1
|
Yang X, Wang W, Liu X, Xie S, Feng J, Lv J. Nitrogen metabolism functional shifts of indigenous bacteria and effect on nitrogen removal in microalgae-based municipal wastewater treatment system across aeration modes. BIORESOURCE TECHNOLOGY 2025:132881. [PMID: 40562247 DOI: 10.1016/j.biortech.2025.132881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 06/22/2025] [Accepted: 06/22/2025] [Indexed: 06/28/2025]
Abstract
Although the effect of aeration intensity on the performance of microalgae-based wastewater treatment systems has been widely studied, the impact of aeration mode has received less attention. This study explored how different aeration modes influence nitrogen metabolism in microalgae-based wastewater systems using metagenomic analysis. Both continuous aeration (CA) and intermittent aeration (IA) supported rapid bacterial growth and effective pollutant removal. Compared to CA, IA and no-aeration modes significantly enhanced bacterial nitrification and denitrification. Key nitrogen-metabolizing genera such as Paracoccus, Acidovorax, and Rhizobium played major roles in nitrogen cycling. Their abundances were closely associated with NH4+-N, NO3--N, NO2--N, total phosphorus, chemical oxygen demand, dissolved oxygen, bacterial number, and total biomass. Overall, environmental changes induced by different aeration modes significantly shaped indigenous bacterial communities involved in nitrogen metabolism, thereby influencing the abundances of nitrogen metabolism-related genes and, ultimately, nitrogen removal performance.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Wei Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Xudong Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan 030006, China.
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Li X, Zhao J, Lu Z, Zhou J, Zhang W, Hu B. Role of sulfide on DNRA distribution and the microbial community structure in a sulfide-driven nitrate reduction process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28803-28813. [PMID: 38564127 DOI: 10.1007/s11356-024-32912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Microbial nitrate reduction processes involve two competing pathways: denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA). This study investigated the distribution of DNRA in a sole sulfur-driven nitrogen conversion process using a laboratory-scale sequencing biofilm batch reactor (SBBR) through a series of batch tests with varying sulfide/nitrate (S/N) ratios. The results showed that DNRA became more dominant in the sulfide-oxidizing autotrophic denitrification (SOAD) process as the S/N ratio increased to 1.5:1, 1.7:1, and 2:1, reaching a peak of 35.3% at the S/N ratio of 1.5:1. Oxidation-reduction potential (ORP) patterns demonstrated distinct inflection points for nitrate and nitrite consumption under the SOAD-only conditions, whereas these points overlapped when DNRA coexisted with SOAD. Analysis of 16S ribosomal RNA identified Ignavibacterium, Hydrogenophaga, and Geobacter as the dominant genera responsible for DNRA during autotrophic nitrate reduction. The findings of the DNRA divergence investigation provided valuable insights into enhancing biological nitrogen removal processes, particularly when coupled with the anammox.
Collapse
Affiliation(s)
- Xiaoling Li
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-Rural Development, School of Civil Engineering, Chang'an University, Xi'an, 710054, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, China.
| | - Zhaolin Lu
- Southwest Municipal Engineering Design & Research Institute of China, Chengdu, 610084, China
| | - Juncai Zhou
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-Rural Development, School of Civil Engineering, Chang'an University, Xi'an, 710054, China
| | - Wenbo Zhang
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-Rural Development, School of Civil Engineering, Chang'an University, Xi'an, 710054, China
| | - Bo Hu
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-Rural Development, School of Civil Engineering, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
3
|
Nazari N, Jookar Kashi F, Nazari N. Improved application of immobilized Enterobacter cloacae into a bio-based polymer for Reactive Blue 19 removal, an eco-friendly advancement in potential decolorizing systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10968. [PMID: 38217325 DOI: 10.1002/wer.10968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
The widespread use of highly complex synthetic dyes like reactive dyes in the textile industry has some adverse environmental impacts and deserves close attention. Biological treatment of these effluents utilizing various species of bacteria with remarkable efficiency in dye removal is still considered promising. Our current study deals with immobilizing an isolated bacterial strain into calcium alginate (Ca/Alg) gel beads and using it to treat pernicious pollutants like synthetic dyes. A potential Reactive Blue 19 (RB19)-degrading Enterobacter cloacae strain A1 was isolated from the Kashan textile industry and was characterized by 16S rDNA gene sequencing. The decolorization ability of strain A1 was assessed by time-based studies using free bacterial cells/immobilized in Ca/Alg. Based on the results of the 16S rDNA gene sequencing, it appears that strain A1 belonged to E. cloacae, with a 99.74% similarity. The findings suggest that immobilized strain A1 accomplished maximum decolorization activity compared with the free cells. The immobilized strain could utterly decompose and decolorize 0.05 mg/mL of RB19 within 48 h, while the free bacterial strain decolorized RB19 within 5 days. Moreover, Ca/Alg gel beads can maintain their efficiency for over three decolorization cycles. Further infrared spectroscopy (FTIR) and gas chromatograph mass spectrometer (GC/MS) investigation declared complete RB19 decomposition on reaction products. Artemia salina was used to investigate the toxicity of dye and its degraded metabolites. The LC50 values signified the pure dye as very toxic with 0.01 mg/mL concentration, while after-treatment products showed no toxic effect on larvae. This immobilization technique increased the applicability of bacterial strain for dye removal. It was beneficial for the decolorization of RB19 from textile wastewater due to a remarkable reduction in time. Notably, strain A1-immobilized beads can maintain their activity for three consecutive decolorization cycles without a considerable decrease in efficiency. PRACTITIONER POINTS: The remarkable capacity of immobilized Enterobacter cloacae strain A1 for Reactive Blue 19 (RB19) removal Immobilized A1 strain showed two-fold higher removal than free one over 48 h A promising method for enhancing RB19 decolorization Decolorization was due to degradation based on UV-Vis, FTIR, and GC/MS analysis Non-toxic posttreatment products for Artemia.
