1
|
Apú N, Rommes F, Alvarado-Arias M, Méndez-Rivera M, Lizano-Fallas V. Endocrine-disrupting pesticide exposure relevant to reproductive health: a case study from Costa Rica. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:559. [PMID: 40237939 PMCID: PMC12003610 DOI: 10.1007/s10661-025-14011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Global pesticide use has increased significantly over the past decade, leading to greater exposure to contaminants and associated health risks. Endocrine-disrupting pesticides have gained attention due to their strong association with human reproductive impairments and rising global infertility rates. In Costa Rica, studies have reported reduced fertility among agricultural workers and a higher prevalence of male infertility in regions with intensive pesticide use. However, the prioritization of pesticides detected in human fluids, based on their potential impact on reproductive health, has not been conducted. Here, analyzing human biomonitoring studies in the country over the last 25 years, 13 pesticides were identified and prioritized. Mancozeb ranked highest (14.8%), followed by dieldrin (12.1%) and chlorothalonil (12.0%). Eight criteria were used for prioritization, with non-carcinogenic risk, reported reproductive effects, and endocrine disruptor classification as key factors. This comprehensive approach highlights how multiple criteria collectively inform pesticide prioritization in relation to reproductive health risks. The findings indicated that while Costa Rica is a regional leader in pesticide biomonitoring, significant gaps remain, including limited data on unstudied pesticides and general population exposures. Establishing robust biomonitoring programs and public health surveillance systems to generate updated data and support evidence-based prevention policies is recommended. Additionally, the results of this study provide a valuable framework for guiding future research on the potential effects of pesticide mixtures.
Collapse
Affiliation(s)
- Navilla Apú
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José, 2060, Costa Rica
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - François Rommes
- Département Agronomique, Haute Ėcole Charlemagne Huy, Huy, 4500, Belgium
| | - Maricruz Alvarado-Arias
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
2
|
Leggio L, Paternò G, Cavallaro F, Falcone M, Vivarelli S, Manna C, Calogero AE, Cannarella R, Iraci N. Sperm epigenetics and sperm RNAs as drivers of male infertility: truth or myth? Mol Cell Biochem 2025; 480:659-682. [PMID: 38717684 PMCID: PMC11835981 DOI: 10.1007/s11010-024-04962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2025]
Abstract
Male infertility represents a complex clinical condition that often challenges the ability of reproductive specialists to find its etiology and then propose an adequate treatment. The unexplained decline in sperm count, as well as the association between male infertility and mortality, morbidity, and cancer, has prompted researchers toward an urgent need to better understand the causes of male infertility. Therefore, molecular biologists are increasingly trying to study whether sperm epigenetic alterations may be involved in male infertility and embryo developmental abnormalities. In this context, research is also trying to uncover the hidden role of sperm RNAs, both coding and non-coding. This narrative review aims to thoroughly and comprehensively present the relationship between sperm epigenetics, sperm RNAs, and human fertility. We first focused on the technological aspects of studying sperm epigenetics and RNAs, relating to the complex role(s) played in sperm maturation, fertilization, and embryo development. Then, we examined the intricate connections between epigenetics and RNAs with fertility measures, namely sperm concentration, embryo growth and development, and live birth rate, in both animal and human studies. A better understanding of the molecular mechanisms involved in sperm epigenetic regulation, as well as the impact of RNA players, will help to tackle infertility.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Fabrizio Cavallaro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Falcone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125, Messina, Italy
| | - Claudio Manna
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Biofertility IVF and Infertility Center, Rome, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy.
| |
Collapse
|
3
|
Chou WM, Lin WL, Sheen JF. Determination of chlorothalonil in vegetables/fruits using liquid chromatography-tandem mass spectrometry with a discharge adapter interface. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9770. [PMID: 38773864 DOI: 10.1002/rcm.9770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024]
Abstract
RATIONALE Chlorothalonil (CHT), a broad-spectrum fungicide, has been employed widely to control foliar diseases, whereas with a major metabolite of polar 4-hydroxychlorothalonil (CHT-4-OH), only an acceptable nonpolar CHT residue is allowed by most countries. This study involves the method development for CHT residue in vegetables/fruits using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a novel modified discharge-adaptor (DA) interface. METHODS CHT residue was analyzed using LC-MS/MS with DA interface (LC-DA-MS/MS), developed in our previous works. A DA was placed on the electrospray tip to switch the ionization modes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to extract CHT residue of vegetables/fruits efficiently with less sample preparation time and analysis cost. RESULTS CHT and CHT-4-OH spiked in four different vegetables/fruits were extracted using the modified QuEChERS method. After LC with isocratic elution, CHT and CHT-4-OH were separated within 3 min. Using LC-DA-MS/MS, the ion signals of CHT were improved two to three times, and the limit of quantification of 5 ng/g and linearity (r2 > 0.99) in the range of 5-200 ng/g were achieved using 10 g of vegetables/fruits. The precision and accuracy were within 15% each. The modified QuEChERS and LC-DA-MS/MS were applied to examine eight field-grown vegetables/fruits; 9.5 and 2588.9 ng/g of CHT were detected in two vegetables/fruits. CONCLUSION LC-DA-MS/MS combined with modified QuEChERS was successfully applied to determine CHT residue <10 ng/g in vegetables/fruits and with satisfied validation results. The developed method could reduce both analysis cost and time, attributing to simplifications in modified QuEChERS, isocratic elution, and DA interface in LC-DA-MS/MS.
