1
|
Wang T, Tang Q, Deng L, Tan C, Fu Y, Hu J, Singh RP. Formation of halonitromethanes, dichloroacetonitrile, and trichloromethane in the presence of E. coli and nitrophenols during UV/post-chlorination. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137499. [PMID: 39914345 DOI: 10.1016/j.jhazmat.2025.137499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Nitrophenols and E. coli widely coexist in surface water and can form chlorinated disinfection byproducts (Cl-DBPs) in chlorine-based disinfection processes. However, the coexistence of nitrophenols and E. coli affecting Cl-DBPs formation has not been reported. Herein, the formation of chlorinated halonitromethanes (Cl-HNMs), dichloroacetonitrile (DCAN), and trichloromethane (TCM) in the simultaneous presence of nitrophenols and E. coli was investigated in the UV/post-chlorination process. Results indicated the coexistence of nitrophenols and E. coli ((1-2) × 105 CFU mL-1) enhanced Cl-DBPs formation, but excessive E. coli ((1-2) × 107 CFU mL-1) dramatically inhibited that. Moreover, appropriate UV fluences promoted Cl-DBPs formation, and increasing chlorine dose and nitrophenol concentration enhanced that. Besides, alkaline pH decreased Cl-HNMs and DCAN formation but facilitated TCM formation. Subsequently, the Cl-DBPs formation mechanisms and pathways were explored in the simultaneous presence of E. coli and nitrophenols. When nitrophenols and E. coli were present in real waters, more complicated formation phenomena of Cl-DBPs were observed compared to those in simulated waters (SWs). Finally, Cl-DBPs generated in real waters exhibited lower toxicities than those generated in SWs. This study provides new insights into Cl-DBPs formation in the presence of organic substances and bacteria, simultaneously contributing to a better UV/post-chlorination process application.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Qian Tang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Yulin Fu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
2
|
Dhanda N, Kumar S. Water disinfection and disinfection by products. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:461. [PMID: 40128505 DOI: 10.1007/s10661-025-13915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
For ecological safety and public health, it is essential to identify the causes of pollution in water sources and the effects of both natural and human activities. A class of secondary pollutants known as disinfection byproducts (DBPs) is produced when water is treated with disinfectant. Global problems include DBP formation, monitoring, and health effects in drinkable water. Because of the negative health effects of drinking chlorinated water and some DBPs, water manufacturers have made an attempt to balance pathogen elimination with DBP monitoring. The primary obstacles to managing DBPs are their low concentrations and the viability of their extensive use from a technical and economic perspective. Adsorption on activated carbons, ion exchange, membrane processes, and reducing precursors like NOMs are some of the techniques that may be used in controlling DBPs. The application of both new and conventional disinfection technologies in the removal of ARB and ARGs is also summarized in this review, with an emphasis on bacterial inactivation mechanisms like ozonation, chlorination, ultraviolet (UV), sunlight, sunlight-dissolved organic matter (DOM), and photocatalysis/photoelectrocatalysis (PEC).
Collapse
Affiliation(s)
- Nishu Dhanda
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, India
| | - Sudesh Kumar
- DESM, National Institute of Education, NCERT, New Delhi, 110016, India.
| |
Collapse
|
3
|
Kali S, Zafar MI, Farooqi A, Saifullah M, Rasheed S, Niazi MBK, Waseem A, Campos LC. Seasonal Variations in Potable Water Quality of Bahawalpur City: A Comprehensive Assessment of Major Ions, Organic Matter, and Disinfection Byproducts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:383. [PMID: 40072759 DOI: 10.1007/s10661-025-13866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Industrialization and population explosion are ultimately affecting freshwater resources. Bahawalpur is a rapidly growing city in Pakistan where groundwater is the major source of drinking water. However, groundwater is also being contaminated due to various anthropogenic sources. To meet the need for clean drinking water, filtration plants have been installed throughout the city. To monitor the water quality index of the treated water, water samples were collected from the filtration plants installed by Tehsil Municipal Administration in Bahawalpur city. Different physicochemical parameters, major ions, organic matter, and disinfection byproducts (DBPs) were analysed. Both raw and chlorinated water in summer and winter season were investigated. Results revealed that all raw samples were biologically contaminated showing the presence of E. coli in all raw water samples, this justified the need for disinfection. Despite chlorination, several samples were still contaminated due to the lack of available residual chlorine in the distribution system. The carcinogenic Bromoform (27% samples) and dibromochloromethane (22% samples) surpassed the WHO permissible limits for drinking water in both seasons. Dichloroacetic acid exceeded the WHO permissible limits in 33% and 11% of samples during summer and winter, respectively. Overall, DBPs were higher during summer than winter season. Standard ultraviolet absorption at 254 nm (SUVA254) showed that the source of organic matter was microbial except for Bohar gate and Islamic colony, where the source of water was surface water. Chlorination also affected the water chemistry in both seasons. The water quality index showed that the chlorinated water was fit for drinking in the winter season; however, 34% of samples were found unfit for drinking during summer. Monitoring of the DBPs is recommended on a regular basis, in addition to the organic matter removal from the water before chlorination. This study provides valuable information to achieve Sustainable Development Goal 6 which is for clean water and sanitation. So, this research can provide significant data to the policy makers to improve the water quality in developing countries like Pakistan.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Abida Farooqi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Saifullah
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650, Pakistan
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli, Azad Jamu and Kashmir, Kotli, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Luiza C Campos
- Department of Civil, Environment & Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
4
|
Kralles ZT, Deherikar PK, Werner CA, Hu X, Kolodziej EP, Dai N. Halogenation of Anilines: Formation of Haloacetonitriles and Large-Molecule Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17497-17509. [PMID: 39297711 DOI: 10.1021/acs.est.4c05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Aniline-related structures are common in anthropogenic chemicals, such as pharmaceuticals and pesticides. Compared with the widely studied phenolic compounds, anilines have received far less assessment of their disinfection byproduct (DBP) formation potential, even though anilines and phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline (1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields with the highest yield observed for 2-ethylaniline (6.5%). The trihalomethane yields of anilines correlated with their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography-high-resolution mass spectrometry revealed several large-molecule DBPs, including chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage products. The product time profiles suggested that the reaction pathways include initial ring chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with the expected toxicity.
