reflecting strong uncoupling effects of the fungicide on mitochondria. Here we provide proof of concept that mitochondrial bioenergetics of teleostean RGCs can be responsive to agrochemicals. Additional studies are required to address low-dose exposures in vivo and to determine if metabolic disruption impairs neuroendocrine functions of RGCs. We propose this mechanism constitutes a novel aspect of neuroendocrine disruption, significant because dysregulation of neuron-glia communication is expected to contribute to neuroendocrine disruption.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Chi Wei
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jordan T Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Dillon F Da Fonte
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Lei Xing
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
21
|
Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116671. [PMID: 33582629 DOI: 10.1016/j.envpol.2021.116671] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Strobilurins are popular fungicides used in agriculture on a global scale. Due to their widespread use as agrochemicals, they can enter aquatic environments at concentrations that can elicit adverse effects in organisms. This review synthesizes the current state of knowledge regarding the toxic effects of strobilurin fungicides on aquatic species, including algal species, Daphnia magna, and fish species, to determine risk to aquatic organisms and ecosystems. Data show that the toxicities of strobilurins vary widely across aquatic species. Strobilurins bind cytochrome bc1 in mitochondrial complex III in fungi, and as such, research in aquatic species has focused on mitochondria-related endpoints following exposures to strobilurins. In fish, studies into the activities of mitochondrial complexes and the expression of genes involved in the electron transfer chain have been conducted, converging on the theme that mitochondrial complexes and their enzymes are impaired by strobilurins. In general, the order of toxicity of strobilurins for fish species are pyraoxystrobin > pyraclostrobin ≈ trifloxystrobin > picoxystrobin > kresoxim-methyl > fluoxastrobin > azoxystrobin. In addition to mitochondrial toxicity, studies also report genotoxicity, immunotoxicity, cardiotoxicity, neurotoxicity, and endocrine disruption, and each of these events can potentially impact whole organism-level processes such as development, reproduction, and behavior. Screening data from the US Environmental Protection Agency ToxCast database supports the hypothesis that these fungicides may act as endocrine disruptors, and high throughput data suggest estrogen receptor alpha and thyroid hormone receptor beta can be activated by some strobilurins. It is recommended that studies investigate the potential for endocrine disruption by strobilurins more thoroughly in aquatic species. Based on molecular, physiological, and developmental outcomes, a proposed adverse outcome pathway is presented with complex III inhibition in the electron transfer chain as a molecular initiating event. This review comprehensively addresses sub-lethal toxicity mechanisms of strobilurin fungicides, important as the detection of strobilurins in aquatic environments suggests exposure risks in wildlife.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
22
|
Niu X, Xu S, Yang Q, Xu X, Zheng M, Li X, Guan W. Toxic effects of the dinoflagellate Karenia mikimotoi on zebrafish (Danio rerio) larval behavior. HARMFUL ALGAE 2021; 103:101996. [PMID: 33980436 DOI: 10.1016/j.hal.2021.101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Karenia mikimotoi is a toxic dinoflagellate that forms harmful blooms in coastal waters, threatening aquaculture worldwide. However, we do not know whether K. mikimotoi has a neurotoxic effect on aquatic animal behavior. Thus, this study investigated potential K. mikimotoi neurotoxicity in zebrafish larvae. Cells of K. mikimotoi were collected at the mid-exponential phase from a batch culture to prepare ruptured cell solutions (RCS). At 6 h post-fertilization (hpf), zebrafish embryos were exposed to different RCS concentrations (0, 102, 103, 104, and 2.5 × 104 cells mL-1). After 120 hpf, treated larvae were collected to analyze locomotor behavior; activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT); and expression of genes related to neurodevelopment. We found that RCS did not affect survival rate, but significantly decreased larval locomotion, as well as their AChE, SOD, and CAT activity. Additionally, the examination of the day-night behavioral experiment revealed RCS decreased locomotion only at night. Zebrafish larvae were also significantly hypoactive in response to light and sound stimulations. Of the neurodevelopment genes, three (th, neurog1, and neurod1) were downregulated, while two (bdnf and manf) were upregulated. Our study suggests that K. mikimotoi neurotoxicity occurs through causing oxidative damage, as well as disorders in the cholinergic system and nervous system development. The results provide new insight that K. mikimotoi in low abundance did not cause significant lethal effect but still exhibited significant neurotoxicity on aquatic animals.