Collapse
Affiliation(s)
- Negin Nazari
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fereshteh Jookar Kashi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Niayesh Nazari
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
4
|
Hung CM, Chen CW, Huang CP, Dong CD. Bioremediation pretreatment of waste-activated sludge using microalgae Spirulina platensis derived biochar coupled with sodium sulfite: Performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2022; 362:127867. [PMID: 36049715 DOI: 10.1016/j.biortech.2022.127867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
4-Nonylphenol is a typical endocrine-disrupting compound found in waste-activated sludge. This study evaluates the feasibility of blue-green algae (Spirulina platensis)-based biochar as a carbon-neutral material to improve sodium sulfite (S(IV))-mediated sludge purification. Blue-green algae-based biochar is an effective activator (at 500 °C and 3 × 10-6 M) of sodium sulfite and removed 75 % of 4-nonylphenol at pH 6 using at 1.7 g/L of dosage. Possible synergistic relationships among the coexisting oxidizing species (SO3•-, SO4•-, HO•, and 1O2), obvious defect structure, and abundant carbonyl oxygen groups on the surface of the biochar together dived advanced oxidation process. The bacterial consortia promoted the decomposition of biologically available substrates in the biosolid mixture, which led to the enrichment of Denitratisoma, and boosted 4-nonylphenol biodegradation. This study outlines a potential carbon-neutral, cost-effective, and sustainable sludge treatment strategy using renewable blue-green algae-based biochar, aiding 4-nonylphenol biodegradation in waste-activated sludge.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Yang Y, Cheng K, Li K, Jin Y, He X. Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156334. [PMID: 35660444 DOI: 10.1016/j.scitotenv.2022.156334] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Water microorganisms that have distinct contributions to community dynamics, including many rare taxa and few abundant taxa, are crucial to the wetland ecosystem functions. In this study, we comprehensively investigated the diversity patterns and assembly processes of rare and abundant taxa to strengthen our understanding of ecosystem function and diversity in a wetland system. The results showed that TN and NH3-N were the most significant factors affecting the community structure in this wetland. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that functions associated with nitrogen removal were the most prevalent metabolic pathways in samples of regenerated wetland (RW). Co-occurrence network analysis revealed that nonrare taxa exhibited more interactions with rare taxa than with conspecifics and some microbial hubs belonged to rare taxa, which might play an instrumental role in maintaining the stability of the community structure. We found that the assembly of rare taxa with a lower niche breadth was mainly governed by homogeneous selection, implying that their higher sensitivity of these to environmental disturbances and changes in TN played significant roles in community assembly of rare taxa. In contrast, the assembly of abundant taxa with higher niche breadth was dominated by stochastic processes (undominated process and dispersal limitation) indicating that abundant taxa had greater responsibility for maintaining community structure when exposed to environmental fluctuations. These results broaden our understanding of the microbial structure, interactions and ecological assembly mechanisms underlying microbial dynamics in aquatic ecosystems, which are crucial for the management of microorganisms in the wetlands.
Collapse
Affiliation(s)
- Yan Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kexin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaihang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Jamal M, Awadasseid A, Su X. Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: a critical review. Biotechnol Lett 2022; 44:1011-1025. [DOI: 10.1007/s10529-022-03279-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
|
7
|
Temporal Variation of Nitrogen and Sulfur Species of Food Waste and Sludge during Anaerobic Co-Digestion. SUSTAINABILITY 2022. [DOI: 10.3390/su14094982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anaerobic co-digestion (AcoD) has been a widely accepted method to treat food waste (FW) and sewage sludge (SS). However, there is a knowledge gap regarding the key speciation transformation of nitrogen and sulfur in AcoD. Here, we explored the changes of nitrogen (N) and sulfur (S) compounds in liquid digestion and biogas, as well as the composition of microbial community structure and related metabolic functions. The results showed that H2S in the biogas was the main form of S in the early stage, and then, it was converted into SO42− and SO32−, while NH3 and NH4+ were the main forms of N during the AcoD. In addition, bacterial diversity was associated with N and S compounds; Syntrophomonas and Aminobacterium were positively correlated to H2S, NH3, NH4+ and SO32−, and Saccharibacteria_genera_incertae_sedis, Candidatus_Cloacamonas and Thermomonas were positively correlated to SO42− and NO2−. Additionally, the FAPROTAX prediction showed that the functional composition related to N and S metabolism was different from SS and inoculum after the AcoD. This study provides detailed information of conversion of N and S of the AcoD, which could lay a foundation for the subsequent regulation of the mechanism of nitrogen and sulfur compounds in the methanogenic process.