Collapse
Affiliation(s)
- Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Prashant K Deherikar
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Christian A Werner
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Ximin Hu
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| |
Collapse
|
5
|
Lacroix A, Goli T, Hanigan D, Pagilla K. Formation, speciation, and temporal variability of DBPs in drinking water distribution systems in the context of ASR operations and extended storage periods. CHEMOSPHERE 2024; 364:143154. [PMID: 39173835 DOI: 10.1016/j.chemosphere.2024.143154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
As climate change induces changes in water quality and available water quantity of drinking water supply sources, the final product water quality changes in terms of trace organics including disinfection byproducts (DBPs) formed during water treatment. In this study, the seasonal variability and speciation of DBPs across nine sample sites within a drinking water distribution system serving ∼400k people over a one-year period was investigated considering the governing parameters of water quality and treatment/transport/storage of finished water. The system considered treats surface water from a river and practices aquifer storage and recovery to address seasons water availability changes. Eighty-eight (88) sample sets were collected and held for 6-months in the laboratory to simulate extended storage scenarios associated with ASR operations, and each was analyzed at 9 different timesteps for concentration and speciation of chlorinated DBPs. Samples from groundwater influenced sites exhibited significantly lower total organic carbon (TOC) compared to other sites from the river source, and also were observed to have the lowest DBP formation. Three sites exceeded the Maximum Contaminant Level (MCL) for four total trihalomethanes (THM4) within 30-60 days of storage. Chloroform was the predominant THM4 species, even in groundwater-influenced locations, whereas di- and tri-chloroacetic acid (DCA and TCA) were the most prevalent haloacetic acids (HAA5). Extended water age at one site, coupled with low initial chlorine concentrations exhibited higher initial THM4 concentrations and flat DBP formation curves. The study results provide new insights into DBP occurrence and fate in drinking water distribution systems which consider water storage such as in ASR.
Collapse
Affiliation(s)
- Angel Lacroix
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St, MS 0258, Reno, NV, 89557, USA; Truckee Meadows Water Authority, Reno, 1355 Capital Blvd., Reno, NV, 89502, USA.
| | - Tayebeh Goli
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St, MS 0258, Reno, NV, 89557, USA.
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St, MS 0258, Reno, NV, 89557, USA.
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia St, MS 0258, Reno, NV, 89557, USA.
| |
Collapse
|
6
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Formation of halonitromethanes from different nitrophenol compounds during UV/post-chlorination: Impact factors, DFT calculation, reaction mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174718. [PMID: 38997025 DOI: 10.1016/j.scitotenv.2024.174718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
7
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Reaction mechanisms of chlorinated disinfection byproducts formed from nitrophenol compounds with different structures during chlor(am)ination and UV/post-chlor(am)ination. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134544. [PMID: 38733788 DOI: 10.1016/j.jhazmat.2024.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
8
|
Wang T, Deng L, Tan C, Hu J, Singh RP. Effects of cupric ions on the formation of chlorinated disinfection byproducts from nitrophenol compounds during UV/post-chlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134362. [PMID: 38643576 DOI: 10.1016/j.jhazmat.2024.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Cupric ions (Cu2+) are ubiquitous in surface waters and can influence disinfection byproducts (DBPs) formation in water disinfection processes. This work explored the effects of Cu2+ on chlorinated DBPs (Cl-DBPs) formation from six representative nitrophenol compounds (NCs) during UV irradiation followed by a subsequent chlorination (i.e., UV/post-chlorination), and the results showed Cu2+ enhanced chlorinated halonitromethane (Cl-HNMs) formation from five NCs (besides 2-methyl-3-nitrophenol) and dichloroacetonitrile (DCAN) and trichloromethane (TCM) formation from six NCs. Nevertheless, excessive Cu2+ might reduce Cl-DBPs formation. Increasing UV fluences displayed different influences on total Cl-DBPs formation from different NCs, and increasing chlorine dosages and NCs concentrations enhanced that. Moreover, a relatively low pH (5.8) or high pH (7.8) might control the yields of total Cl-DBPs produced from different NCs. Notably, Cu2+ enhanced Cl-DBPs formation from NCs during UV/post-chlorination mainly through the catalytic effect on nitro-benzoquinone production and the conversion of Cl-DBPs from nitro-benzoquinone. Additionally, Cu2+ could increase the toxicity of total Cl-DBPs produced from five NCs besides 2-methyl-3-nitrophenol. Finally, the impacts of Cu2+ on Cl-DBPs formation and toxicity in real waters were quite different from those in simulated waters. This study is conducive to further understanding how Cu2+ affected Cl-DBPs formation and toxicity in chlorine disinfection processes and controlling Cl-DBPs formation in copper containing water.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
9
|
Sun H, Liu Y, Wu C, Ma LQ, Guan D, Hong H, Yu H, Lin H, Huang X, Gao P. Dihalogenated nitrophenols in drinking water: Prevalence, resistance to household treatment, and cardiotoxic impact on zebrafish embryo. ECO-ENVIRONMENT & HEALTH 2024; 3:183-191. [PMID: 38646095 PMCID: PMC11031730 DOI: 10.1016/j.eehl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 04/23/2024]
Abstract
Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 μg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.