Collapse
Affiliation(s)
- Wing-Ming Chou
- Department of Biotechnology, National Formosa University, Huwei, Taiwan
| | - Wen-Ling Lin
- Department of Biotechnology, National Formosa University, Huwei, Taiwan
| | - Jenn-Feng Sheen
- Department of Biotechnology, National Formosa University, Huwei, Taiwan
| |
Collapse
|
4
|
Grazia Mele V, Chioccarelli T, Diano N, Cappetta D, Ferraro B, Telesca M, Moggio M, Porreca V, De Angelis A, Berrino L, Fasano S, Cobellis G, Chianese R, Manfrevola F. Variation of sperm quality and circular RNA content in men exposed to environmental contamination with heavy metals in 'Land of Fires', Italy. Hum Reprod 2024; 39:1628-1644. [PMID: 38885964 PMCID: PMC11291948 DOI: 10.1093/humrep/deae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Indexed: 06/20/2024] Open
Abstract
STUDY QUESTION Can illegal discharge of toxic waste into the environment induce a new condition of morpho-epigenetic pathozoospermia in normozoospermic young men? SUMMARY ANSWER Toxic environmental contaminants promote the onset of a new pathozoospermic condition in young normozoospermic men, consisting of morpho-functional defects and a sperm increase of low-quality circular RNA (circRNA) cargo, tightly linked to contaminant bioaccumulation in seminal plasma. WHAT IS KNOWN ALREADY Epidemiological findings have reported several reproductive anomalies depending on exposure to contaminants discharged into the environment, such as germ cell apoptosis, steroidogenesis defects, oxidative stress induction, blood-testis barrier dysfunctions, and poor sperm quality onset. In this scenario, a vast geographical area located in Campania, Italy, called the 'Land of Fires', has been associated with an excessive illegal discharge of toxic waste into the environment, negatively impacting human health, including male reproductive functions. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from healthy normozoospermic men divided into two experimental groups, consisting of men living in the 'Land of Fires' (LF; n = 80) or not (CTRL; n = 80), with age ranging from 25 to 40 years. The study was carried out following World Health Organization guidelines. PARTICIPANTS/MATERIALS, SETTING, METHODS Quality parameters of semen from CTRL- and LF-normozoospermic men were evaluated by computer-assisted semen analysis; high-quality spermatozoa from CTRL and LF groups (n = 80 for each experimental group) were obtained using a 80-40% discontinuous centrifugation gradient. Seminal plasma was collected following centrifugation and used for the dosage of chemical elements, dioxins and steroid hormones by liquid chromatography with tandem mass spectrometry. Sperm morpho-functional investigations (cellular morphology, acrosome maturation, IZUMO1 fertility marker analysis, plasma membrane lipid state, oxidative stress) were assessed on the purified high-quality spermatozoa fraction by immunochemistry/immunofluorescence and western blot analyses. Sperm circRNA cargo was evaluated by quantitative RT-PCR, and the physical interaction among circRNAs and fused in sarcoma (FUS) protein was detected using an RNA-binding protein immunoprecipitation assay. Protein immunoprecipitation experiments were carried out to demonstrate FUS/p-300 protein interaction in sperm cells. Lastly, in vitro lead (Pb) treatment of high-quality spermatozoa collected from normozoospermic controls was used to investigate a correlation between Pb accumulation and onset of the morpho-epigenetic pathozoospermic phenotype. MAIN RESULTS AND THE ROLE OF CHANCE Several morphological defects were identified in LF-spermatozoa, including: a significant increase (P < 0.05 versus CTRL) in the percentage of spermatozoa characterized by structural defects in sperm head and tail; and a high percentage (P < 0.01) of peanut agglutinin and IZUMO1 null signal cells. In agreement with these data, abnormal steroid hormone levels in LF seminal plasma suggest a premature acrosome reaction onset in LF-spermatozoa. The abnormal immunofluorescence signals of plasma membrane cholesterol complexes/lipid rafts organization (Filipin III and Flotillin-1) and of oxidative stress markers [3-nitrotyrosine and 3-nitrotyrosine and 4-hydroxy-2-nonenal] observed in LF-spermatozoa and associated with a sperm motility reduction (P < 0.01), demonstrated an affected membrane fluidity, potentially impacting sperm motility. Bioaccumulation of heavy metals and dioxins occurring in LF seminal plasma and a direct correlation between Pb and deregulated circRNAs related to high- and low-sperm quality was also revealed. In molecular terms, we demonstrated that Pb bioaccumulation promoted FUS hyperacetylation via physical interaction with p-300 and, in turn, its shuttling from sperm head to tail, significantly enhancing (P < 0.01 versus CTRL) the endogenous backsplicing of sperm low-quality circRNAs in LF-spermatozoa. LIMITATIONS, REASONS FOR CAUTION Participants were interviewed to better understand their area of origin, their eating habits as well as their lifestyles, however any information incorrectly communicated or voluntarily omitted that could potentially compromise experimental group determination cannot be excluded. A possible association between seminal Pb content and other heavy metals in modulating sperm quality should be explored further. Future investigations will be performed in order to identify potential synergistic or anti-synergistic effects of heavy metals on male reproduction. WIDER IMPLICATIONS OF THE FINDINGS Our study provides new findings regarding the effects of environmental contaminants on male reproduction, highlighting how a sperm phenotype classified as normozoospermic may potentially not match with a healthy morpho-functional and epigenetic one. Overall, our results improve the knowledge to allow a proper assessment of sperm quality through circRNAs as biomarkers to select spermatozoa with high morpho-epigenetic quality to use for ART. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Convenzione Azienda Sanitaria Locale (ASL) Caserta, Regione Campania' (ASL CE Prot. N. 1217885/DIR. GE). The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Bruno Ferraro
- UOSD of Reproductive Pathophysiology, Marcianise Hospital, Caserta, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Martina Moggio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
5
|
Tao H, Fang C, Xiao Y, Jin Y. The toxicity and health risk of chlorothalonil to non-target animals and humans: A systematic review. CHEMOSPHERE 2024; 358:142241. [PMID: 38705408 DOI: 10.1016/j.chemosphere.2024.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
6
|
Wang YS, Yang SJ, Wan ZX, Shen A, Ahmad MJ, Chen MY, Huo LJ, Pan JH. Chlorothalonil exposure compromised mouse oocyte in vitro maturation through inducing oxidative stress and activating MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116100. [PMID: 38367607 DOI: 10.1016/j.ecoenv.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Xuan Wan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ao Shen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Yue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Hua Pan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
7
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
8
|
Gautam R, Priyadarshini E, Patel AK, Arora T. Assessing the impact and mechanisms of environmental pollutants (heavy metals and pesticides) on the male reproductive system: a comprehensive review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:126-153. [PMID: 38240636 DOI: 10.1080/26896583.2024.2302738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalation of technological advancements, coupled with the increased use of hazardous chemicals, has emerged as a significant concern for human health. Exposure to environmental pollutants like heavy metals and pesticides (insecticides, herbicides and fungicides) is known to significantly contribute to various health problems, particularly affecting reproductive health. Disturbances in reproductive potential and reproductive toxicity in males are particularly worrisome. Existing literature suggests that exposure to these environmental pollutants significantly alters male reproductive parameters. Thus, it is imperative to thoroughly analyze, comprehend, and evaluate their impact on male reproductive toxicity. Oxidative stress and disruptions in redox equilibrium are major factors through which these pollutants induce changes in sperm parameters and affect the reproductive system. Insecticides, fungicides, and herbicides act as endocrine disruptors, interfering with the secretion and function of reproductive hormones such as testosterone and luteinizing hormone (LH), consequently impacting spermatogenesis. Additionally, heavy metals are reported to bio-accumulate in reproductive organs, acting as endocrine disruptors and triggering oxidative stress. The co-operative association of these pollutants can lead to severe damage. In this comprehensive review, we have conducted an in-depth analysis of the impact of these environmental pollutants on the male reproductive system, shedding light on the underlying mechanisms of action.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| | | | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Taruna Arora
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
9
|
Yu GB, Tian J, Chen RN, Liu HL, Wen BW, Wei JP, Chen QS, Chen FQ, Sheng YY, Yang FJ, Ren CY, Zhang YX, Ahammed GJ. Glutathione-dependent redox homeostasis is critical for chlorothalonil detoxification in tomato leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115732. [PMID: 38000301 DOI: 10.1016/j.ecoenv.2023.115732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.