Collapse
|
8
|
Li X, Zhao J, Zhang Y, He J, Ma K, Liu C. Role of organic/sulfide ratios on competition of DNRA and denitrification in a co-driven sequencing biofilm batch reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18793-18804. [PMID: 34699005 DOI: 10.1007/s11356-021-17058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two competing pathways in nitrate-reducing process. In this study, a series of C/S ratios from 8:1 to 2:4 were investigated in a sequencing biofilm batch reactor (SBBR) to determine the role of reducers (sulfide and acetate) on their competition. The results showed that the proportion of DNRA increased in high electron system, either in organic-rich system or in sulfide-rich system. The highest DNRA ratio increased to 16.4% at the C/S ratio of 2:3. Excess electron donors, particularly sulfide, were favorable for DNRA in a limited nitrate environment. Moreover, a higher reductive environment could facilitate DNRA, especially, when ORP was lower than - 400 mV in this system. 16S rRNA gene sequencing analysis demonstrated that Geobacter might be the important participant involved in DNRA process in organic-rich system, while Desulfomicrobium might be the dominant DNRA bacteria in sulfide-rich system. DNRA cultivation could enrich nitrogen conversion pathways in conventional denitrification systems and deepen the insight into nitrogen removal at low C/N.
Collapse
Affiliation(s)
- Xiaoling Li
- School of Civil Engineering, Key Laboratory of Water Supply &, Sewage Engineering Ministry of Housing and Urban-Rural Development, Chang'an University, Xi'an, 710054, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710055, China.
| | - Yuhao Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710055, China
| | - Jiaojie He
- School of Civil Engineering, Key Laboratory of Water Supply &, Sewage Engineering Ministry of Housing and Urban-Rural Development, Chang'an University, Xi'an, 710054, China
| | - Kaili Ma
- School of Environment, Henan Normal University, Xinxiang, 453000, China
| | - Chunshuang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
9
|
Zhao L, Fu G, Wu J, Pang W, Hu Z. Bioaugmented constructed wetlands for efficient saline wastewater treatment with multiple denitrification pathways. BIORESOURCE TECHNOLOGY 2021; 335:125236. [PMID: 33991883 DOI: 10.1016/j.biortech.2021.125236] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Six laboratory-scale constructed wetlands (CWs) were used to quantify the nitrogen removal (NR) capacity in the treatment of saline wastewater at high (6:1) and low (2:1) carbon-nitrogen ratios (C/N), with and without bioaugmentation of aerobic-denitrifying bacterium. Sustained high-efficiency nitrification was observed throughout the operation. However, under different C/N ratios, although the bioaugmentation of aerobic-denitrifying bacterium promoted the removal of NO3--N and TN, there were still great differences in denitrification. Molecular biology experiments revealed ammonia-oxidizing archaea, together with the Nitrosomonas and Nitrospira, led to highly efficient nitrification. Furthermore, aerobic-denitrifying bacterium and sulfur-driven denitrifiers were the core denitrification groups in CWs. By performing these combined experiments, it was possible to determine the optimal CW design and the most relevant NR processes for the treatment of salty wastewater. The results suggest that the bioaugmentation of salt-tolerant functional bacteria with multiple NR pathways are crucial for the removal of salty wastewater pollutants.
Collapse
Affiliation(s)
- Lin Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guiping Fu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jinfa Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Weicheng Pang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Bai Y, Su J, Wen Q, Huang T, Chang Q, Ali A. Characterization and mechanism of Mn(II)-based mixotrophic denitrifying bacterium (Cupriavidus sp. HY129) in remediation of nitrate (NO 3--N) and manganese (Mn(II)) contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124414. [PMID: 33243652 DOI: 10.1016/j.jhazmat.2020.124414] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The co-contamination of groundwater with nitrate (NO3--N) and manganese (Mn(II)) is a global issue that needs to be efficiently remediated. In this research, a novel denitrifying and manganese-oxidizing strain HY129 was isolated from the sediments sample of a drinking water and identified as Cupriavidus sp. HY129. The remediation ability of strain HY129 regarding the nitrate and Mn(II) pollution were investigated. The removal efficiency of nitrate and Mn(II) were 99.81% (0.229 mgL-1 h-1) and 87.24% (0.233 mgL-1 h-1) in bacterial culture after 72 h, respectively. Moreover, the addition of Mn(II) significantly enhanced the denitrification process, while excessive concentration of Mn(II) caused more NO2--N accumulation. The impacts of adsorption and oxidation activity on Mn(II) removal were investigated. Protein in extracellular polymeric substance (EPS) which produced in the Mn-oxidizing process was speculated to be the main cause of extracellular adsorption of Mn(II). Characterization of biogenic manganese oxides (BMO) confirmed the formation of high-valent manganese and the trapping experiment with sodium pyrophosphate (NaPP) demonstrated the existence of Mn(III)-intermediates. Furthermore, multicopper oxidase gene amplification provided evidence for the molecular biology of Mn(II) oxidation by strain HY129.