Collapse
Affiliation(s)
- Hongjie Sun
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxiu Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongxing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huachang Hong
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| |
Collapse
|
10
|
Wang T, Deng L, Tan C, Hu J, Singh RP. Comparative analysis of chlorinated disinfection byproducts formation from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172200. [PMID: 38575027 DOI: 10.1016/j.scitotenv.2024.172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Nitrophenol compounds (NCs) are widely distributed in water environments and regarded as important precursors of disinfection byproducts (DBPs). Herein, 4-nitrophenol and 2-amino-4-nitrophenol were selected as representative NCs to explore chlorinated DBPs (Cl-DBPs) formation during UV/post-chlorination. Dichloronitromethane (DCNM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), and trichloromethane (TCM) were formed from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination, and the yields of individual Cl-DBPs from 2-amino-4-nitrophenol were higher than those from 4-nitrophenol. Meantime, increasing chlorine contact time, UV fluence, and free chlorine dose could enhance Cl-DBPs formation, while much higher values of the three factors might decrease the yields of Cl-DBPs. Besides, alkaline pH could decrease the yields of halonitromethane (HNMs) and DCAN but increase the yields of TCM. Also, higher concentrations of 4-nitrophenol and 2-amino-4-nitrophenol would induce more Cl-DBPs formation. Subsequently, the possible formation pathways of DCNM, TCNM, DCAN, and TCM form 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination were proposed according to transformation products (TPs) and density functional theory (DFT) calculation. Notably, Cl-DBPs formed from 2-amino-4-nitrophenol presented higher toxicity than those from 4-nitrophenol. Among these generated Cl-DBPs, DCAN and TCNM posed higher cytotoxicity and genotoxicity, respectively. Furthermore, 4-nitrophenol, 2-amino-4-nitrophenol, and their TPs exhibited ecotoxicity. Finally, 4-nitrophenol and 2-amino-4-nitrophenol presented a high potential to produce DCNM, TCNM, DCAN, and TCM in actual waters during UV/post-chlorination, but the Cl-DBPs yields were markedly different from those in simulated waters. This work can help better understand Cl-DBPs formation from different NCs during UV/post-chlorination and is conducive to controlling Cl-DBPs formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
11
|
Kalita I, Kamilaris A, Havinga P, Reva I. Assessing the Health Impact of Disinfection Byproducts in Drinking Water. ACS ES&T WATER 2024; 4:1564-1578. [PMID: 38633371 PMCID: PMC11019713 DOI: 10.1021/acsestwater.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
This study provides a comprehensive investigation of the impact of disinfection byproducts (DBPs) on human health, with a particular focus on DBPs present in chlorinated drinking water, concentrating on three primary DBP categories (aliphatic, alicyclic, and aromatic). Additionally, it explores pivotal factors influencing DBP formation, encompassing disinfectant types, water source characteristics, and environmental conditions, such as the presence of natural materials in water. The main objective is to discern the most hazardous DBPs, considering criteria such as regulation standards, potential health impacts, and chemical diversity. It provides a catalog of 63 key DBPs alongside their corresponding parameters. From this set, 28 compounds are meticulously chosen for in-depth analysis based on the above criteria. The findings strive to guide the advancement of water treatment technologies and intelligent sensory systems for the efficient water quality surveillance. This, in turn, enables reliable DBP detection within water distribution networks. By enriching the understanding of DBP-associated health hazards and offering valuable insights, this research is aimed to contribute to influencing policy-making in regulations and treatment strategies, thereby protecting public health and improving safety related to chlorinated drinking water quality.
Collapse
Affiliation(s)
- Indrajit Kalita
- Computing
& Data Sciences (CDS), Boston University, Boston, Massachusetts 02215, United States
- CYENS
Centre of Excellence, Nicosia 1016, Cyprus
| | - Andreas Kamilaris
- CYENS
Centre of Excellence, Nicosia 1016, Cyprus
- Pervasive
Systems Group, University of Twente, Enschede 7522, Netherlands
| | - Paul Havinga
- Pervasive
Systems Group, University of Twente, Enschede 7522, Netherlands
| | - Igor Reva
- Department
of Chemical Engineering, CERES, University
of Coimbra, Coimbra 3030-790, Portugal
| |
Collapse
|
12
|
Ma Y, Li M, Huo Y, Zhou Y, Jiang J, Xie J, He M. Differences in the degradation behavior of disinfection by-products in UV/PDS and UV/H 2O 2 processes and the effect of their chemical properties. CHEMOSPHERE 2023; 345:140457. [PMID: 37839744 DOI: 10.1016/j.chemosphere.2023.140457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
In this work, sixteen typical chlorinated and brominated aromatic disinfection by-products (DBPs) were selected as examples to investigate their different degradation mechanisms initiated by HO• and SO4•-. Addition reactions were the main mode of degradation of DBPs by HO•, while SO4•- dominated H-abstraction reactions and single electron transfer reactions. Chlorinated compounds had higher reactivity than brominated compounds. Furthermore, substituents with stronger electron-donating effects promoted the electrophilic reaction of DBPs with the two radicals. In addition, we developed a model based on the chemical properties LUMO, fmax-, and hardness for predicting the average reaction energy barriers for the initial reactions of DBPs with HO• and SO4•-. The model had good predictive performance for the difficulty of degradation of different DPBs by HO• and SO4•-, with R2 values of 0.85 and 0.87, respectively. Through the degradation efficiency simulation, we found that longer reaction times, higher oxidant concentrations and lower pollutant concentrations were more favorable for the removal of DBPs. The UV/PDS process showed better degradation of DBPs than the UV/H2O2 process. In addition, most degradation products of DBPs exhibited less toxicity to aquatic organisms than their parent compounds. This study provided theoretical guidance for the degradation and removal of other aromatic DBPs at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Weihai Water Conservancy Service Center, Weihai, 264200, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
13
|
Cai L, Huang H, Li Q, Deng J, Ma X, Zou J, Li G, Chen G. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination. CHEMOSPHERE 2023; 329:138696. [PMID: 37062392 DOI: 10.1016/j.chemosphere.2023.138696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The formation characteristics of trihalomethanes (THMs) and haloacetamides (HAcAms) from dissolved organic matter and its fractions were investigated during chlorine-based disinfection processes. The relationships between water quality parameters, fluorescence parameters, and the formation levels of THMs and HAcAms were analyzed. The fractions contributing most to the acute toxicity were identified. The trichloromethane (TCM) generation level (72 h) generally followed the order of Cl2 > NH2Cl > NHCl2 process. The NHCl2 process was superior to the NH2Cl process in controlling TCM formation. Hydrophobic acidic substance (HOA), hydrophobic neutral substance (HON), and hydrophilic substance (HIS) were identified as primary precursors of 2,2-dichloroacetamide and trichloroacetamide during chlorination and chloramination. The formation of TCM mainly resulted from HOA, HON and HIS fractions relatively uniformly, while HOA and HIS fractions contributed more to the formation of bromodichloromethane and dibromomonochloromethane. UV254 could be used as an alternative indicator for the amount of ΣTHMs formed during chlorination and chloramination processes. Dissolved organic nitrogen was a potential precursor of 2,2-dichloroacetamide during chlorination process. The fractions with the highest potential acute toxicity after the chlorination were water-dependent.