Collapse
Affiliation(s)
- Gao-Bo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| | - Jin Tian
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Ru-Nan Chen
- Hainan University, Haikou, Hainan Province 570228, PR China
| | - Han-Lin Liu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Bo-Wen Wen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Jin-Peng Wei
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiu-Sen Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Feng-Qiong Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yun-Yan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Feng-Jun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Chun-Yuan Ren
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Yu-Xian Zhang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China.
| |
Collapse
|
10
|
Li HT, Zhong K, Xia YF, Song J, Chen XQ, Zhao W, Zeng XH, Chen TX. Puerarin improves busulfan-induced disruption of spermatogenesis by inhibiting MAPK pathways. Biomed Pharmacother 2023; 165:115231. [PMID: 37516022 DOI: 10.1016/j.biopha.2023.115231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
Male infertility is a global concern, with a noticeable increase in the decline of spermatogenesis and sperm quality. However, there are limited clinically effective treatments available. This study aimed to investigate the potential effectiveness of puerarin in treating male infertility, which leads to gonadal changes. The results obtained from various analyses such as CASA, immunofluorescence, DIFF-Quick, hematoxylin and eosin (H&E), and periodic acid-Schiff (PAS) staining demonstrated that puerarin supplementation significantly alleviated the busulfan-induced reduction in spermatogenesis and sperm quality in both young and adult mice. Furthermore, puerarin exhibited a marked improvement in the damage caused by busulfan to the architecture of seminiferous tubules, causal epididymis, blood-testicular barrier (BTB), as well as spermatogonia and Sertoli cells. Similarly, puerarin significantly reduced the levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), and caspase-3 in the testes of busulfan-induced mice, as determined by microplate reader analysis. Additionally, RNA-seq data, RT-qPCR, and western blotting revealed that puerarin restored the abnormal gene expressions induced by busulfan to nearly healthy levels. Notably, puerarin significantly reversed the impact of busulfan on the expression of marker genes involved in spermatogenesis and oxidative stress. Moreover, puerarin suppressed the phosphorylation of p38, ERK1/2, and JNK in the testes, as observed through testicular analysis. Consequently, this study concludes that puerarin may serve as a potential alternative for treating busulfan-induced damage to male fertility by inactivating the testicular MAPK pathways. These findings may pave the way for the use of puerarin in addressing chemotherapy- or other factors-induced male infertility in humans.
Collapse
Affiliation(s)
- Hai-Tao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Kun Zhong
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun-Fei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Jian Song
- Reproductive Medicine Center, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Xiao-Qing Chen
- Human Resources Division and Clinical Research Center, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| | - Xu-Hui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| | - Tian-Xing Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
11
|
Zhang C, Lu D, Niu T, Sun Z, Wang Y, Han X, Xiong B, Shen W, Sun Q, Zhao Y, Zhang W, Feng Y. LncRNA5251 inhibits spermatogenesis via modification of cell-cell junctions. Biol Direct 2023; 18:31. [PMID: 37316926 PMCID: PMC10268499 DOI: 10.1186/s13062-023-00381-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Male factors-caused decline in total fertility has raised significant concern worldwide. LncRNAs have been identified to play various roles in biological systems, including spermatogenesis. This study aimed to explore the role of lncRNA5251 in mouse spermatogenesis. METHODS The expression of lncRNA5251 was modulated in mouse testes in vivo or spermatogonial stem cells (C18-4 cells) in vitro by shRNA. RESULTS The sperm motility in two generations mice after modulation of lncRNA5251 (muF0 and muF1) was decreased significantly after overexpression of lncRNA5251. GO enrichment analysis found that knockdown lncRNA5251 increased the expression of genes related to cell junctions, and genes important for spermatogenesis in mouse testes. Meanwhile, overexpressing lncRNA5251 decreased the gene and/or protein expression of important genes for spermatogenesis and immune pathways in mouse testes. In vitro, knockdown lncRNA5251 increased the expression of genes for cell junction, and the protein levels of some cell junction proteins such as CX37, OCLN, JAM1, VCAM1 and CADM2 in C18-4 cells. LncRNA5251 is involved in spermatogenesis by modulation of cell junctions. CONCLUSION This will provide a theoretical basis for improving male reproductive ability via lncRNA.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- Urology Department, Shenzhen University general hospital, Shenzhen, 518055, P. R. China
| | - Dongxin Lu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Tong Niu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Zhongyi Sun
- Urology Department, Shenzhen University general hospital, Shenzhen, 518055, P. R. China
| | - Yandi Wang
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Xiao Han