Collapse
Affiliation(s)
- Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Zhang Z, Zhang K, Ouyang H, Li MKK, Luo Z, Li Y, Chen C, Yang X, Shao Z, Yan DYS. Simultaneous PAHs degradation, odour mitigation and energy harvesting by sediment microbial fuel cell coupled with nitrate-induced biostimulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112045. [PMID: 33567357 DOI: 10.1016/j.jenvman.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The study investigates a bioremediation process of polycyclic aromatic hydrocarbons (PAHs) removal and odour mitigation combined with energy harvesting. Sediment microbial fuel cells (SMFCs) were constructed with the addition of nitrate in the sediment to simultaneously remove acid-volatile sulphide (AVS) and PAHs. With the combined nitrate-SMFC treatment, over 90% of the AVS was removed from the sediment in 6 weeks of the SMFC operation and a maximum of 94% of AVS removal efficiency was reached at Week 10. The highest removal efficiencies of phenanthrene, pyrene, and benzo[a]pyrene was 93%, 80%, and 69%, respectively. The maximum voltage attained for the combined nitrate-SMFC treatment was 341 mV. Illumina HiSeq sequencing revealed that the autotrophic denitrifiers Thiobacillus are the dominant genus. In electricity generation, both sulphide-oxidation and PAH-oxidation are the possible pathways. Besides, the addition of nitrate stimulated the growth of Pseudomonas which is responsible for the electricity generation and direct biodegradation of the PAHs, indicating a synergistic effect. The developed bioremediation process demonstrated the potential in the in-situ bioremediation process utilizing SMFC combined with nitrate-induced bioremediation.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - He Ouyang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Marcus K K Li
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Zifeng Luo
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiwei Shao
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Dickson Y S Yan
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Wu Z, Su J, Ali A, Hu X, Wang Z. Study on the simultaneous removal of fluoride, heavy metals and nitrate by calcium precipitating strain Acinetobacter sp. H12. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124255. [PMID: 33092874 DOI: 10.1016/j.jhazmat.2020.124255] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The removal properties and mechanisms of fluoride (F-) and nickel (Ni2+) were studied by biomineralizing bacteria (Acinetobacter sp. H12). The results showed that the removal ratio of F-, Ca2+ and Ni2+ reached 75% (0.031 mg·L-1·h-1), 84.96% (2.123 mg·L-1·h-1), and 56.67% (0.024 mg·L-1·h-1) after 72 h, respectively. The removal ratio of nitrate (NO3-) reached 100% (0.686 mg·L-1·h-1) after 24 h. SEM and XRD images indicated that bioprecipitation of CaF2, Ca5(PO4)3F, Ca5(PO4)3(OH), NiCO3, CaCO3 and Ni were formed, and some of these precipitation used bacteria as nucleation sites to form biological crystal seeds. N2 was the primary product in gas chromatography analysis. Meanwhile, both the fluorescence spectroscopy and fourier transform near-infrared spectroscopy analysis proved that strain H12 had good ability to remove fluoride and nickel ions simultaneously.
Collapse
Affiliation(s)
- Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
13
|
Qian J, Bai L, Zhang M, Chen L, Yan X, Sun R, Zhang M, Chen GH, Wu D. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system. WATER RESEARCH 2021; 190:116716. [PMID: 33290906 DOI: 10.1016/j.watres.2020.116716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) can drive a high level of autotrophic denitrification (AD) activity with thiosulfate (S2O32-) as the electron donor. However, the slow growth of SOB results in a low biomass concentration in the AD reactor and unsatisfactory biological nitrogen removal (BNR). In this study, our goal was to establish a high-rate thiosulfate-driven denitrification (TDD) system via sludge granulation. Granular sludge was successfully cultivated by increasing the nitrogen loading rate stepwise in thiosulfate-oxidizing/nitrate-reducing conditions in an upflow anaerobic blanket reactor. In the mature-granular-sludge reactor, a nitrate removal rate of 280 mg N/L/h was achieved with a nitrate removal efficiency of 97.7%±1.0% at a hydraulic retention time of only 15 minutes, with no nitrite detected in the effluent. Extracellular polymeric substance (EPS) analysis indicated that the proteins in loosely bound and tightly bound EPS were responsible for maintaining the compact structure of the TDD granular sludge. The dynamics of the microbial-community shift were identified by 16S rRNA high-throughput pyrosequencing analysis. The Sulfurimonas genus was found to be enriched at 74.1% of total community and may play the most critical role in the high-rate BNR. The batch assay results reveal that no nitrite accumulation occurred during nitrate reduction because the nitrate reduction rate (75.90±0.67 mg N/g MLVSS/h) was almost equal to the nitrite reduction rate (66.06±1.28 mg N/g MLVSS/h) in the thiosulfate-driven granular sludge reactor. The results of this study provide support for the establishment of a high-rate BNR system that maintains its stability with a low sludge yield.