Collapse
Affiliation(s)
- Litong Cai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Fujian Metrology Institute, Fujian, Fuzhou, 350003, China.
| | - Huahan Huang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| |
Collapse
|
14
|
Dong F, Zhu J, Li J, Fu C, He G, Lin Q, Li C, Song S. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161497. [PMID: 36634528 DOI: 10.1016/j.scitotenv.2023.161497] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Disinfection is an effective process to inactivate pathogens in drinking water treatment. However, disinfection byproducts (DBPs) will inevitably form and may cause severe health concerns. Previous research has mainly focused on DBPs formation during the disinfection in water treatment plants. But few studies paid attention to the formation and transformation of DBPs in the water distribution system (WDS). The complex environment in WDS will affect the reaction between residual chlorine and organic matter to form new DBPs. This paper provides an overall review of DBPs formation and transformation in the WDS. Firstly, the occurrence of DBPs in the WDS around the world was cataloged. Secondly, the primary factors affecting the formation of DBPs in WDS have also been summarized, including secondary chlorination, pipe materials, biofilm, deposits and coexisting anions. Secondary chlorination and biofilm increased the concentration of regular DBPs (e.g., trihalomethanes (THMs) and haloacetic acids (HAAs)) in the WDS, while Br- and I- increased the formation of brominated DBPs (Br-DBPs) and iodinated DBPs (I-DBPs), respectively. The mechanism of DBPs formation and transformation in the WDS was systematically described. Aromatic DBPs could be directly or indirectly converted to aliphatic DBPs, including ring opening, side chain breaking, chlorination, etc. Finally, the toxicity of drinking water in the WDS caused by DBPs transformation was examined. This review is conducive to improving the knowledge gap about DBPs formation and transformation in WDS to better solve water supply security problems in the future.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guilin He
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Li Y, Niu Z, Wang Y, Zhang L, Zhang Y. The convergence of 2,6-dichloro-1,4-benzoquinone in the whole process of lignin phenol precursor chlorination. CHEMOSPHERE 2023; 312:137290. [PMID: 36403808 DOI: 10.1016/j.chemosphere.2022.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The formation and decomposition of 2,6-dichloro-1,4-benzoquinone, an emerging disinfection byproduct (DBP), was studied in the chlorination of lignin phenol precursors. The results show that DCBQ and the related hydroxyl DCBQ (DCBQ-OH) acts as the intermediate products of the chlorination process of the three typical lignin phenol precursors (p-hydroxybenzoic acid, protocatechuic acid, and gallic acid). The contributions of lignin phenol precursors to the overall formation of the targeted DBPs were determined based on the observed abundances of individual lignin phenols and their DBP yields. DCBQ and DCBQ-OH were generated within 2-6 h, the relative abundance of the yields of mol carbon atoms in DCBQ corresponding to the mol carbon atoms in the three model precursors (DCBQ-C) was about 0.01%-14.37% under different pH conditions. With the chlorination reaction time increased (after two or four h), the concentrations of DCBQ and DCBQ-OH entirely decreased, and the decomposition of DCBQ do not follow a pseudo-first-order kinetics during chlorination. Conversely, the decomposition of DCBQ generated from p-hydroxybenzoic acid followed a pseudo-second-order kinetics. Moreover, the formation of trichloromethane (TCM), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA) was also detected during the chlorination. The contribution of the decomposed DCBQ was mainly to TCAA and the unknown DBPs within 2-12 h, and DCBQ decomposition pathway was affected by pH. Moreover, except for DCBQ/DCBQ-OH and TCM/HAAs, there were still 73.6%-92.41% unknown products (including non-halogenated aromatic DBPs and chlorine-substituted DBPs) needing to identify during the chlorination process for lignin phenols. Overall, revealing the formation and decomposition of DCBQ during the chlorination of lignin phenol precursors would contribute to the effective development of drinking water treatment processes for the removal of highly toxic intermediates generated during disinfection.
Collapse
Affiliation(s)
- Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; The International Joint Institute of Tianjin University, Fuzhou, 350207, China
| | - Yuqi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifen Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Li J, Zhang Z, Xiang Y, Jiang J, Yin R. Role of UV-based advanced oxidation processes on NOM alteration and DBP formation in drinking water treatment: A state-of-the-art review. CHEMOSPHERE 2023; 311:136870. [PMID: 36252895 DOI: 10.1016/j.chemosphere.2022.136870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Oxidative treatment of drinking water has been practiced for more than a century. UV-based advanced oxidation processes (UV-AOPs) have emerged as promising oxidative treatment technologies to eliminate recalcitrant chemicals and biological contaminants in drinking water. UV-AOPs inevitably alter the properties of natural organic matter (NOM) and affect the disinfection byproduct (DBP) formation in the post-disinfection. This paper provides a state-of-the-art review on the effects of UV-AOPs on the changes of NOM properties and the consequent impacts on DBP formation in the post-chlorination process. A tutorial review to the connotations of NOM properties (e.g., bulk properties, fractional constituents, and molecular structures) and the associated state-of-the-art analytical methods are firstly presented. The impacts of different radical-based AOPs on the changes of NOM properties together with the underlying NOM-radical reaction mechanisms are discussed. The impacts of alteration of NOM properties on DBP formation in the post-chlorination process are then reviewed. The current knowledge gaps and future research needs are finally presented, with emphases on the needs to strengthen the comparability of research data in literature, the accuracy in quantifying the reactive moieties of NOM, and the awareness of unknown DBPs in oxidative water treatment processes. The review and discussion improve the fundamental understanding of NOM-radical and NOM-chlorine chemistry. They also provide useful implications on the engineering design and operation of next-generation drinking water treatment plants.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| |