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Bohui Xiong
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Qingyuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, P. R. China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- College of Science, Health, Engineering and Education, Murdoch University, Perth, 6150, Australia
| | - Weidong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
| | - Yanni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
| |
Collapse
|
12
|
Meng Z, Yan S, Sun W, Yan J, Teng M, Jia M, Tian S, Zhou Z, Zhu W. Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131310. [PMID: 37003002 DOI: 10.1016/j.jhazmat.2023.131310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
As the most commonly used organochlorine pesticide nowadays, chlorothalonil (CHI), is ubiquitous in a natural environment and poses many adverse effects to organisms. Unfortunately, the toxicity mechanisms of CHI have not been clarified yet. This study found that the CHI based on ADI level could induce obesity in mice. In addition, CHI could induce an imbalance in the gut microbiota of mice. Furthermore, the results of the antibiotic treatment and gut microbiota transplantation experiments showed that the CHI could induce obesity in mice in a gut microbiota-dependent manner. Based on the results of targeted metabolomics and gene expression analysis, CHI could disturb the bile acids (BAs) metabolism of mice, causing the inhibition of the signal response of BAs receptor FXR and leading to glycolipid metabolism disorders in liver and epiWAT of mice. The administration of FXR agonist GW4064 and CDCA could significantly improve the CHI-induced obesity in mice. In conclusion, CHI was found to induce obesity in mice by regulating the gut microbiota and BAs metabolism via the FXR signaling pathway. This study provides evidence linking the gut microbiota and pesticides exposure with the progression of obesity, demonstrating the key role of gut microbiota in the toxic effects of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
14
|
Nazari M, Shabani R, Ajdary M, Ashjari M, Shirazi R, Govahi A, Kermanian F, Mehdizadeh M. Effects of Au@Ag core-shell nanostructure with alginate coating on male reproductive system in mice. Toxicol Rep 2023; 10:104-116. [PMID: 36685271 PMCID: PMC9853145 DOI: 10.1016/j.toxrep.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
Collapse
Key Words
- AA, Ascorbic acid
- AMPkinase, 5' adenosine monophosphate-activated protein kinase
- ANOVA, Analysis of variance
- Ag-NPs, silver nanoparticles
- AgNO3,, Silver nitrate
- Apoptosis
- Atg3, Autophagy related 3
- Autophagy
- BAX, Bcl-2-associated X protein
- BTB, Blood-testes barrier
- Bcl-2, B-cell lymphoma 2
- CSNs, Core-shell nanostructures
- CTAB, Cetyltrimethylammonium bromide
- DLS, Dynamic light scattering
- DW, Distilled water
- FTIR, Fourier transform infrared spectroscopy
- FYN kinase, Proto-oncogene tyrosine-protein kinase
- Fertilization
- H2SO4,, Sulphuric acid
- HAuCl4, Tetrachloroauric acid trihydrate
- HR-TEM, High-resolution transmission electron microscopy
- ICP-MS, Inductively coupled plasma mass spectrometry
- IL, Interleukins
- IU, International Unit
- IgE, Immunoglobulin E
- NIH, National Institutes of Health
- NMRI, Naval Medical Research Institute
- NMs, Nanomaterials
- NRs, Nano rods
- NaBH4,, Sodium borohydride
- NaOH, Sodium hydroxide
- Nanostructures
- OD, Optical density
- PBS, Phosphate-buffered saline
- PI, Propidium Iodide
- PMSG, Pregnant Mare Serum Gonadotropin
- PdI, Polydispersity index
- ROS, Reactive oxygen species
- SD, standard deviation
- SERS, Surface enhanced Raman scattering
- SNRs, Silver Nano rods
- SSCs, Spermatogonial stem cells
- Semen analysis
- TDT, Terminal deoxynucleotidyl transferase
- TGA, Thermal gravimetric Analysis
- TGF-β, Transforming growth factor
- TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular tissue
- cDNA, Complementary DNA
- ct, cycle threshold
- dUTP, Deoxyuridine triphosphate
- hCG, human chorionic gonadotropin
- q RT-PCR, Quantitative real time - polymerase chain reaction
- rpm, Rotations Per Minute
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Shan G, Zhu M, Zhang D, Shi T, Song J, Li QX, Hua R. Effects of plant morphology, vitamin C, and other co-present pesticides on the deposition, dissipation, and metabolism of chlorothalonil in pakchoi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84762-84772. [PMID: 35789467 DOI: 10.1007/s11356-022-21405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Pesticide residues have been a focus of attention of food safety. Different varietal pakchoi plants grown in open fields were studied to understand effects of morphology, leaf wax content, and vitamin C on the deposition, dissipation, and metabolism of chlorothalonil. The loose pakchoi plants and flat leaves were conducive to pesticide deposition, but not plants with erect leaves. Chlorothalonil on nine varieties of pakchoi dissipated in the first-order kinetic with T1/2 s of 1.4 ~ 2.0 days. Vitamin C in pakchoi could promote the dissipation of chlorothalonil. Carbendazim could significantly promote the dissipation of chlorothalonil on pakchoi. Interestingly, four metabolites of chlorothalonil were identified in the pakchoi and the metabolic pathway was predicted by DFT calculations. The risk assessment showed that pakchoi were safe for consumption after 10 days of application of the recommended dose. This work provides important information for the understanding of deposition, dissipation, and metabolism of chlorothalonil in pakchoi.