Collapse
Affiliation(s)
- Xiaoqin Niu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Shengnan Xu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
23
|
Li XY, Qin YJ, Wang Y, Huang T, Zhao YH, Wang XH, Martyniuk CJ, Yan B. Relative comparison of strobilurin fungicides at environmental levels: Focus on mitochondrial function and larval activity in early staged zebrafish (Danio rerio). Toxicology 2021; 452:152706. [PMID: 33548355 DOI: 10.1016/j.tox.2021.152706] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/27/2023]
Abstract
Strobilurin fungicides are used globally and have been detected in microgram per liter concentrations in aquatic environments. Here, we determined the potential toxicity of four commonly used strobilurins (azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin) on mitochondrial function and locomotor activity of larval zebrafish at an environmentally relevant level. As the mode of action of strobilurins in fungi is binding to cytochrome bc1 in mitochondrial complex III, we evaluated exposure effects on mitochondrial oxidative phosphorylation of zebrafish, by measuring oxygen consumption rates, mitochondria-related enzyme activities, and transcripts levels for genes associated with the electron transfer chain and citric acid cycle. We found that 50 nM pyraclostrobin and trifloxystrobin lowered basal respiration, oligomycin-induced ATP respiration, and maximal respiration of embryos. Dysfunction in mitochondrial bioenergetics was associated with changes in mitochondrial complex III activity and transcripts of oxidative respiration and stress-related genes. Lower activity of complex III, and reduced cytb mRNA levels were hypothesized to contribute to reduced electron supply to complex IV and V. Both coxI and atp6 were up-regulated, suggesting a compensatory response to impaired oxidative respiration. Cluster analysis indicated that strobilurin-induced oxidative stress and cytb transcript were related to impaired oxidative phosphorylation. We also assessed larval behavior responses, as reduced ATP can affect activity. We observed that pyraclostrobin and trifloxystrobin induced hypoactive responses in zebrafish. At 50 nM, azoxystrobin and kresoxim-methyl exerted no effects on mitochondrial function nor locomotion of zebrafish. Studies such as this are important for determining sublethal toxicity to these fungicides, as widespread detection of strobilurins in aquatic environments suggests there is a potential for adverse effects in aquatic organisms.
Collapse
Affiliation(s)
- Xiao Y Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying J Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao H Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Dreier DA, Nouri MZ, Denslow ND, Martyniuk CJ. Lipidomics reveals multiple stressor effects (temperature × mitochondrial toxicant) in the zebrafish embryo toxicity test. CHEMOSPHERE 2021; 264:128472. [PMID: 33039916 DOI: 10.1016/j.chemosphere.2020.128472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 05/27/2023]
Abstract
Aquatic organisms are exposed to multiple stressors in the environment, including contaminants and rising temperatures due to climate change. The objective of this study was to characterize the effect of increased temperature on chemical-induced toxicity and lipid profiles during embryonic development and hatch in fish. This is important because temperature and many environmental chemicals modulate cellular metabolism and lipids, both of which play integral roles for normal embryonic development. As such, we employed the zebrafish embryo toxicity test for multiple stressor exposures, using the mitochondrial toxicant 2,4-Dinitrophenol (DNP; 6-30 μM) in conjunction with different temperature treatments (28 °C and 33 °C). We found a positive relationship between temperature and lethality at lower DNP concentrations, suggesting temperature stress can increase toxicant sensitivity. Next, we used LC-MS/MS for lipidomics following exposure to sublethal stressor combinations. It was determined that temperature stress at 33 °C augmented DNP-induced effects on the lipidome, including the upregulation of bioactive lipids involved in apoptosis (e.g., ceramides). These data reveal potential implications for climate change and sensitivity to environmental pollution and demonstrate the utility of lipidomics to characterize metabolic pathways underlying toxicity. Data such as these are expected to advance adverse outcome pathways by establishing multiple stressor networks that include intermediate lipid responses.
Collapse
Affiliation(s)
- David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammad-Zaman Nouri
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Liang L, Cheng X, Dai T, Wang Z, Li J, Li X, Lei B, Liu P, Hao J, Liu X. Metabolic Fingerprinting for Identifying the Mode of Action of the Fungicide SYP-14288 on Rhizoctonia solani. Front Microbiol 2020; 11:574039. [PMID: 33362733 PMCID: PMC7755717 DOI: 10.3389/fmicb.2020.574039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023] Open
Abstract
The fungicide SYP-14288 has a high efficiency, low toxicity, and broad spectrum in inhibiting both fungi and oomycetes, but its mode of action (MoA) remains unclear on inhibiting fungi. In this study, the MoA was determined by analyzing the metabolism and respiratory activities of Rhizoctonia solani treated by SYP-14288. Wild-type strains and SYP-14288-resistant mutants of R. solani were incubated on potato dextrose agar amended with either SYP-14288 or one of select fungicides acting on fungal respiration, including complex I, II, and III inhibitors; uncouplers; and ATP synthase inhibitors. Mycelial growth was measured under fungicides treatments. ATP content was determined using an ATP assay kit, membrane potential of mitochondria was detected with the JC-1 kit, and respiratory rate was calculated based on the measurement of oxygen consumption of R. solani. A model of metabolic fingerprinting cluster was established to separate oxidation inhibitors and phosphorylation inhibitors. All the results together displayed a clear discrimination between oxidation inhibitors and phosphorylation inhibitors, and the latter inhibited ATP synthase production having or uncoupling activities. Based on the model, SYP-14288 was placed in phosphorylation inhibitor group, because it significantly reduced ATP content and membrane potential of mitochondria while increasing respiratory rate in R. solani. Therefore, the MoA of SYP-14288 on R. solani was confirmed to involve phosphorylation inhibition and possibly uncoupling activity.