Collapse
|
17
|
Hu S, Chen X, Zhang B, Liu L, Gong T, Xian Q. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1,4-benzoquinone in chlorinated drinking water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129189. [PMID: 35739719 DOI: 10.1016/j.jhazmat.2022.129189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) have been reported as an emerging category of disinfection byproducts (DBPs) in drinking water with relatively high toxicity, and the previously reported HBQs include 2,6-dichloro-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,6-dibromo-1,4-benzoquinone, 2,6-diiodo-1,4-benzoquinone, 2-chloro-6-iodo-1,4-benzoquinone, and 2-bromo-6-iodo-1,4-benzoquinone. In this study, another HBQ species, 2-bromo-6-chloro-1,4-benzoquinone (2,6-BCBQ), was newly detected and identified in drinking water. The occurrence frequency and levels of 2,6-BCBQ were investigated, and its cytotoxicity was evaluated. Since the formed 2,6-BCBQ was found to be not stable in chlorination, its transformation kinetics and mechanisms in chlorination were further studied. The results reveal that 2,6-BCBQ was generated from Suwannee River humic acid with concentrations in the range of 4.4-47.9 ng/L during chlorination within 120 h, and it was present in all the tap water samples with concentrations ranging from 1.5 to 15.7 ng/L. Among all the tested bromochloro-DBPs, 2,6-BCBQ showed the highest cytotoxicity on the human hepatoma cells. The transformation of 2,6-BCBQ in chlorination followed a pseudo-first-order decay, which was significantly affected by the chlorine dose, pH, and temperature. Seven polar chlorinated and brominated intermediates (including HBQs, halohydroxybenzoquinones, and halohydroxycyclopentenediones) were detected in chlorinated 2,6-BCBQ samples, according to which the transformation pathways of 2,6-BCBQ in chlorination were proposed. Besides, four trihalomethanes and four haloacetic acids were also generated during chlorination of 2,6-BCBQ with molar transformation percentages of 1.6-13.7%.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Chen
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lanyao Liu
- Water Resources Department of Linyi, Linyi 276037, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Zhao J, Hu S, Zhu L, Wang W. Formation of chlorinated halobenzoquinones during chlorination of free aromatic amino acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153904. [PMID: 35189221 DOI: 10.1016/j.scitotenv.2022.153904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated halobenzoquinones (HBQs) widely exist in drinking water as emerging disinfection byproducts (DBPs), which have attracted significant attention due to their wide occurrence and high toxicity. In this study, the formation of chlorinated HBQs from the three free aromatic amino acids, tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe), during chlorination was investigated, the formation pathways of chlorinated HBQs were explained based on the detected intermediates and influence factors. The results revealed that four chlorinated HBQs, including 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,3,5-trichloro-1,4-benzoquinone, 2,3,5,6-tetrachloro-1,4-benzoquinone and 2,6-dichloro-3-methyl-1,4-benzonquinone, were formed in chlorination of the three free aromatic amino acids, and 2,6-DCBQ was the dominant species among the formed chlorinated HBQs. Of the three free aromatic amino acids, Trp and Tyr presented relatively high yields of chlorinated HBQs than Phe. Moreover, ten intermediates were successfully detected (e.g., N,2-dichloroaniline from Trp, 2,4,6-trichlorophenol from Tyr) according to the isotope and fragment information obtained using high resolution mass spectrometry. The formation pathways of chlorinated HBQs from Trp and Tyr were proposed to include electrophilic addition, electrophilic substitution, oxidation, deacidification and dehydration reaction, and further validated using theoretical calculation. The yields of chlorinated HBQs during chlorination of the free aromatic amino acids were significantly affected by free chlorine dosage, pH and temperature.
Collapse
Affiliation(s)
- Jiaxing Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Shaoyang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
19
|
Li S, Ma J, Wu G, Li J, Wang X, Chen L. Magnetic covalent-organic frameworks for the simultaneous extraction of eleven emerging aromatic disinfection byproducts in water samples coupled with UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127687. [PMID: 34776299 DOI: 10.1016/j.jhazmat.2021.127687] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
A simple method based on magnetic solid-phase extraction (MSPE) was developed for the simultaneous extraction of eleven emerging aromatic disinfection byproducts (DBPs) in water samples coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. A magnetic covalent-organic framework (COF) material, namely, Fe3O4 @TpBD, was facilely synthesized and fully characterized, followed by an MSPE process. Several important MSPE parameters, such as the magnetic ratio, Fe3O4 @TpBD amount and sample pH, were systematically investigated. Under optimal conditions, the limits of detection and quantification of this COF-MSPE-UHPLC-MS/MS method were as low as 0.07-1.81 ng/L and 0.24-5.99 ng/L, respectively. Good precision was obtained with relative standard deviations (RSDs) of 1.3-10.9% (intraday) and 4.3-15.9% (interday). Furthermore, the validated method was proven applicable to real water samples; for example, the recoveries were 86.8-115.1% for the secondary effluent, and several DBPs in swimming pool water were detected. Notably, the MSPE process required only 7 min, ensuring that the DBPs were relatively stable during the whole analysis process and that Fe3O4 @TpBD demonstrated excellent reusability. The COF-based MSPE method with simplicity, rapidity and efficiency provided an ideal sample pretreatment alternative to determine trace DBPs in complex matrices.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China.