Collapse
Affiliation(s)
- Guolei Shan
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dong Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Jialong Song
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
16
|
Zhou Y, Chen L, Han H, Xiong B, Zhong R, Jiang Y, Liu L, Sun H, Tan J, Cheng X, Schroyen M, Gao Y, Zhao Y, Zhang H. Taxifolin increased semen quality of Duroc boars by improving gut microbes and blood metabolites. Front Microbiol 2022; 13:1020628. [PMID: 36312933 PMCID: PMC9614168 DOI: 10.3389/fmicb.2022.1020628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Taxifolin (TAX), as a natural flavonoid, has been widely focused on due to its strong anti-oxidation, anti-inflammation, anti-virus, and even anti-tumor activity. However, the effect of TAX on semen quality was unknown. The purpose of this study was to analyze the beneficial influences of adding feed additive TAX to boar semen in terms of its quality and potential mechanisms. We discovered that TAX increased sperm motility significantly in Duroc boars by the elevation of the protein levels such as ZAG, PKA, CatSper, and p-ERK for sperm quality. TAX increased the blood concentration of testosterone derivatives, antioxidants such as melatonin and betaine, unsaturated fatty acids such as DHA, and beneficial amino acids such as proline. Conversely, TAX decreased 10 different kinds of bile acids in the plasma. Moreover, TAX increased "beneficial" microbes such as Intestinimonas, Coprococcus, Butyrivibrio, and Clostridium_XlVa at the Genus level. However, TAX reduced the "harmful" intestinal bacteria such as Prevotella, Howardella, Mogibacterium, and Enterococcus. There was a very close correlation between fecal microbes, plasma metabolites, and semen parameters by the spearman correlation analysis. Therefore, the data suggest that TAX increases the semen quality of Duroc boars by benefiting the gut microbes and blood metabolites. It is supposed that TAX could be used as a kind of feed additive to increase the semen quality of boars to enhance production performance.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, China
| | | | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, Jilin, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Xiong B, Jiang Y, Wang Y, Han X, Zhang C, Zhong R, Ge W, Han B, Ge Z, Huang G, Yin S, Shen W, Sun Q, Sun Z, Zhao Y, Zhang H. LncRNA8276 primes cell‐cell adhesion for regulation of spermatogenesis. Andrology 2022; 10:1687-1701. [DOI: 10.1111/andr.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Bohui Xiong
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Yandi Wang
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Xiao Han
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Cong Zhang
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Wei Ge
- College of Life Sciences Qingdao Agricultural University Qingdao 266109 P. R. China
| | - Baoquan Han
- Urology Department Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Zhaojia Ge
- College of Life Sciences Qingdao Agricultural University Qingdao 266109 P. R. China
| | - Gui'an Huang
- College of Life Sciences Qingdao Agricultural University Qingdao 266109 P. R. China
| | - Shen Yin
- College of Life Sciences Qingdao Agricultural University Qingdao 266109 P. R. China
| | - Wei Shen
- College of Life Sciences Qingdao Agricultural University Qingdao 266109 P. R. China
| | - Qingyuang Sun
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou 510317 P. R. China
| | - Zhongyi Sun
- Urology Department Shenzhen University General Hospital Shenzhen 518055 P. R. China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 P. R. China
| |
Collapse
|
18
|
Han H, Zhou Y, Xiong B, Zhong R, Jiang Y, Sun H, Tan J, Zhang B, Guan C, Schroyen M, Chen L, Zhao Y, Zhang H. Alginate oligosaccharides increase boar semen quality by affecting gut microbiota and metabolites in blood and sperm. Front Microbiol 2022; 13:982152. [PMID: 36071975 PMCID: PMC9441641 DOI: 10.3389/fmicb.2022.982152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alginate oligosaccharides (AOS), natural polymers from brown seaweeds (such as Laminaria japonica, Undaria pinnatifida, and Sargassum fusiforme), have been reported to possess many beneficial advantages for health. In the current study, after 9 weeks of dietary supplementation, AOS 10 mg/kg group (AOS 10) group increased boar sperm motility from 87.8% to 93.5%, p < 0.05. Moreover, AOS10 increased the relative abundances of Bifidobacterium, Coprococcus, Butyricicoccus (1.3–2.3-fold; p < 0.05) to increase the beneficial blood and sperm metabolites (1.2–1.6-fold; p < 0.05), and important sperm proteins such as gelsolin, Zn-alpha2 glycoprotein, Cation Channel Sperm-Associated Protein, outer dense fiber of sperm tails, etc. (1.5–2.2-fold; p < 0.05). AOS had a long-term beneficial advantage on boar semen quality by the increase in semen volume (175 vs. 160 ml/ejaculation, p < 0.05). AOS may be used as dietary additives for improving semen quality.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of AgroBioChem, Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux AgroBioTech, University of Liège, Gembloux, Belgium
| | - Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of AgroBioChem, Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux AgroBioTech, University of Liège, Gembloux, Belgium
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, China
| | - Bin Zhang
- Qingdao BZ Oligo Biotech Co., Ltd, Qingdao, China
| | - Chang Guan
- Qingdao BZ Oligo Biotech Co., Ltd, Qingdao, China
| | - Martine Schroyen
- Department of AgroBioChem, Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux AgroBioTech, University of Liège, Gembloux, Belgium
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Liang Chen,
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Yong Zhao, ;
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Hua J, Zhu B, Guo W, Wang X, Guo Y, Yang L, Han J, Zhou B. Endocrine disrupting effects induced by levonorgestrel linked to altered DNA methylation in rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109332. [PMID: 35351618 DOI: 10.1016/j.cbpc.2022.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 11/19/2022]
Abstract
Progestins are worldwide environmental contaminants, however, their ecotoxicological risks and underlying molecular mechanisms of effects are not fully understood. In this study, newly hatched rare minnow (Gobiocypris rarus) larvae were exposed to environmentally realistic concentrations (1 and 10 ng/L) of levonorgestrel (LNG) for 6 months. The sex ratios were not affected by LNG at both concentrations, but the growth was significantly inhibited at 10 ng/L while promoted at 1 ng/L. Histological analysis revealed impaired gonadal development. Plasma concentrations of estradiol in females and testosterone in both sexes were significantly induced after exposure to 1 ng/L LNG; plasma concentrations of 11-ketotestosterone were markedly increased in females exposed to 10 ng/L LNG and in males exposed to both concentrations of LNG. The transcription of cyp19a1a was significantly up-regulated in ovaries exposed to LNG at both concentrations, while cyp17a1 was down-regulated in testes exposed to 10 ng/L LNG. The global DNA methylation level was significantly decreased in testes exposed to 10 ng/L LNG, which might be associated with inhibited spermatogenesis. Gender-specific changes in CpG methylation patterns were induced by LNG in the 5' flanking region of cyp19a1a, with hypomethylation in ovaries but hypermethylation in testes, which was linked to the regulation of cyp19a1a transcription. The results suggest that LNG could induce endocrine disrupting effects in fish at environmentally realistic concentrations, which may be linked to altered DNA methylation. This study indicates potentially high ecological risk of LNG to fish populations, and warrants researches on regulatory mechanisms of epigenetic modifications in progestin-induced effects.