Collapse
Affiliation(s)
- Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mingkuan Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xueqian Yan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Meiting Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
14
|
Cai J, Pan A, Li Y, Xiao Y, Zhou Y, Chen C, Sun F, Su X. A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors. CHEMOSPHERE 2021; 263:127922. [PMID: 32841875 DOI: 10.1016/j.chemosphere.2020.127922] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic process has been widely applied as a cost-effective method for textile wastewater treatment. However, many bacteria exhibit low metabolic activity in unfavorable conditions due to the entry into a viable but non-culturable (VBNC) state. Thus, in this study, a novel method of using resuscitation-promoting factors (Rpfs), which has been proven to resuscitate and stimulate the growth of VBNC bacteria, is explored to enhance the degradation of the anthraquinone dye reactive blue 19 (RB19) in the anaerobic process. The results show that Rpfs could efficiently prompt RB19 decolorization. Compared to the conventional anaerobic condition, RB19 decolorization efficiency was increased by more than 20% with the Rpf addition. UV-visible spectral and gas chromatograph-mass spectrometry analysis indicate that the aromatic amines structures of RB19 was cleaved. More importantly, the Rpf addition appeared to stimulate and/or enrich some dye-degrading species of the family Peptostreptococcaceae, thus leading to a higher RB19 decolorization efficiency.
Collapse
Affiliation(s)
- Jiafang Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Aodong Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Chongjun Chen
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
15
|
Zhang K, Zhang Z, Hu Z, Zeng F, Chen C, Yang X, Li Y. Bacterial community composition and function succession under aerobic and anaerobic conditions impacts the biodegradation of 17β-estradiol and its environmental risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115155. [PMID: 32871481 DOI: 10.1016/j.envpol.2020.115155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The widespread detection of 17β-estradiol (E2) in the environment has become an emerging concern worldwide due to its endocrine disrupting effects. This work focuses on the aerobic and anaerobic biodegradations of E2 in various sedimentary environments with different availabilities of electron acceptors, including O2, NO3-, Fe3+, SO42-, or HCO3-. The highest removal efficiency (98.9%) and shortest degradation half-life of E2 (t1/2 = 5.0 d) were achieved under aerobic condition, followed by nitrate-reducing, ferric-reducing, sulfate-reducing and methanogenic conditions. We propose four different degradation pathways of E2 based on the metabolites identified under various redox conditions. Although most of E2 was effectively removed under aerobic condition, the potential environmental risk still needs to be considered due to the residual estrogenic activity induced by estrone (E1) formation. The endocrine-disrupting activities, as indicated by estradiol equivalent (EEQ) values, were related to E2 degradation rate and metabolite formation. We further analyzed the succession of bacterial community compositions and functions using Illumina HiSeq sequencing and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The findings herein evidenced that bacterial community compositions and metabolic functions associated with different redox conditions impact the biodegradation of E2 and its endocrine-disrupting activity. This knowledge will be useful in predicting the environmental fates of estrogenic hormones in various sedimentary environments and aid in establishing appropriate strategies for eliminating potential environmental risks.
Collapse
Affiliation(s)
- Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Feifan Zeng
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| |
Collapse
|
16
|
Sun R, Tu Z, Fan L, Qiao Z, Liu X, Hu S, Zheng G, Wu Y, Wang R, Mi X. The correlation analyses of bacterial community composition and spatial factors between freshwater and sediment in Poyang Lake wetland by using artificial neural network (ANN) modeling. Braz J Microbiol 2020; 51:1191-1207. [PMID: 32406050 DOI: 10.1007/s42770-020-00285-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most important components of the lake ecosystem, microorganisms from the freshwater and sediment play an important role in many ecological processes. However, the difference and correlation of bacterial community between these two niches were not clear. This study investigated the diversity of microbial community of freshwater and sediment samples from fifteen locations in Poyang Lake wetland. The correlation between the bacterial community and physicochemical property of Poyang Lake wetland was analyzed by artificial neural network (ANN). Our results demonstrated that the freshwater and sediment bacterial community were dominated by groups of the Bacteroidetes (23.33%) and β-Proteobacteria (22.54%) separately, whereas, Canalipalpata, Bacillariophyta, Gemmatimonadetes, and Verrucomicrobia were detected in freshwater niches only. Phylogenetic analysis further indicated that bacterial composition in freshwater significantly differed with the sediment niches. There are 34 unique species accounted for 85% in fresh water samples and 28 unique species accounted for 82% in sediment samples. Cluster analysis further proved that all the samples from freshwater niches clustered closely together, far from the rest sediment samples. ANN analysis revealed that the freshwater with high N and P nutrients will greatly increase the diversity of the bacterial communities. In general, both environmental physicochemical properties, not each factor independently, contributed to the shift in the bacterial community structure. The five tributaries (Gan, Fu, Xin, Rao, Xiu Rivers) play a vital role in shaping the bacterial communities of Poyang Lake. This study provides new insights for understanding of microbial community compositions and structures of Poyang Lake wetland.
Collapse
Affiliation(s)
- Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China.,School of Ecology and Environment, Northwestern Polytechnical University, Xi'An, 710129, China
| | - Zuxin Tu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Lin Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China
| | - Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China
| | - Guohua Zheng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330029, China.,Key Laboratory of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China.
| | - Ruiwu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'An, 710129, China.