Collapse
Affiliation(s)
- Li Liang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xingkai Cheng
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tan Dai
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhiwen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jin Li
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xueming Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Bin Lei
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Tao Y, Yang Y, Jiao Y, Wu S, Zhu G, Akindolie MS, Zhu T, Qu J, Wang L, Zhang Y. Monobutyl phthalate (MBP) induces energy metabolism disturbances in the gills of adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115288. [PMID: 32795888 DOI: 10.1016/j.envpol.2020.115288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Monobutyl phthalate (MBP) is a primary metabolite of an environmental endocrine disruptor dibutyl phthalate (DBP), which poses a potential threat to living organisms. In this research, the acute toxicity of MBP on energy metabolism in zebrafish gills was studied. Transmission electron microscopy (TEM) results show that 10 mg L-1 MBP can induce mitochondrial structural damage of chloride cells after 96 h of continuous exposure. The activity of ion ATPase and the expression level of oxidative phosphorylation-related genes suggest that MBP interferes with ATP synthesis and ion transport. Further leading to a decrease in mitochondrial membrane potential (MMP) and cell viability, thereby mediating early-stage cell apoptosis. Through a comprehensive analysis of principal component analysis (PCA) and integrated biomarker response (IBR) scores, atp5a1, a subunit of mitochondrial ATP synthase, is mainly inhibited by MBP, followed by genes encoding ion ATPase (atp1b2 and atp2b1). Importantly, MBP inhibits aerobic metabolism by inhibiting the key enzyme malate dehydrogenase (MDH) in the TCA cycle, forcing zebrafish to maintain ATP supply by enhancing anaerobic metabolism.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Song Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangxue Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
27
|
Comparative Transcriptome Analysis Reveals the Mechanism Related to Fluazinam Stress of Panonychus citri (Acarina: Tetranychidae). INSECTS 2020; 11:insects11110730. [PMID: 33114558 PMCID: PMC7692568 DOI: 10.3390/insects11110730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
Simple Summary The citrus red mite, Panonychus citri, is an important pest that causes serious citrus production losses in China. The insecticide fluazinam has a good control effect on the pest mites; however, its mechanism of action on mites remains unclear. In this study, we analyzed the transcriptomic sequencing and differential expression genes in P. citri treated with fluazinam, and identified some of the genes potential involved in detoxification metabolism related with the fluazinam exposure. Evaluating the efficacy of fluazinam, and analyzing the transcriptome data of P. citri under fluazinam stress, potentially provide a new agent for prevention and control of P. citri, and also preliminary research results for exploring the mechanism of action of fluazinam on P. citri. Given the up-regulated expression levels of genes for Mn-superoxide dismutase and catalase, we speculate that they play an important role in fluazinam-stress action on P. citri. Abstract The use of a large number of chemical acaricides to control these pest mites has led to an increasing problem of pesticide resistance, which has always been the difficulty in integrated pest management (IPM). Fluazinam has a good control effect on Panonychus citri, the serious pest on citrus; however, we only know the mechanism of action of fluazinam as a fungicide and its mechanism of action on mites remains unclear. Through analysis using Illumina high-throughput transcriptomic sequencing and differential expression genes in P. citri treated with fluazinam, 59 cytochrome P450 genes, 23 glutathione s-transferase genes, five carboxylate esterase genes, 11 superoxide dismutase genes and 15 catalase genes were identified. The Gene Ontology enrichment and the enrichment of KEGG results showed that the treatment were enrichment for redox enzyme pathways. Evaluating the efficacy of fluazinam, and analyzing the transcriptome data of P. citri under fluazinam stress, potentially provide a new agent for prevention and control of P. citri, and also preliminary research results for exploring the mechanism of action of fluazinam on P. citri. Given the up-regulated expression levels of genes for Mn-superoxide dismutase and catalase, we speculate that they play an important role in fluazinam-stress action on P. citri.
Collapse
|
28
|
Cheng X, Man X, Wang Z, Liang L, Zhang F, Wang Z, Liu P, Lei B, Hao J, Liu X. Fungicide SYP-14288 Inducing Multidrug Resistance in Rhizoctonia solani. PLANT DISEASE 2020; 104:2563-2570. [PMID: 32762501 DOI: 10.1094/pdis-01-20-0048-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rhizoctonia solani is a widely distributed soilborne plant pathogen, and can cause significant economic losses to crop production. In chemical controls, SYP-14288 is highly effective against plant pathogens, including R. solani. To examine the sensitivity to SYP-14288, 112 R. solani isolates were collected from infected rice plants. An established baseline sensitivity showed that values of effective concentration for 50% growth inhibition (EC50) ranged from 0.0003 to 0.0138 μg/ml, with an average of 0.0055 ± 0.0030 μg/ml. The frequency distribution of the EC50 was unimodal and the range of variation factor (the ratio of maximal over minimal EC50) was 46.03, indicating that all wild-type strains were sensitive to SYP-14288. To examine the risk of fungicide resistance, 20 SYP-14288-resistant mutants were generated on agar plates amended with SYP-14288. Eighteen mutants remained resistant after 10 transfers, and their fitness was significantly different from the parental strain. All of the mutants grew more slowly but showed high virulence to rice plants, though lower than the parental strain. A cross-resistance assay demonstrated that there was a positive correlation between SYP-14288 and fungicides having or not having the same mode of action with SYP-14288, including fluazinam, fentin chloride, fludioxonil, difenoconazole, cyazofamid, chlorothalonil, and 2,4-dinitrophen. This result showed a multidrug resistance induced by SYP-14288, which could be a concern in increasing the spectrum of resistance in R. solani to commonly used fungicides.