Collapse
Affiliation(s)
- Jianghuan Hua
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Biran Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Yan X, Ma X, Hao Y, Liu J, Fang H, Lu D, Shen W, Zhang H, Ge W, Zhao Y. Alginate oligosaccharides ameliorate busulfan-induced renal tubule injury. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Han H, Zhong R, Zhou Y, Xiong B, Chen L, Jiang Y, Liu L, Sun H, Tan J, Tao F, Zhao Y, Zhang H. Hydroxytyrosol Benefits Boar Semen Quality via Improving Gut Microbiota and Blood Metabolome. Front Nutr 2022; 8:815922. [PMID: 35111800 PMCID: PMC8802763 DOI: 10.3389/fnut.2021.815922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Semen quality is one of the most important factors for the success of artificial insemination which has been widely applied in swine industry to take the advantages of the superior genetic background and higher fertility capability of boars. Hydroxytyrosol (HT), a polyphenol, has attracted broad interest due to its strong antioxidant, anti-inflammatory, and antibacterial activities. Sperm plasma membrane contains a large proportion of polyunsaturated fatty acids which is easily impaired by oxidative stress and thus to diminish semen quality. In current investigation, we aimed to explore the effects of dietary supplementation of HT on boar semen quality and the underlying mechanisms. Dietary supplementation of HT tended to increase sperm motility and semen volume/ejaculation. And the follow-up 2 months (without HT, just basal diet), the semen volume was significantly more while the abnormal sperm was less in HT group than that in control group. HT increased the “beneficial microbes” Bifidobacterium, Lactobacillus, Eubacterium, Intestinimonas, Coprococcus, and Butyricicoccus, however, decreased the relative abundance of “harmful microbes” Streptococcus, Oscillibacter, Clostridium_sensu_stricto, Escherichia, Phascolarctobacterium, and Barnesiella. Furthermore, HT increased plamsa steroid hormones such as testosterone and its derivatives, and antioxidant molecules while decreased bile acids and the derivatives. All the data suggest that HT improves gut microbiota to benefit plasma metabolites then to enhance spermatogenesis and semen quality. HT may be used as dietary additive to enhance boar semen quality in swine industry.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, China
| | - Fuping Tao
- Hangzhou Viablife Biotech Co., Ltd., Hangzhou, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yong Zhao ;
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hongfu Zhang
| |
Collapse
|
22
|
Moo-Muñoz AJ, Azorín-Vega EP, Ramírez-Durán N, Moreno-Pérez PA. Evaluation of the cytotoxic and genotoxic potential of the captan-based fungicides, chlorothalonil-based fungicides and methyl thiophanate-based fungicides in human fibroblasts BJ. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:877-883. [PMID: 34486949 DOI: 10.1080/03601234.2021.1972721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objectives of this study were to examine cytotoxic and genotoxic damage in human BJ fibroblasts caused by three pesticides used worldwide by trypan blue dye exclusion assays and to measure the relative level of phosphorylated histone H2A.X by flow cytometry at different concentrations. Captan-based fungicide and methyl thiophanate-based fungicide (100 and 1000 µΜ) showed immediate cytotoxic effects; furthermore, after 24 h, captan-based fungicide, chlorothalonil-based fungicide and methyl thiophanate-based fungicide caused cytotoxic effects in the concentration ranges of 40-100 µM, 30-100 µM and 150-1000 µM, respectively. All fungicides generated DNA damage in the treated cells by activating ATM and H2A.X sensor proteins. The three fungicides tested generated DNA double-stranded breaks and showed cytotoxicity at concentrations 33, 34, and 5 times lower (captan, chlorothalonil and thiophanate-methyl respectively) than those used in the field, as recommended by the manufacturers.
Collapse
Affiliation(s)
- Andy J Moo-Muñoz
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| | - Erika P Azorín-Vega
- National Radiopharmaceutical Research and Development Laboratory, National Institute for Nuclear Research, La Marquesa-Ocoyoacac, State of Mexico
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| | - Pablo Antonio Moreno-Pérez
- Laboratory of Medical and Environmental Microbiology University, Autonomous of the State of Mexico, Paseo Tollocan, State of Mexico
| |
Collapse
|
23
|
Qu J, Han Y, Zhao Z, Wu Y, Lu Y, Chen G, Jiang J, Qiu L, Gu A, Wang X. Perfluorooctane sulfonate interferes with non-genomic estrogen receptor signaling pathway, inhibits ERK1/2 activation and induces apoptosis in mouse spermatocyte-derived cells. Toxicology 2021; 460:152871. [PMID: 34303733 DOI: 10.1016/j.tox.2021.152871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread persistent organic pollutant. Both epidemiological survey and our previous in vivo study have revealed the associations between PFOS exposure and spermatogenesis disorder, while the underlying mechanisms are far from clear. In the present study, GC-2 cells, a mouse spermatocyte-derived cell line, was used to investigate the toxic effects of PFOS and its hypothetical mechanism of action. GC-2 cells were treated with PFOS (0, 50, 100 and 150 μM) for 24 h or 48 h. Results demonstrated that PFOS dose-dependently inhibited cell viability, induced G0/G1 cell cycle arrest and triggered apoptosis, which might be partly explained by the decrease in cyclin D1, PCNA and Bcl-2 protein expression; increase in Bax protein expression; and activation of caspase-9, -3. In addition, PFOS did not directly transactivate or repress estrogen receptors (ERs) in gene reporter assays, whereas the protein levels of both ERα and ERβ were significantly altered and the downstream ERK1/2 phosphorylation was inhibited by PFOS. Furthermore, pretreatment with specific ERα agonist PPT (1 μM) significantly attenuated the above PFOS-induced effects while specific ERβ agonist DPN (1 μM) accelerated them. These results suggest that PFOS may induce growth inhibition and apoptosis via non-genomic estrogen receptor/ERK1/2 signaling pathway in GC-2 cells, which provides a novel insight regarding the potential role of ERs in mediating PFOS-triggered spermatocyte toxicity.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Yu Han
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Ziyan Zhao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ying Lu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Gang Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Junkang Jiang
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
24
|
Ma D, Han P, Song M, Zhang H, Shen W, Huang G, Zhao M, Sun Q, Zhao Y, Min L. β-carotene Rescues Busulfan Disrupted Spermatogenesis Through Elevation in Testicular Antioxidant Capability. Front Pharmacol 2021; 12:593953. [PMID: 33658940 PMCID: PMC7917239 DOI: 10.3389/fphar.2021.593953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
β-carotene, precursor of vitamin A, is an excellent antioxidant with many beneficial properties. It is a lipid-soluble antioxidant and a very effective quencher of reactive oxygen species (ROS) to reduce the oxidative stress. In contrast to vitamin A, β-carotene is not toxic even consumed in higher amount when it is delivered from natural plant products. Recently, we found that β-carotene acts as a potential antioxidant in the oocyte to improve its quality. Even though many studies have been reported that β-carotene has the beneficial contribution to the ovarian development and steroidogenesis, it is unknown the effects of β-carotene on the spermatogenesis. This investigation aimed to explore the hypothesis that β-carotene could improve spermatogenesis and the underlying mechanism. And we found that β-carotene rescued busulfan disrupted spermatogenesis in mouse with the increase in the sperm concentration and motility. β-carotene improved the expression of genes/proteins important for spermatogenesis, such as VASA, DAZL, SYCP3, PGK2. Moreover, β-carotene elevated the testicular antioxidant capability by the elevation of the antioxidant glutathione and antioxidant enzymes SOD, GPX1, catalase levels. In conclusion, β-carotene may be applied for the infertile couples by the improvement of spermatogenesis, since, worldly many couples are infertile due to the idiopathic failed gametogenesis (spermatogenesis).