| | - Xiaohui Mi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'An, 710129, China
| |
Collapse
|
17
|
Sun R, Li Y, Lin N, Ou C, Wang X, Zhang L, Jiang F. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. ENVIRONMENT INTERNATIONAL 2020; 136:105457. [PMID: 31926438 DOI: 10.1016/j.envint.2019.105457] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
A novel sulfidogenic acid mine drainage (AMD) treatment system with a sulfur reduction process was developed. During the 220-d operation, >99.9% of 380-mg/L ferric, 150-mg/L aluminum, 110-mg/L zinc, 20-mg/L copper and 2.5-mg/L lead ions, and 42.6-44.4% of 100-mg/L manganese ions in the synthetic AMD were step-by-step removed in the developed system with three pre-posed metal precipitators and a sulfur reduction reactor. Among them, zinc, copper and lead ions were removed by the biogenic hydrogen sulfide that produced through elemental sulfur reduction; while ferric, aluminum and manganese ions were removed by the alkali precipitation. Compared with the reported sulfate reduction reactors, the sulfur reduction reactor significantly reduced the chemical cost by 25.6-78.9% for sulfide production, and maintained a high sulfide production rate (1.12 g S2-/L-d). The pH level in the sulfidogenic reactor driven by sulfur-reducing bacteria posed a significant effect on the sulfide production rate. Under a nearly neutral condition (pH 7.0-7.5), elemental sulfur dissolved into polysulfide to increase the bioavailability of S0. At acidic conditions (pH < 6.0), polysulfide formation was limited and sulfate reduction became dominant. Therefore, maintaining the sulfidogenic reactor driven by sulfur-reducing bacteria at neutral condition is essential to realize high-rate and low-cost AMD treatment. Moreover, the escape of residual hydrogen sulfide from the system was eliminated by employing a 17% recirculation from effluent to the sulfidogenic reactor.
Collapse
Affiliation(s)
- Rongrong Sun
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Li
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Nini Lin
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chunxi Ou
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaoyi Wang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Guo J, Kang Y. Characterization of sulfate-reducing bacteria anaerobic sludge granulation enhanced by chitosan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109648. [PMID: 31634741 DOI: 10.1016/j.jenvman.2019.109648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Two laboratory-scale up-flow anaerobic sludge granules reactors were operated as control reactor (R1) and chitosan (CTS) addition reactor (R2) to investigate the effect of the addition of CTS on the granulation process of sulfate-reducing bacteria (SRB) anaerobic sludge. Granular sludge with the diameter greater than 0.5 mm was selected to calculate the granulation percentage, and the remaining sludge was considered as flocculent sludge in this paper. The results showed that the granulation percentage in the two reactors were stabilized to 47.3% and 64.2%, respectively. The sizes of sludge granules in R2 were mainly between 0.5 and 1.5 mm with the average pore diameter of 91.6 nm and the porosity of 57.1% while the granules in the same particle size in R1 were 41.5 nm and 46.1%, respectively. It demonstrated that CTS was an appropriate additive which can enhance the formation of SRB granule sludge with better pore structure. The granular sludge with CTS exhibited excellent physical performance and more extracellular polymeric substances, especially for protein (PN). In addition, computational fluid dynamics (CFD) simulation was conducted to illustrate the hydrodynamic characteristics of granules with Kozeny-Carman model. With a higher porosity, the permeability of the granules fed with CTS was considerably increased. Moreover, the model also indicated that the permeability and convection changed significantly with Reynolds numbers (Re) of the external flow field for a given type of the porous structure.
Collapse
Affiliation(s)
- Jing Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Wang T, Guo J, Song Y, Lian J, Li H, Lu C, Han Y, Hou Y. Efficient nitrogen removal in separate coupled-system of anammox and sulfur autotrophic denitrification with a nitrification side-branch under substrate fluctuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133929. [PMID: 31442718 DOI: 10.1016/j.scitotenv.2019.133929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
In order to achieve efficient nitrogen removal, a separate coupled-system of anaerobic ammonia oxidation (anammox) and sulfur autotrophic denitrification (S0-SADN) was established. In this study, the operational feasibility and stability of the coupled-system under substrate fluctuations were investigated. Results showed that the coupled-system improved the total nitrogen removal efficiency (TNRE) to 99.15 ± 0.68%. The tryptophan-like substances in anammox effluent positively impacted the growth of the S0-SADN biofilm. This positive cooperativity boosted the S0-SADN to achieve rapid 12-day startup and stable operation thereafter. The TNRE was determined at 95.27 ± 1.51% and 93.44 ± 0.96% under excessive nitrite and ammonium, respectively. The coupled-system recovered quickly after 21 days of starvation deterioration. To further treat the excessive ammonium, the nitrification side-branch of the coupled-system improved the TNRE to 99.08 ± 0.68%. Extracellular polymeric substances analysis revealed that the anammox and S0-SADN bacteria secreted protein-like substances to resist substrate fluctuation. Microbial community analysis indicated that the stability of bacterial community supported the stability of the coupled-system. These results collectively suggested that the separate coupled-system exhibited excellent performance and provided a platform for practical wastewater treatment in future.