| | - Gege Wu
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
20
|
Liu Z, Ye T, Xu B, Zhang TY, Li MY, Hu CY, Tang YL, Zhou XR, Xian QM, Gao NY. Formation and control of organic chloramines and disinfection by-products during the degradation of pyrimidines and purines by UV/chlorine process in water. CHEMOSPHERE 2022; 286:131747. [PMID: 34358893 DOI: 10.1016/j.chemosphere.2021.131747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Pyrimidine and purine bases (adenine, cytosine, guanine and thymine) are important precursors of organic chloramines (OC) and disinfection by-products (DBPs) during chlor(am)ination. In this study, OC and DBP formation derived from pyrimidine and purine bases during chlor(am)ination, post-chlor(am)ination after pretreated by UV alone and UV/chlorination were systematically investigated with ultraviolet light-emitting diodes (UV-LEDs, 265 and 275 nm) and low pressure mercury lamp (LPUV, 254 nm). The results revealed that higher OC formation was observed during chlorination than that during chloramination of pyrimidine and purine bases. The degradation of pyrimidine and purine bases followed the pseudo-first-order kinetics. Both solution pH and UV wavelength played vital influence on the degradation of pyrimidine and purine bases. In terms of fluence-based rate constants (kobs), the degradation rates of pyrimidine and purine bases decreased in the order of 275 nm > 265 nm > 254 nm in alkaline conditions. The synergistic effects of kobs, chlorine,kobs, •OH and kobs, RCS contributed to the differences of pyrimidine and purine bases degradation at different pH values and UV wavelengths. A vital suppression of OC formation was observed during post-chlorination after pretreated by 275 nm UV-LED/chlorination. In addition, compared with LPUV (254 nm), less DBP formation was observed at UV-LED (275 nm), especially during the UV/chlorine process. The phenomena obtained in this study indicated that 275 nm UV-LED combined with chlorine could be a preferred method to promote pyrimidine and purine bases degradation and control OC and DBP formation in practical water treatment.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, United States
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Meng-Yu Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiang-Ren Zhou
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, PR China
| | - Qi-Ming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
21
|
Liu J, Gibb M, Pradhan SH, Sayes CM. Synergistic cytotoxicity of bromoacetic acid and three emerging bromophenolic disinfection byproducts against human intestinal and neuronal cells. CHEMOSPHERE 2022; 287:131794. [PMID: 34438205 DOI: 10.1016/j.chemosphere.2021.131794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Halogenated disinfection byproducts (halo-DBPs) are drinking water contaminants of great public health concern. Nine haloaliphatic DBPs have been regulated by the U.S. Environmental Protection Agency and various halophenolic compounds have been identified as emerging DBPs. In this study, we evaluated the cytotoxic interactions of the regulated bromoacetic acid and three emerging bromophenolic DBPs, i.e., 2,4,6-tribromophenol, 3,5-dibromo-4-hydroxybenzoic acid, and 3,5-dibromo-4-hydroxybenzaldehyde. Cytotoxicity was measured for each DBP individually as well as each of their mixtures using in vitro human epithelial colorectal adenocarcinoma (Caco-2) and neuroblastoma (SH-SY5Y) cells. Concentration addition (CA) model and isobolographic analysis were employed to characterize the interactions among the DBPs. Our results show that the cytotoxicity of four bromo-DBPs against both cell-types followed the descending rank order of bromoacetic acid > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > 3,5-dibromo-4-hydroxybenzoic acid. Compared with the toxicity data in literature, our finding that bromoacetic acid showed higher cytotoxicity than bromophenolic DBPs was consistent with the results from Chinese hamster ovary cells (a commonly used in vitro model of DBP toxicological studies); but different from the results obtained from in vivo biological models. Significantly, with CA model prediction, we found that mixtures of four bromo-DBPs exhibited synergistic cytotoxic effects on both human cell types. Isobolographic analysis of binary DBP mixtures revealed that, for Caco-2 cells, bromoacetic acid, 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoic acid induced synergism; for SH-SY5Y cells, bromoacetic acid induced synergism with all three bromophenolic DBPs. The production of reactive oxidative species (ROS) induced by DBP mixtures could be an important reason for the synergistic cytotoxicity.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sahar H Pradhan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
22
|
Nguyen HVM, Lee HS, Lee SY, Hur J, Shin HS. Changes in structural characteristics of humic and fulvic acids under chlorination and their association with trihalomethanes and haloacetic acids formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148142. [PMID: 34380267 DOI: 10.1016/j.scitotenv.2021.148142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The effects of chlorination on 16 humic and fulvic acids (HAs and FAs, respectively) extracted from six different soil samples from Korea and two purchased soil samples (Canadian peat moss, Elliott Silt Loam Soil) were investigated to identify the changes in their structural characteristics and their effects on trihalomethane formation potential (THMFP) and haloacetic acid formation potential. The effect of chlorination was also investigated in fractionated samples (Aldrich HA, F1-F5) based on molecular weight (MW). Total organic carbon (TOC), specific UV absorbance (SUVA), fulvic-like fluorescence (%FLF), terrestrial humic-like fluorescence (%THLF), weight-average molecular weight (MWw), and carbon structures (13C NMR) were measured for each sample before and after chlorination, and factors relating to the chlorination mechanism were examined using principal component analysis (PCA). The results showed that the changes in the structural characteristics and the disinfection by-product formation of chlorinated HA and FA differed critically. For chlorinated HA, TOC and %FLF decreased due to oxidation, whereas %THLF was reduced via incorporation; MW also affected the structural changes and THMFP generation. In the PCA results, high SUVA, low MW, low N/C, and low O groups of aromatic C were associated with high THMFP production in HA, whereas low O groups of aliphatic C in FA were associated with both oxidation and incorporation in terms of THMFP. These results elucidate the mechanisms associated with the effects of chlorination in HA and FA and will support the prediction of THMFP generation in HA and FA based on their specific structural characteristics.
Collapse
Affiliation(s)
- Hang Vo-Minh Nguyen
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Han-Saem Lee
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Su-Young Lee
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Hyun-Sang Shin
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea.
| |
Collapse
|
23
|
Kali S, Khan M, Ghaffar MS, Rasheed S, Waseem A, Iqbal MM, Bilal Khan Niazi M, Zafar MI. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116950. [PMID: 33819670 DOI: 10.1016/j.envpol.2021.116950] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Marina Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Sheraz Ghaffar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Sciences, University of Kotli, Azad Jamu Kashmir, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium; Soil and Water Testing Laboratory, Department of Agriculture, Chiniot, Government of Punjab, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
24
|
Polymer brush-grafted cotton fiber for the efficient removal of aromatic halogenated disinfection by-products in drinking water. J Colloid Interface Sci 2021; 597:66-74. [PMID: 33865079 DOI: 10.1016/j.jcis.2021.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
Apart from the activated carbon, other functional adsorbents are usually not frequently reported for the removal of disinfection by-products (DBPs) in drinking water. In this study, a novel polymer brush-grafted cotton fiber was prepared and for the first time used as adsorbents for the efficient removal of aromatic halogenated DBPs in drinking water in the column adsorption mode. Poly (glycidyl methacrylate) (PGMA) was grafted onto the surface of cotton fibers via UV irradiation, and then diethylenetriamine was immobilized on the PGMA polymer brush through amination reaction to obtain the aminated cotton fibers (ACFs). The adsorption performance of the prepared ACF was investigated with eight aromatic halogenated DBPs via dynamic adsorption experiments. The results revealed that ACF showed significantly longer breakthrough point (38,500-225,500 BV) for aromatic halogenated DBPs compared with the granular activated carbon (150-500 BV). Thomas model was used to fit the breakthrough curves, and the theoretical value of the maximum adsorption capacity ranged from 14.76 to 89.47 mg/g. The enhanced adsorption performance of the ACF for aromatic halogenated DBPs was mainly due to the formation of hydrogen bonds. Additionally, the partially protonated amine groups also improved the adsorption performance. Furthermore, the ACF also showed remarkable stability and reusability.