Collapse
Affiliation(s)
- Dongxue Ma
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Pengfei Han
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Mingji Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guian Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Minghui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingyuan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
25
|
Li X, Yao Y, Wang S, Xu S. Resveratrol relieves chlorothalonil-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2020; 107:427-434. [PMID: 33186708 DOI: 10.1016/j.fsi.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil (CT) is a commonly used fungicide and its excessive application seriously threatens aquatic life and human health. Resveratrol (RSV) is a natural polyphenol and can be used as a therapeutic and preventive agent for the treatment of various diseases. To explore the toxic mechanism of CT exposure on fish kidney cell, as well as the alleviation effect of RSV, we established CT poisoning and/or RSV treatment fish kidney cell models. Ctenopharyngodon idellus kidney (CIK) cell line was treated with CT (5 μg/L) and/or RSV (10 μM) for 48 h. The results showed that CT exposure activated cytochromeP450s (CYPs) including CYP1A1, CYP1B1 and CYP1C, caused malondialdehyde (MDA) accumulation, inhibited glutathione (GSH) levels and glutathione peroxidase (GPX) activities, increased the expression of miR-15a and downregulated BCL2 and TNFα-induced protein 3 (TNFAIP3, A20), triggered mitochondrial pathway mediated apoptosis and receptor interacting serine/threonine kinase (RIP)-dependent necroptosis in CIK cells. However, cell death under CT exposure could be relieved by RSV treatment through inhibiting the expression of CYP1 family genes and restoring miR-15a/BCL2-A20 axis disorders. Overall, we conclude that RSV could relieve CT-induced apoptosis and necroptosis through miR-15a/Bcl2-A20 axis in CIK cells. These results enrich the toxicological mechanisms of the CT and confirm that RSV can be used as a potential antidote for CT poisoning.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
26
|
Environmental Impact on Male (In)Fertility via Epigenetic Route. J Clin Med 2020; 9:jcm9082520. [PMID: 32764255 PMCID: PMC7463911 DOI: 10.3390/jcm9082520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 40 years, male reproductive health-which is very sensitive to both environmental exposure and metabolic status-has deteriorated and the poor sperm quality observed has been suggested to affect offspring development and its health in adult life. In this scenario, evidence now suggests that epigenetics shapes endocrine functions, linking genetics and environment. During fertilization, spermatozoa share with the oocyte their epigenome, along with their haploid genome, in order to orchestrate embryo development. The epigenetic signature of spermatozoa is the result of a dynamic modulation of the epigenetic marks occurring, firstly, in the testis-during germ cell progression-then, along the epididymis, where spermatozoa still receive molecules, conveyed by epididymosomes. Paternal lifestyle, including nutrition and exposure to hazardous substances, alters the phenotype of the next generations, through the remodeling of a sperm epigenetic blueprint that dynamically reacts to a wide range of environmental and lifestyle stressors. With that in mind, this review will summarize and discuss insights into germline epigenetic plasticity caused by environmental stimuli and diet and how spermatozoa may be carriers of induced epimutations across generations through a mechanism known as paternal transgenerational epigenetic inheritance.
Collapse
|
27
|
da Silva Barreto J, de Melo Tarouco F, da Rosa CE. Chlorothalonil causes redox state change leading to oxidative stress generation in Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105527. [PMID: 32599436 DOI: 10.1016/j.aquatox.2020.105527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 05/21/2023]
Abstract
A diverse range of chemicals are used in agriculture to increase food production on a large scale, and among them is the use of pesticides such as chlorothalonil, a broad-spectrum fungicide used in the control of foliar fungal diseases. This study aimed to elucidate the effects of chlorothalonil on biochemical biomarkers of oxidative stress in tissues of the fish Danio rerio. To achieve this, animals were exposed for 4 and 7 days, to nominal concentrations of chlorothalonil at 0 μg/L (DMSO, 0.001%), 0.1 μg/L and 10 μg/L, and after the exposure period, the tissues (gills and liver) were removed for biochemical analysis. Antioxidant capacity against peroxyl radicals (ACAP) and enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutamate cysteine ligase (GCL), were evaluated in both tissues. In addition, the concentration of reactive oxygen species (ROS), reduced glutathione (GSH) and lipid peroxidation (LPO) levels were also analysed. A significant increase in ROS concentration, ACAP levels, GST and GCL activities and a significant reduction of LPO levels in gills exposed to the highest concentration were observed after 4 days. However, there was a significant reduction of ACAP and CAT activity, as well as a significant increase of GST activity and LPO levels in gills exposed to the lower concentration after 7 days. The liver was less affected, presenting a significant reduction in CAT activity and LPO levels after 4 days. However, a significant increase in SOD activity and LPO levels occurred after 7 days. These results indicate that chlorothalonil, after 4 days, caused activation of the antioxidant defence system in gills of animals exposed to the highest concentration. However, after 7 days, the lowest concentration of this compound caused oxidative stress in this same organ. Also, the results show that gills were more affected than the liver, probably because gills can be involved in chlorothalonil metabolisation. Therefore, it is possible that the liver could be exposed to lower chlorothalonil concentrations or less toxic metabolites due to the metabolism taking place in the gills.