Collapse
Affiliation(s)
- Xingkai Cheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xuejing Man
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zitong Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Li Liang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhiwen Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Bin Lei
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi 830091, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, U.S.A
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
29
|
Li T, Xiu Q, Zhang J, Wang JX, Duan YB, Zhou MG. Pharmacological Characteristics and Efficacy of Fluazinam Against Corynespora cassiicola, Causing Cucumber Target Spot in Greenhouses. PLANT DISEASE 2020; 104:2449-2454. [PMID: 32579058 DOI: 10.1094/pdis-12-19-2649-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cucumber target spot, caused by Corynespora cassiicola, is a devastating fungal disease in greenhouses in China. Lack of resistant cultivars and unscientific use of fungicides aggravated the difficulty to manage this disease. In recent years, resistance of C. cassiicola to benzimidazoles, quinone outside inhibitors, and succinate dehydrogenase inhibitors has occurred in China. Here, we tested the fluazinam sensitivity distribution of 79 C. cassiicola isolates from different provinces in China based on mycelial growth inhibition. The EC50 values of fluazinam ranged from 0.1002 to 0.3129 µg/ml with a mean of 0.2136 ± 0.0495 µg/ml, and the sensitivity frequency was normally distributed (P = 0.2083, Shapiro-Wilk test). Meanwhile, the EC50 values for spore germination inhibition ranged from 0.0992 to 0.2278 µg/ml with a mean of 0.1499 ± 0.0504 µg/ml. This indicated that fluazinam exhibited an excellent in vitro fungicidal activity on both mycelial growth and spore germination. In addition, fluazinam also exhibited a good in planta control efficacy on detached cucumber leaves in the protective and curative assays. Moreover, the biological and physiological characteristics of C. cassiicola as affected by fluazinam were determined. Fluazinam not only significantly inhibited respiration and adenosine triphosphate production but also caused the increase of cell membrane permeability and the dysfunctions of cellular homeostasis. Interestingly, we found that fluazinam especially damaged vacuole structures, causing the redistribution of vacuole substances. Taken together, our findings provide not only essential references for resistance management of C. cassiicola but also interesting insights for further revealing the action mode of fluazinam against plant pathogens.
Collapse
Affiliation(s)
- Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance and Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Bing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance and Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance and Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Zhang X, Zhang P, Perez-Rodriguez V, Souders CL, Martyniuk CJ. Assessing the toxicity of the benzamide fungicide zoxamide in zebrafish (Danio rerio): Towards an adverse outcome pathway for beta-tubulin inhibitors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103405. [PMID: 32446185 DOI: 10.1016/j.etap.2020.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Commercial benzamide fungicides are applied to crops to control damage caused by oomycete fungi and are used as veterinary pharmaceuticals in aquaculture. The mechanism of action of these fungicides is to induce mitotic arrest via binding to beta-tubulin, thus inhibiting tubulin polymerization. However, there are little toxicity data available for benzimidazole fungicides in fish. To address this knowledge gap, we conducted zebrafish embryo toxicity tests to assess deformities, survival, and sub-lethal responses following exposure to zoxamide (0, 0.5, 1.0, 2.5, 5.0 and 10 μM zoxamide). We hypothesized that skeletal deformities would be prevalent in zebrafish due to its mechanism of inhibiting beta-tubulin polymerization. Zoxamide was relatively toxic to zebrafish embryos and larvae, and survival was reduced ∼50 % at 2 days post fertilization (dpf) with 10 μM exposure and over time at 6 dpf, 2.5 μM exposure reduced survival by ∼20 %. Frequency of hatch was also reduced/delayed in zebrafish at 3 dpf with >2.5 μM zoxamide. Pericardial edema, body length shortening, and spine curvature were observed in larvae exposed to >5 μM. Mitochondrial bioenergetics were assessed in ∼30 hpf embryos (24-hour exposure) using an XFe24 Flux Analyzer and regression analysis revealed a negative relationship between basal respiration and zoxamide concentration. Superoxide dismutase 1 and caspase 3 mRNA levels were both decreased in 6 dpf larvae exposed to 2.5 μM zoxamide, but were not changed in expression at 0.5 nor 1 μM zoxamide. Continuous 6-day exposure to zoxamide reduced larval activity at 2.5 μM; conversely a 24-hour exposure (at 5-6 dpf) induced hyperactivity at 5 μM suggesting dose and time dependent effects on fish behavior. Based on sub-lethal endpoints, we conceptualize an adverse outcome pathway for chemicals that inhibit tubulin polymerization.