Collapse
Affiliation(s)
- Tuo Wang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang 050018, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
20
|
Yuan Y, Bian A, Chen F, Xu X, Huang C, Chen C, Liu W, Cheng H, Chen T, Ding C, Li Z, Wang A. Continuous sulfur biotransformation in an anaerobic-anoxic sequential batch reactor involving sulfate reduction and denitrifying sulfide oxidization. CHEMOSPHERE 2019; 234:568-578. [PMID: 31229718 DOI: 10.1016/j.chemosphere.2019.06.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
The pathways and intermediates of continuous sulfur biotransformation in an anaerobic and anoxic sequential batch reactor (AA-SBR) involving sulfate reduction (SR) and denitrifying sulfide oxidization (DSO) were investigated. In the anoxic phase, DSO occurred in two sequential steps, the oxidation of sulfide (S2-) to elemental sulfur (S0) and the oxidation of S0 to sulfate (SO42-). The oxidation rate of S2- to S0 was 3.31 times faster than that of S0 to SO42-, resulting in the accumulation of S0 as a desired intermediate under S2--S/NO3--N ratio (molar ratio) of 0.9:1. Although, approximately 60% of generated S0 suspended in the effluent, about 40% of S0 retained in the sludge, which could be further oxidized or reduced in anoxic or anaerobic phase. In anoxic, S0 was subsequently oxidized to SO42- under S2--S/NO3--N ratio of 0.5:1. In anaerobic, S0 coexist with SO42- (in fresh wastewater) were simultaneously reduced to S2-, and the reduction rate of SO42- to S2- was 3.17 times faster than that of S0 to S2-, resulting in a higher production of S0 in subsequent anoxic phase. Microbial community analysis indicated that SO42-/S0-reducing bacteria (e.g. Desulfomicrobium and Desulfuromonas) and S2-/S0-oxidizing bacteria (e.g. Paracoccus and Thermothrix) co-participated in continuous sulfur biotransformation in the AA-SBR. A conceptual model was established to describe these main processes and key intermediates. The research offers a new insight into the reaction processes optimization for S0 recovery and simultaneous removal of SO42- and NO3- in an AA-SBR.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Aiqin Bian
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
21
|
Zhang X, Zhang N, Chen Z, Ma Y, Wang L, Zhang H, Jia J. Long-term impact of sulfate on an autotrophic nitrogen removal system integrated partial nitrification, anammox and endogenous denitrification (PAED). CHEMOSPHERE 2019; 235:336-343. [PMID: 31265979 DOI: 10.1016/j.chemosphere.2019.06.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
A nitrogen removal system integrating partial nitrification, anaerobic ammonium oxidation (Anammox) and endogenous denitrification (PAED) was established in a sequencing batch reactor (SBR) for treating low nitrogen sewage (approximately 40 mg L-1 ammonia-nitrogen). The impact of sulfate on PAED sludge was investigated in five identical SBRs, fed with different levels of sulfate (0, 50, 100, 200 and 400 mg L-1). Ammonia oxidation was improved by the addition of Results showed that the sulfate addition in low concentration of sulfate (≤50 mg L-1), but was profoundly suppressed by higher levels of sulfate. Sulfate feeding enhanced both total nitrogen removal by Anammox and endogenous denitrification, with the abundance of Candidatus Kuenenia increasing to 4.39% in 400 mg L-1 sulfate from 0.83% in the control reactor, and Denitratisoma increasing to 6.35% from 2.77%. The results proved the feasibility of the PAED system in treating low nitrogen sewage with sulfate, which also enhanced the nitrogen-sulfate interaction.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Nan Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Zhang K, Hu Z, Zeng F, Yang X, Wang J, Jing R, Zhang H, Li Y, Zhang Z. Biodegradation of petroleum hydrocarbons and changes in microbial community structure in sediment under nitrate-, ferric-, sulfate-reducing and methanogenic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109425. [PMID: 31446121 DOI: 10.1016/j.jenvman.2019.109425] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the biodegradation behaviors of petroleum hydrocarbons under various reducing conditions were investigated. n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) were degraded with NO3-, Fe3+, SO42-, or HCO3- as terminal electron acceptors (TEAs), which link to four typical reducing conditions (i.e., nitrate-reducing, ferric-reducing, sulfate-reducing and methanogenic conditions, respectively) in sediment. The fastest degradation rates were achieved under sulfate-reducing conditions with half-lives of 49.51 days for n-alkanes and 58.74 days for PAHs. For short-chain n-alkanes and low-molecular weight (LMW) PAHs, relatively higher removal efficiencies were achieved under nitrate- and ferric-reducing conditions. The degradation of long-chain n-alkanes and high-molecular weight (HMW) PAHs coupled to methanogenesis was the most favored as compared with other reducing conditions. Carboxylation was found to be the principle mechanism for regulating n-alkane degradation coupled to denitrification, while the activation of n-alkanes by the addition of fumarate was the principle mechanism for the n-alkane degradation under sulfate-reducing conditions. The anaerobic metabolism of n-alkanes may not proceed via fumarate addition or carboxylation under ferric-reducing and methanogenic conditions. Illumina HiSeq sequencing revealed dissimilar structures of the microbial communities under various reducing conditions. It is hypothesized that the utilization of different TEAs for n-alkane and PAH degradation resulted in distinct microbial community structures, which were highly correlated with the varied degradation behaviors of petroleum hydrocarbons in sediment. The current results may provide reference value on better understanding the biodegradation behaviors of n-alkanes and PAHs in association with the induced microbial communities in sedimentary environments under the four typical reducing conditions.