Collapse
Affiliation(s)
- Juliano da Silva Barreto
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Fabio de Melo Tarouco
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
28
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
29
|
Zhao Y, Zhang P, Ge W, Feng Y, Li L, Sun Z, Zhang H, Shen W. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Am J Cancer Res 2020; 10:3308-3324. [PMID: 32194870 PMCID: PMC7053202 DOI: 10.7150/thno.43189] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Busulfan is currently an indispensable anti-cancer drug, particularly for children, but the side effects on male reproduction are so serious that critical drug management is needed to minimize any negative impact. Meanwhile, alginate oligosaccharides (AOS) are natural products with many consequent advantages, that have attracted a great deal of pharmaceutical attention. In the current investigation, we performed single-cell RNA sequencing on murine testes treated with busulfan and/or AOS to define the mitigating effects of AOS on spermatogenesis at the single cell level. Methods: Testicular cells (in vivo) were examined by single cell RNA sequencing analysis, histopathological analysis, immunofluorescence staining, and Western blotting. Testes samples (ex vivo) underwent RNA sequencing analysis. Blood and testicular metabolomes were determined by liquid chromatography-mass spectrometry (LC/MS). Results: We found that AOS increased murine sperm concentration and motility, and rescued busulfan disrupted spermatogenesis through improving (i) the proportion of germ cells, (ii) gene expression important for spermatogenesis, and (iii) transcriptional factors in vivo. Furthermore, AOS promoted the ex vivo expression of genes important for spermatogenesis. Finally, our results showed that AOS improved blood and testis metabolomes as well as the gut microbiota to support the recovery of spermatogenesis. Conclusions: AOS could be used to improve fertility in patients undergoing chemotherapy and to combat other factors that induce infertility in humans.
Collapse
|
30
|
Li H, Zhang P, Zhao Y, Zhang H. Low doses of carbendazim and chlorothalonil synergized to impair mouse spermatogenesis through epigenetic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109908. [PMID: 31706243 DOI: 10.1016/j.ecoenv.2019.109908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Pesticides have been extensively produced and used to help the agricultural production which leads to the contamination of the environment, soil, groundwater sources, and even foodstuffs. Fungicides carbendazim (CBZ) and chlorothalonil (Chl) are widely applied in agriculture and other aspects. CBZ or Chl have been reported to disrupt spermatogenesis and decrease semen quality. However, it is not understood the effects of pubertal exposure to low doses of CBZ and Chl together, and the underlying mechanisms. Therefore, the aim of current investigation was to explore the negative impacts of pubertal exposure to low doses of CBZ and Chl together on spermatogenesis and the role of epigenetic modifications in the process. We demonstrated that CBZ and Chl together synergize to decrease sperm motility in vitro (CBZ 1.0 + Chl 0.1, CBZ 10.0 + CHl 1.0, CBZ 100.0 + Chl 10 μM in incubation medium for 24 h) and sperm concentration and motility in vivo with ICR mice (CBZ 0.1 + Chl 0.1, CBZ 1.0 + CHl 1.0, CBZ 10.0 + Chl 10 mg/kg body weight; oral gavage for five weeks). CBZ + Chl significantly increase reactive oxygen species (ROS) and apoptosis by the increase in the protein level of caspase 8 in vitro. Moreover, CBZ + Chl synergized to disrupt mouse spermatogenesis with the disturbance in sperm production proteins and sperm proteins (VASA, A-Myb, STK31, AR, Acrosin). CBZ + Chl synergized to decrease the protein level of estrogen receptor alpha and the protein level of DNA methylation marker 5 mC in Leydig cells, and to increase the protein levels of histone methylation marker H3K9 and the methylation enzyme G9a in germ cells. Therefore, greater attention should be paid to the use of CBZ and Chl as pesticides to minimise their adverse impacts on spermatogenesis.
Collapse
Affiliation(s)
- Huatao Li
- College of Veterinary Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Pengfei Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
31
|
Han X, Zhang P, Shen W, Zhao Y, Zhang H. Estrogen Receptor-Related DNA and Histone Methylation May Be Involved in the Transgenerational Disruption in Spermatogenesis by Selective Toxic Chemicals. Front Pharmacol 2019; 10:1012. [PMID: 31572187 PMCID: PMC6749155 DOI: 10.3389/fphar.2019.01012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Air pollution is a global threat to human health especially spermatogenesis. Animal and epidemiological studies suggest that epigenetic factors can transmit the pathologies transgenerationally. Paternal epigenetic effects can greatly impact offspring health. In this study and together with our previous report, we found that H2S donor Na2S and/or NH3 donor NH4Cl diminished mouse fertility, decreased spermatozoa concentration and motility, and impaired spermatogenesis in three consequent generations (F0, F1, and F2). In the current study, we found that DNA methylation, histone methylation, and estrogen receptor alpha (ERα) were impaired by NH4Cl and/or Na2S in F0, F1, and F2 mouse testes. Moreover, NH4Cl and/or Na2S might act as environmental endocrine-disrupting chemicals to decrease estrogen and testosterone in mouse blood. It has been reported that ERα signaling is intertwined together with DNA methylation and histone methylation, which plays very important roles in spermatogenesis. These data together indicate that the transgenerational disruption in spermatogenesis by NH4Cl and/or Na2S may be through ERα-related DNA methylation and histone methylation pathways. Therefore, we strongly recommend that greater attention should be paid to NH3 and/or H2S contamination to minimize their impact on human health especially spermatogenesis.
Collapse
Affiliation(s)
- Xiao Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Pengfei Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|