Collapse
Affiliation(s)
- Xujia Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Peng Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
Zhao J, Tan Z, Wen Y, Fan S, Liu C. Dissipation of fluazinam in citrus groves and a risk assessment for its dietary intake. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2052-2056. [PMID: 31875964 DOI: 10.1002/jsfa.10227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Citrus is one of the most important fruit crops worldwide. Fluazinam is a fungicide that is used to control fungal diseases, and its dissipation and residue in citrus fruits should be studied. RESULTS A Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure combined with gas chromatography with an electron capture detector (GC-ECD) has been developed. The fortified recoveries ranged from 82.1% to 105.9%, with relative standard deviations (RSDs) of less than 5.7%. Fluazinam dissipated relatively quickly following first-order kinetics, with a half-life of 8.5-9.5 days. The experiments on the terminal residue of fluazinam in citrus were conducted at six locations in China, and the risk quotient (RQ) method was applied to citrus fruits for dietary exposure risk assessment based on the terminal residue test. The RQs of fluazinam at three preharvest intervals (PHIs) (21, 28, and 35 days) were all less than 100%, which is an acceptable level for human consumption. The present study provides a reference for the establishment of maximum residue limit (MRL) for fluazinam in citrus. CONCLUSIONS The dissipation and residues of fluazinam in citrus were monitored. The half-life of less than 10 days showed that fluazinam could degrade relatively easily in citrus. The risk assessment also indicated the intake safety of fluazinam in citrus. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junlong Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yan Wen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shuai Fan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture& Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Wang XH, Souders CL, Xavier P, Li XY, Yan B, Martyniuk CJ. The pyrethroid esfenvalerate induces hypoactivity and decreases dopamine transporter expression in embryonic/larval zebrafish (Danio rerio). CHEMOSPHERE 2020; 243:125416. [PMID: 31995874 DOI: 10.1016/j.chemosphere.2019.125416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Esfenvalerate is a pyrethroid insecticide used widely for agricultural and residential applications. This insecticide has been detected in aquatic environments at concentrations that can induce sub-lethal effects in organisms. In this study, zebrafish embryos were used to examine the effects of environmentally-relevant concentrations of esfenvalerate on development and behavior. It was hypothesized that esfenvalerate exposure would impair locomotion due to its effects on the central nervous system. We also measured mitochondrial bioenergetics and the expression of genes (dopamine system) as putative mechanisms of locomotor impairment. Concentrations of 0.02, 0.2 and 2 μg/L esfenvalerate did not induce significant mortality nor deformity in zebrafish, but there was an acceleration in hatching time for zebrafish exposed to 2 μg/L esfenvalerate. As an indicator of neurotoxicity, the Visual Motor Response (VMR) test was conducted with 5, 6, and 7 dpf zebrafish after continuous exposure, and higher concentrations were used (4 and 8 μg/L esfenvalerate) to better discern age-and dose dependent responses in behavior. Experiments revealed that, unlike the other stages, 6 dpf larvae showed evidence for hypo-activity with esfenvalerate, suggesting that different stages of larval development may show increased sensitivity to pyrethroid exposure. This may be related to age-dependent maturation of the central nervous system. We hypothesized that reduced larval activity may be associated with impaired production of ATP and the function of mitochondria at earlier life stages, however dramatic alterations in oxidative phosphorylation were not observed. Based on evidence that dopamine regulates behavior and studies showing that other pyrethroids affect dopamine system, we measured transcripts involved in dopaminergic signaling. We found that dopamine active transporter was down-regulated with 0.2 μg/L esfenvalerate. Lastly, we comprehensively summarize the current literature (>20 studies) regarding the toxicity of pyrethroids in zebrafish, which is a valuable resource to those studying these pesticides. This study demonstrates that esfenvalerate at environmentally-relevant levels induces hypoactivity that are dependent upon the age of the zebrafish, and these behavioral changes are hypothesized to be related to impaired dopamine signaling.