Collapse
|
25
|
Jin B, Zhang J, Xu W, Rolle M, Liu J, Zhang G. Simultaneous determination of stable chlorine and bromine isotopic ratios for bromochlorinated trihalomethanes using GC-qMS. CHEMOSPHERE 2021; 264:128529. [PMID: 33038736 DOI: 10.1016/j.chemosphere.2020.128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Bromochlorinated compounds are organic contaminants originating from different natural and anthropic sources and increasingly found in different environmental compartments. This work presents an online approach for compound specific stable isotope analysis of chlorine and bromine isotope ratios for bromochlorinated trihalomethanes using gas chromatography coupled to quadrupole mass spectrometry (GC-qMS). An evaluation scheme was developed to simultaneously determine stable chlorine and bromine isotope ratios based on the mass spectral data of two target compounds: dibromochloromethane and dichlorobromomethane. The analytical technique was optimized by assessing the impact of different instrumental parameters, including dwell time, split ratios, and ionization energy. Successively, static headspace samples containing the two target compounds at aqueous concentrations ranging from 0.1 mg/L to 5 mg/L were analyzed in order to test the precision and reproducibility of the proposed approach. The results showed a good precision under the optimized instrumental conditions, with relative standard deviations ranging between 0.05% and 0.5% for chlorine and bromine isotope analysis. Finally, the method was tested in a source identification problem in which the simultaneous determination of chlorine and bromine stable isotope ratios allowed the clear distinction of dibromochloromethane from three different manufacturers.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources Utilization, China; University of Chinese Academy of Sciences, Beijing, 10069, China.
| | - Jiyun Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Wenli Xu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Massimo Rolle
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jinzhong Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
26
|
Zhang X, Wei D, Sun X, Bai C, Du Y. Free available chlorine initiated Baeyer-Villiger oxidation: A key mechanism for chloroform formation during aqueous chlorination of benzophenone UV filters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115737. [PMID: 33011608 DOI: 10.1016/j.envpol.2020.115737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Chloroform, a regulated disinfection by-product in water, is often generated during chlorination disinfection treatment. However, the formation of chloroform is heavily dependent on the molecular structures of precursors. Moreover, compounds containing ketone moiety are ubiquitous in water environments. However, it is unclear if they can generate chloroform during chlorination. In this study, 14 benzophenones (BPs), efficient and widely used UV filters, with different substituents were selected to explore chloroform formation during chlorination. All 14 BPs generated chloroform, with yields dependent on their molecular structures and operational conditions. Compounds 2,2',4,4'-tetrahydroxy-BP and benzophenone produced the highest and lowest chloroform of 0.313 and 0.013 g/g, respectively, corresponding to the fastest and slowest formation rate constants of 1.41 × 10-1 and 2.71 × 10-2 min-1. Alkaline conditions and high chlorine dosages were favorable to chloroform formation. Three reactions played key roles in chloroform formation from BPs: (1) chlorine initiated Baeyer-Villiger oxidation converted ketone moieties of BP molecules into esters; (2) the esters further underwent hydrolysis and formed phenolic and benzoic products; and (3) benzoic acids underwent decarboxylation and hydrolysis to form phenolic products. Subsequently, these phenolic products could further generate chloroform in the chlorination system. More importantly, BPs could generate chloroform in the ambient water matrices during practical chlorination treatment. This work emphasized the critical role of Baeyer-Villiger oxidation for chloroform formation, implying that pollutants containing aromatic ketone moieties generate chloroform during chlorination disinfection, and their potential risk should therefore be reviewed.
Collapse
Affiliation(s)
- Xinyi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenzhong Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Liu X, Chen L, Yang M, Tan C, Chu W. The occurrence, characteristics, transformation and control of aromatic disinfection by-products: A review. WATER RESEARCH 2020; 184:116076. [PMID: 32698088 DOI: 10.1016/j.watres.2020.116076] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
With the development of analytical technology, more emerging disinfection by-products (DBPs) have been identified and detected. Among them, aromatic DBPs, especially heterocyclic DBPs, possess relatively high toxicity compared with regulated DBPs, which has been proved by bioassays. Thus, the occurrence of aromatic DBPs is of great concern. This article provides a comprehensive review and summary of the characteristics, occurrence, transformation pathways and control of aromatic DBPs. Aromatic DBPs are frequently detected in drinking water, wastewater and swimming pool water, among which swimming pool water illustrates highest concentration. Considering the relatively high concentration and toxicity, halophenylacetonitriles (HPANs) and halonitrophenols (HNPs) are more likely to be toxicity driver among frequently detected phenyl DBPs. Aromatic DBPs can be viewed as important intermediate products of dissolved organic matter (DOM) during chlor(am)ination. High molecular weight DOM could convert to aromatic DBPs via direct or indirect pathways, and they can further decompose into regulated aliphatic DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) by ring opening and side chain cleavage. Even though no single DBPs control strategy is efficient to all aromatic DBPs, the decrease of overall toxicity may be achieved by several methods including absorption, solar radiation and boiling. By systematically considering aromatic DBPs and aliphatic DBPs, a better trade-off can be made to reduce health risk induced by DBPs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
28
|
Liu Z, Xu B, Lin YL, Zhang TY, Ye T, Hu CY, Lu YS, Cao TC, Tang YL, Gao NY. Mechanistic study on chlorine/nitrogen transformation and disinfection by-product generation in a UV-activated mixed chlorine/chloramines system. WATER RESEARCH 2020; 184:116116. [PMID: 32750585 DOI: 10.1016/j.watres.2020.116116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The conversion mechanisms of chlorine species (including free chlorine, monochloramine (NH2Cl), dichloramine, and total chlorine), nitrogen species (including ammonium (NH4+), nitrate (NO3-), and nitrite (NO2-)) as well as the formation of disinfection by-products (DBPs) in a UV-activated mixed chlorine/chloramines system in water were investigated in this work. The consumption rates of free chlorine and NH2Cl were significantly promoted in a HOCl/NH2Cl coexisting system, especially in the presence of UV irradiation. Moreover, the transformation forms of nitrogen in both ultrapure and HA-containing waters were considerably affected by UV irradiation and the mass ratio of free chlorine to NH2Cl. NO3- and NO2- can be easily produced under UV irradiation, and the removal efficiency of total nitrogen with UV was obvious higher than that without UV when the initial ratio of HOCl/NH2Cl was less than 1. The roles of different radicals in the degradation of free chlorine, NH2Cl and NH4+ were also considered in such a UV-activated mixed chlorine/chloramines system. The results indicated that OH• was important to the consumption of free chlorine and NH2Cl, and showed negligible influence on the consumption of NH4+. Besides, the changes of DOC and UV254 in HA-containing water in UV-activated mixed chlorine/chloramines system indicated that the removal efficiency of DOC (24%) was much lower than that of UV254 (94%). The formation of DBPs in a mixed chlorine/chloramines system was also evaluated. The yields of DBPs decreased significantly as the mass ratio of HOCl/NH2Cl varied from 1 : 0 to 0 : 1. Moreover, compared to the conditions without UV irradiation, higher DBPs yields and DBP-associated calculated toxicity were observed during the UV-activated mixed chlorine/chloramine process.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tao Ye