Collapse
Affiliation(s)
- Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Feifan Zeng
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland at College Park, MD, 20742, USA
| | - Huanni Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Qian J, Zhang M, Jing R, Bai L, Zhou B, Zhao M, Pei X, Wei L, Chen GH. Thiosulfate as the electron acceptor in Sulfur Bioconversion-Associated Process (SBAP) for sewage treatment. WATER RESEARCH 2019; 163:114850. [PMID: 31326695 DOI: 10.1016/j.watres.2019.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The sulfur bioconversion-associated processes (SBAP) for sewage treatment have been extensively reported so far. In this study, biological thiosulfate reduction (BTR)-driven biotechnology for high rate sulfidogenesis and organic removal was explored to further close the gap of our knowledge on the sulfur cycle-based sewage treatment bioprocess. With thiosulfate as the electron acceptor, the sulfidogenic rate in the UASB rector is 105.6 mg S/L/h with the sludge yield of only 0.044 g MLVSS/g CODsubstrate. Thus providing sufficient electron donors or chemical sources (i.e. HS-) for the downstream autotrophic denitrification or for the cost-effective heavy metal precipitation. Thiosulfate disproportionation was not observed in BTR reactor. High-throughput pyrosequencing analysis reveals that Desulfobulbus and Desulfomicrobium are the predominant thiosulfate-reducing genera and the thiosulfate disproportionation-bacteria were at much lower genus level. The specific thiosulfate-reducer i.e. Dethiosulfatibacter which could utilize thiosulfate but not sulfate as the electron acceptor was also identified. Batch testing results indicate that the sulfidogenic activity on thiosulfate was 1.5 times that on sulfate. The optimal pH for BTR activity was between 7.0 and 8.0, a typical pH range of the municipal sewage. Thiosulfate can be efficiently recovered in the sulfide-driven denitritation reactor enriched with abundant sulfide-oxidizing genera (mainly including Thiobacillus and Sulfurimonas). Finally, a conceptual model of the sulfur cycle based on the biotransformation between thiosulfate and sulfide was established, offering new insights into the sustainable SBAP with sludge minimization.
Collapse
Affiliation(s)
- Jin Qian
- Research & Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China.
| | - Mingkuan Zhang
- Research & Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland at College Park, 0147L Glenn L. Martin Hall, College Park, MD, 20742, USA
| | - Linqin Bai
- Research & Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Bo Zhou
- Research & Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Mingjun Zhao
- Research & Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China.
| | - Li Wei
- Department of Civil & Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
24
|
Liang J, Wang Q, Yoza BA, Li QX, Ke M, Chen C. Degradation of guar in an up-flow anaerobic sludge blanket reactor: Impacts of salinity on performance robustness, granulation and microbial community. CHEMOSPHERE 2019; 232:327-336. [PMID: 31154194 DOI: 10.1016/j.chemosphere.2019.05.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/14/2023]
Abstract
Guar is extensively used during shale gas exploitation and is a major component in the flowback water. The viscosity of guar has adverse effects for the treatment of flowback water. This study investigated the degradation of guar at different salinities with an up-flow anaerobic sludge blanket (UASB) reactor. The effects of salinity on guar degradation, granular characteristics and microbial community were also studied. Results showed that more than 79% of guar was removed at hydraulic retention time (HRT) of 10 h, even at a concentration of 10000 mg L-1 of NaCl. Increasing salinity decreased granular size and hydrophobicity, but improved the secretion of EPS (especially for protein). Low salt condition 2500 mg L-1 presented faster degradation rate of guar. Salinity resulted in insignificant difference on bacterial community, but decreased the abundance of methanogens. Bacteroides, Prolixibacter and Pelolinea are essential genera in guar degradation. The results demonstrated the potential of UASB in the treatment of flowback water.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Brandon A Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI, 96822, United States
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
25
|
Virpiranta H, Taskila S, Leiviskä T, Rämö J, Tanskanen J. Development of a process for microbial sulfate reduction in cold mining waters - Cold acclimation of bacterial consortia from an Arctic mining district. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:281-288. [PMID: 31158656 DOI: 10.1016/j.envpol.2019.05.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Biological sulfate removal is challenging in cold climates due to the slower metabolism of mesophilic bacteria; however, cold conditions also offer the possibility to isolate bacteria that have adapted to low temperatures. The present research focused on the cold acclimation and characterization of sulfate-reducing bacterial (SRB) consortia enriched from an Arctic sediment sample from northern Finland. Based on 16S rDNA analysis, the most common sulfate-reducing bacterium in all enriched consortia was Desulfobulbus, which belongs to the δ-Proteobacteria. The majority of the cultivated consortia were able to reduce sulfate at temperatures as low as 6 °C with succinic acid as a carbon source. The sulfate reduction rates at 6 °C varied from 13 to 42 mg/L/d. The cultivation medium used in this research was a Postgate medium supplemented with lactate, ethanol or succinic acid. The obtained consortia were able to grow with lactate and succinic acid but surprisingly not with ethanol. Enriched SRB consortia are useful for the biological treatment of sulfate-containing industrial wastewaters in cold conditions.
Collapse
Affiliation(s)
- Hanna Virpiranta
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014, Oulu, Finland.
| | - Sanna Taskila
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014, Oulu, Finland.
| | - Tiina Leiviskä
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014, Oulu, Finland.
| | - Jaakko Rämö
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014, Oulu, Finland.
| | - Juha Tanskanen
- University of Oulu, Chemical Process Engineering, PO Box 4300, 90014, Oulu, Finland.
| |
Collapse
|