Collapse
Affiliation(s)
- Xiao H Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Priscilla Xavier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Xiao Y Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
33
|
Souders CL, Perez-Rodriguez V, El Ahmadie N, Zhang X, Tischuk C, Martyniuk CJ. Investigation into the sub-lethal effects of the triazole fungicide triticonazole in zebrafish (Danio rerio) embryos/larvae. ENVIRONMENTAL TOXICOLOGY 2020; 35:254-267. [PMID: 31670470 DOI: 10.1002/tox.22862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Global use of azole fungicides is expected to increase over the next several years. Triticonazole is a triazole fungicide that is used for turf protection, residential, and other commercial applications. As such, it can enter local rural and urban water systems via run-off and rain events. Early life stages of aquatic organisms can be susceptible to pesticides that enter the water, but in the case of triticonazole, data on the potential for subacute toxicity are lacking. Here, we determined the effects of triticonazole on development, oxygen consumption rates, and locomotor activity in zebrafish to address this knowledge gap. Wild-type zebrafish (ABTu strain) embryos and larvae were exposed to triticonazole (1-100 μM) in early development for different lengths of time depending on the assay conducted. Triticonazole did not affect survival nor induce significant deformity (pericardial edema, skeletal defects) in zebrafish at doses up to 100 μM. Oxygen consumption rate was measured in embryos after 24 and 48 hour exposure to triticonazole beginning at ∼6 hpf using the XFe flux analyzer. Triticonazole did not affect basal respiration, oligomycin-induced ATP linked respiration, FCCP-induced maximum respiration, proton leak, spare capacity, nor non-mitochondrial respiration at doses up to 100 μM for 24 hours, even for exposure up to 250 μM for 48 hours. To determine whether the fungicide affected larval swimming activity, the visual motor response test was conducted following triticonazole exposure for 6 days. Larval zebrafish exposed to triticonazole showed hypoactivity in the dark following a 100 μM treatment, suggesting that the fungicide can affect the locomotor activity of zebrafish, albeit at relatively high levels. Given the fact that sublethal biological responses were absent at lower environmentally relevant concentrations, we conclude that triticonazole, relative to other triazole fungicides and types of pesticides, exhibits a relatively low risk of toxicity to the early life stages of fish.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Nader El Ahmadie
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Xujia Zhang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Claire Tischuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
34
|
Kumar N, Willis A, Satbhai K, Ramalingam L, Schmitt C, Moustaid-Moussa N, Crago J. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). CHEMOSPHERE 2020; 241:124980. [PMID: 31600620 DOI: 10.1016/j.chemosphere.2019.124980] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Azoxystrobin and pyraclostrobin are broad spectrum strobilurin fungicides that have been measured in the aquatic environment. Strobilurins inhibit mitochondrial respiration by binding to the mitochondrial respiratory complex III. The goal of this study was to investigate mitochondrial dysfunction and oxidative stress in the developing zebrafish from exposure to azoxystrobin and pyraclostrobin. Exposure studies were performed where zebrafish embryos were exposed to azoxystrobin and pyraclostrobin at 0.1, 10, 100 μg/L from 4 hpf to 48 hpf to measure mitochondrial dysfunction and oxidative stress mRNA transcripts, and 5 dpf to measure movement, growth, oxygen consumption, enzymatic activities, and mRNA transcripts. Results from this study indicated that there was a significant reduction in both basal and maximal respiration at 48 hpf in zebrafish exposed to 100 μg/L of pyraclostrobin. There was no difference in oxidative stress or apoptotic mRNA transcripts at 48 hpf, indicating that the two strobilurins were acting first on mitochondrial function and not directly through oxidative stress. At 5 dpf, standard body length was significantly reduced with exposure to pyraclostrobin and azoxystrobin exposure as compared to the control. These reductions in apical endpoints corresponded with increases in oxidative stress and apoptotic mRNA transcripts in treatment groups at 5 dpf indicating that strobilurins' exposure followed the adverse outcome pathway for mito-toxicants. Our results indicate that strobilurins can decrease mitochondrial function, which in turn lead to diminished growth and movement.
Collapse
Affiliation(s)
- N Kumar
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA.
| | - A Willis
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - K Satbhai
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - L Ramalingam
- Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - C Schmitt
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | | | - J Crago
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
35
|
Perez-Rodriguez V, Wu N, de la Cova A, Schmidt J, Denslow ND, Martyniuk CJ. The organochlorine pesticide toxaphene reduces non-mitochondrial respiration and induces heat shock protein 70 expression in early-staged zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108669. [PMID: 31712185 DOI: 10.1016/j.cbpc.2019.108669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Toxaphene is a restricted-use pesticide produced by reacting chlorine gas with camphene. It was heavily used as a pesticide for agricultural purposes in the 1960-1970s, but despite being banned >30 years ago, it can remain elevated in the soil due to its resistance to metabolic degradation; this has led to longstanding concerns about elevated levels of toxaphene and other organochlorine pesticides (OCPs) in the environment. The objective of this study were to determine the effects of waterborne exposure to toxaphene on early life stages of zebrafish. Based on the LC50, zebrafish embryos were exposed to control (embryo rearing media or DMSO) or to one dose of toxaphene ranging between 0.011 and 111.1 μg/mL from 6 h post fertilization (hpf) up to 120 hpf. Significant mortality and hatch time delays were observed in embryos exposed to toxaphene (at or above 0.11 and 1.11 μg/mL, depending on the assay). Higher prevalence of deformities was noted at higher doses (≥0.011 μg/mL), and these included pericardial edema and skeletal deformities. As energy production is important for normal development, mitochondrial bioenergetics were assessed in embryos following toxaphene exposure. Embryos exposed to 11.1 or 111 μg/mL toxaphene for 24 h showed lower non-mitochondrial respiration (~30%) compared to both solvent and no treatment controls. Expression of transcripts related to oxidative damage responses and apoptosis were measured and heat shock protein 70 was significantly increased with 111 μg/mL toxaphene (14.5 fold), while the expression levels of caspase 3, caspase 9, and superoxide dismutase 1 were not changed. These data demonstrate that developmental deformities induced by toxaphene include pericardial edema and skeletal deformity, and that toxaphene can affect oxidative phosphorylation in early staged zebrafish.