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195, United States
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Yong-Shan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
29
|
Li Y, Jiang J, Li W, Zhu X, Zhang X, Jiang F. Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii. CHEMOSPHERE 2020; 252:126611. [PMID: 32443275 DOI: 10.1016/j.chemosphere.2020.126611] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Halogenated disinfection byproducts (DBPs) are formed during chlorine disinfection of drinking water. The complicated natural organic matter in source water causes the formation of an even more complicated mixture of DBPs. To evaluate the toxicity of a DBP mixture in a disinfected water sample, the sample needs to be pretreated in order to attain an observable acute adverse effect in the toxicity test. During sample pretreatment, volatile DBPs including trihalomethanes, haloacetonitriles and haloketones may be lost, which could affect the toxicity evaluation of the DBP mixture. In this study, we intentionally prepared "concentrated" simulated drinking water samples, which contained sufficiently high levels of volatile and nonvolatile DBPs and thus enabled directly evaluating the toxicity of the DBP mixtures without sample pretreatment. Specifically, the natural organic matter and bromide concentrations and the chlorine dose in the concentrated water samples were 250 times higher than those in a typical drinking water sample. Each concentrated water sample was divided into two aliquots, and one of them was nitrogen sparged to eliminate volatile DBPs; then, both aliquots were used directly in a well-established developmental toxicity test. No significant difference (p > 0.10) was found between the developmental toxicity indexes of each concentrated water sample without and with nitrogen sparging, indicating that the contribution of volatile DBPs to the developmental toxicity of the DBP mixture might be marginal. A reasonable interpretation is that nonvolatile halogenated DBPs (especially the aromatic ones) in the DBP mixture could be the major developmental toxicity contributor that warrants more attention.
Collapse
Affiliation(s)
- Yu Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaohu Zhu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Feng Jiang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Kiattisaksiri P, Khan E, Punyapalakul P, Musikavong C, Tsang DCW, Ratpukdi T. Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. ENVIRONMENTAL RESEARCH 2020; 185:109454. [PMID: 32278158 DOI: 10.1016/j.envres.2020.109454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The main objective of this work was to investigate the feasibility of using vacuum ultraviolet (VUV, 185 + 254 nm) and ultraviolet (UV, 254 nm) for the reduction of dissolved organic nitrogen (DON) and haloacetonitrile formation potential (HANFP) of surface water and treated effluent wastewater samples. The results showed that the reduction of dissolved organic carbon (DOC), DON, hydrophobicity (HPO), absorbance at 254 nm (UV254), and fluorescence excitation-emission matrix (FEEM) of both water samples by VUV was higher compared to using UV. The addition of H2O2 remarkably improved the performances of VUV and UV. VUV/H2O2 exhibited the highest removal efficiency for DOC and DON. Even though HANFP increased at the early stage, its concentration decreased (19-72%) at the end of treatment (60 min). Decreases in DON (30-41%) and DOC (51-57%) led to HANFP reduction (53-72%). Moreover, FEEM revealed that substantial reduction in soluble microbial product-like compounds (nitrogen-rich organic) had a strong correlation with HANFP reduction, implying that this group of compounds act as a main precursor of HANs. The VUV/H2O2 system significantly reduced HANFP more than UV/H2O2 and therefore is suitable for controlling HAN precursors and HAN formation in drinking water and reclaimed wastewater.
Collapse
Affiliation(s)
- Pradabduang Kiattisaksiri
- Faculty of Public Health, Thammasat University (Lampang Center), Lampang, 52190, Thailand; International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4015, United States
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering, and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Hu S, Gong T, Zhu H, Wang J, Li Z, Chen H, Huang Z, Zhang M, Xian Q. Formation and Decomposition of New Iodinated Halobenzoquinones during Chloramination in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5237-5248. [PMID: 32212715 DOI: 10.1021/acs.est.9b07564] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previously four chlorinated and brominated halo-benzoquinones were reported as new disinfection byproducts (DBPs) in drinking water, which have drawn great concern due to their high toxicity. In this study, three new iodinated halobenzoquinones, including 2-chloro-6-iodo-1,4-benzoquinone (2,6-CIBQ), 2-bromo-6-iodo-1,4-benzoquinone (2,6-BIBQ), and 2,6-diiodo-1,4-benzoquinone (2,6-DIBQ), were detected and identified in drinking water for the first time. Their cytotoxicity was evaluated, and their formation under various conditions was examined. Since they were not stable during chloramination, their further decomposition during chloramination was also explored. The results indicated that the concentrations of 2,6-CIBQ, 2,6-BIBQ, and 2,6-DIBQ in drinking water were in the ranges of 0.7-1.3, 1.8-8.0, and 0.4-15.9 ng/L, respectively. Compared with 2,6-dibromo-1,4-benzoquinone, the iodinated halobenzoquinones were generally more cytotoxic. The formation of 2,6-DIBQ during chloramination was significantly affected by the iodide concentration, pH, and natural organic matter. The five tested iodinated halobenzoquinones decomposed during chloramination following pseudo-first-order decay, with the decomposition rate constants in the rank order of 2,6-CIBQ > 2,6-BIBQ > 2,6-DIBQ > 2,3-diiodo-1,4-benzoquinone >2-iodo-1,4-benzoquinone. Nine polar halogenated intermediates as well as ten aliphatic halogenated DBPs were detected as the decomposition products of 2,6-DIBQ during chloramination, based on which the decomposition pathways of 2,6-DIBQ during chloramination were proposed and verified.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hete Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhijun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Meiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|