Collapse
Affiliation(s)
- Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nan Wu
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Jiangsu Collaborative Innovation Center of Regional Agriculture and Environmental Protection, Jiangsu Engeering Laboratory for Breeding Aquatic Organisms, School of Life Science, Huaiyin Normal University, Huai'An City, 223300, Jiangsu Province, P.R. China
| | - Alejandro de la Cova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jordan Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
36
|
Cao F, Souders CL, Li P, Pang S, Liang X, Qiu L, Martyniuk CJ. Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:227-237. [PMID: 30529917 DOI: 10.1016/j.ecoenv.2018.11.110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/14/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Broad applications and exposure to the fungicide maneb can lead to toxicity in non-target organisms. Maneb is also associated with neurogenerative diseases such as Parkinson's disease (PD). The objectives of this study were to determine the acute toxicity of maneb to zebrafish by measuring mitochondrial bioenergetics, locomotor activity, and the expression of genes related to the oxidative damage response, as well as those related to dopamine signaling due to its association with PD. Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to either solvent control (0.1% DMSO, v/v), or one dose of 0.1, 0.5, 1.0 and 10.0 µM maneb for 96 h. Maneb was moderately toxic to zebrafish embryos, and had a 96-h LC50 value of 4.29 μM (~ 1.14 mg/L). Maneb induced a dose-dependent increase in mortality, decreased hatching rate, and increased notochord deformity rate at both 1.0 and 10.0 µM after 72 and 96 h. Total body length was also significantly reduced with 1.0 µM maneb. A 50-60% decrease in mean basal oxygen consumption rate was also observed in embryos following a 24 hpf exposure to 10.0 µM maneb but oligomycin-induced ATP production and FCCP-induced maximum respiration remained unaffected. No change was detected in the expression levels of genes associated with oxidative stress (sod1 and sod2), nor those related to dopamine synthesis (th1), dopamine transporter (dat), dopamine receptors (drd1, drd2a, drd3, and drd4b). Thus, modifying the expression of these transcripts may not be a mechanism for maneb-induced developmental toxicity in zebrafish. To assess the potential for neurotoxicity, a dark photokinesis assay was conducted in larvae following 7 d exposure to 0.1, 0.5 and 1.0 μM maneb. Larvae exposed to 0.5 and 1.0 μM maneb showed signs related to hypoactivity, and this reduced activity is hypothesized to be associated with notochord defects as this deformity was prevalent at higher concentrations of maneb. Overall, these data demonstrate that maneb negatively affects embryonic development (i.e. notochord development), affects basal oxygen consumption rates of embryos, and induces hypoactivity in larval fish. This study improves understanding regarding the developmental neurotoxicity of the fungicide maneb to zebrafish.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Xuefang Liang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
37
|
Perez-Rodriguez V, Souders CL, Tischuk C, Martyniuk CJ. Tebuconazole reduces basal oxidative respiration and promotes anxiolytic responses and hypoactivity in early-staged zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:87-97. [PMID: 30500453 DOI: 10.1016/j.cbpc.2018.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
Abstract
Triazole fungicides are increasingly used in North America to combat mold and fungi, in order to protect vegetables, citrus, ornamental plants and field crops. To determine the biological impacts of tebuconazole in non-target aquatic organisms, early life stage zebrafish were exposed to 0.1-100 μM tebuconazole for 120 h (5 dpf). There was a significant increase in mortality over time and at 100 μM, only 50% of the animals survived 96 h compared to >95% for all other experimental groups. There was evidence for increased hatching time with 10 μM tebuconazole compared to the control group (~7 h longer at 50% total hatch) or a lack of hatch observed with 100 μM. Oxidative respiration and behavior were evaluated to assess whether the fungicide impaired energy-associated processes. Oxygen consumption rates in embryos (exposed from ~6 hpf) were determined with exposure to 2.5, 25, 50, 100 μM tebuconazole for 24 h using the XFe24 Extracellular Flux Analyzer. Embryos treated with 100 μM showed a ~60% reduction in basal respiration, indicating impaired oxygen consumption and/or changes in resource allocation (e.g. anti-oxidant production, metabolite synthesis). Environmentally-relevant concentrations of tebuconazole did not affect oxidative phosphorylation. As behavior is a sensitive endpoint for toxicity, we measured the dark photokinesis response and conducted a light-dark preference test in 6 dpf larvae following a sub-chronic exposure to 0.1, 1 and 10 μM tebuconazole beginning with 6 hpf embryos. It was observed in two independent experiments for dark photokinesis that 10 μM tebuconazole reduced total distance moved (i.e. hypoactivity) in the dark period by ~25-35%. In the light-dark preference test, there was an increase for mean time in dark zone (~100% increase in the average time/visits per second) and frequency in dark zone (increase of ~35% in average number of visits) with tebuconazole, suggestive of anxiolytic behavior at environmentally-relevant doses. This study demonstrates that exposure to tebuconazole can affect survival, hatch time, oxidative phosphorylation, and behavioral activity of early-staged zebrafish. While survival, hatch time, and mitochondrial bioenergetics were not different than control fish at environmentally-relevant levels of tebuconazole, behavioral responses were detected at concentrations reported in some aquatic environments.
Collapse
Affiliation(s)
- Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Claire Tischuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
38
|
Cao F, Souders CL, Li P, Pang S, Qiu L, Martyniuk CJ. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4913-4923. [PMID: 30569354 DOI: 10.1007/s11356-018-3957-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Cyproconazole is a triazole fungicide used to protect a diverse range of fruits, vegetables, and grain crops. As such, it has the potential to enter aquatic environments and affect non-target organisms. The objective of this study was to assess the acute toxicity of the triazole fungicide cyproconazole to zebrafish embryos by assessing mortality, developmental defects, morphological abnormality, oxidative respiration, and locomotor activity following a 96-h exposure. Zebrafish embryos at 6-h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), or one dose of 10, 25, 50, 100, 250, and 500 μM cyproconazole for 96 h. Data indicated that cyproconazole exhibited low toxicity to zebrafish embryos, with a 96-h LC50 value of 90.6 μM (~ 26.4 mg/L). Zebrafish embryos/larvae displayed a significant decrease in spontaneous movement, hatching rate, and heartbeats/20 s with 50, 100, and 250 μM cyproconazole exposure. Malformations (i.e., pericardial edema, yolk sac edema, tail deformation, and spine deformation) were also detected in zebrafish exposed to ≥ 50 μM cyproconazole, with significant increases in cumulative deformity rate at 48, 72, and 96 hpf. In addition, a 20-30% decrease in basal and oligomycin-induced ATP respiration was observed after 24-h exposure to 500 μM cyproconazole in embryos. To determine if cyproconazole affected locomotor activity, a dark photokinesis assay was conducted in larvae following 7-day exposure to 1, 10, and 25 μM cyproconazole in two independent trials. Activity in the dark period was decreased for zebrafish exposed to 25 μM cyproconazole in the first trial, and hypoactivity was also observed in zebrafish exposed to 1 μM cyproconazole in a second trial, suggesting that cyproconazole can affect locomotor activity. These data improve understanding of the toxicity of cyproconazole in developing zebrafish and contribute to environmental risk assessments for the triazole fungicides on aquatic organisms. We report that, based on the overall endpoints assessed, cyproconazole exhibits low risk for developing fish embryos, as many effects were observed above environmentally-relevant levels.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
39
|
Cao F, Souders CL, Li P, Adamovsky O, Pang S, Qiu L, Martyniuk CJ. Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:303-313. [PMID: 30265938 DOI: 10.1016/j.chemosphere.2018.09.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Ziram is a broad spectrum pesticide that belongs to the class of dimethyl-dithiocarbamate (DTC) fungicides. The objectives of this study were to assess the effects of ziram in developing zebrafish. Ziram was highly toxic to zebrafish embryos, with a 96-h LC50 value of 1082.54 nM (∼0.33 mg/L). Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to solvent control (0.1% DMSO), or one dose of 1, 10, 100, and 1000 nM ziram for 96 h. Ziram induced lethality in a dose-dependent manner, decreased hatching rate and heartbeat, and caused wavy deformities at 72 and 96 hpf at 100 and 1000 nM. Basal oxygen consumption rates of zebrafish at 24 hpf were decreased with 1000 nM, suggesting that ziram affects oxidative phosphorylation. We also measured the expression of transcripts associated with the oxidative stress response (sod1 and sod2) and dopamine receptor signaling at ∼96 h of exposure. There was no difference in the expression of genes related to oxidative stress, nor those related to the dopamine system. Locomotor activity was also assessed in larval zebrafish (7 dpf), and ziram increased total activity, the velocity in light zone, and total distance moved at 10 nM, while it decreased the mean time spent in the dark zone at 1 and 10 nM. Behavioral responses were dependent upon the time point and clutch examined. These data demonstrate that ziram negatively impacts embryonic development (i.e. mortality, hatching, heartbeat and notochord development) of zebrafish, decreases basal respiration of embryos, and alters behavioral responses in larvae.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Lihong Qiu
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Biological impacts of organophosphates chlorpyrifos and diazinon on development, mitochondrial bioenergetics, and locomotor activity in zebrafish (Danio rerio). Neurotoxicol Teratol 2018; 70:18-27. [DOI: 10.1016/j.ntt.2018.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
|